2001
|
Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008; 34:962-9. [PMID: 18634928 DOI: 10.1016/j.joen.2008.04.009] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/14/2008] [Accepted: 04/20/2008] [Indexed: 12/28/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) have been isolated and characterized as multipotent cells. However, it is not known whether SHED can generate a dental pulp-like tissue in vivo. The purpose of this study was to evaluate morphologic characteristics of the tissue formed when SHED seeded in biodegradable scaffolds prepared within human tooth slices are transplanted into immunodeficient mice. We observed that the resulting tissue presented architecture and cellularity that closely resemble those of a physiologic dental pulp. Ultrastructural analysis with transmission electron microscopy and immunohistochemistry for dentin sialoprotein suggested that SHED differentiated into odontoblast-like cells in vivo. Notably, SHED also differentiated into endothelial-like cells, as demonstrated by B-galactosidase staining of cells lining the walls of blood-containing vessels in tissues engineered with SHED stably transduced with LacZ. This work suggests that exfoliated deciduous teeth constitute a viable source of stem cells for dental pulp tissue engineering.
Collapse
|
2002
|
Ikeda E, Tsuji T. Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther 2008; 8:735-44. [PMID: 18476785 DOI: 10.1517/14712598.8.6.735] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs that can replace organs lost or damaged due to disease, injury or aging. Dental regenerative medicine has made the most progress and is the most useful model for the consideration of strategies in future organ replacement therapies. OBJECTIVE This review describes strategies that have been pursued to date and experiments currently being conducted to bioengineer teeth in anticipation of the production of fully functional organs. METHODS To realize the practical application of 'bioengineered tooth' transplantation therapy, four major hurdles must be overcome. The present status of the hurdles to this therapy are described and discussed in this review. RESULTS/CONCLUSION The bioengineering techniques developed for tooth regeneration will in the future make substantial contributions to the ability to grow primordial organs in vitro and also to grow fully functioning organs, such as the liver, kidney and heart.
Collapse
Affiliation(s)
- Etsuko Ikeda
- Faculty of Industrial Science and Technology Tokyo University of Science, Department of Biological Science and Technology, Noda, Chiba 278-8510, Japan
| | | |
Collapse
|
2003
|
Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:307-19. [PMID: 18665759 DOI: 10.1089/ten.teb.2008.0165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Junnan Shi
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of Oral Histology & Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
2004
|
Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res 2008; 87:617-23. [PMID: 18573979 DOI: 10.1177/154405910808700715] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tooth agenesis may originate from either genetic or environmental factors. Genetically determined hypodontic disorders appear as isolated features or as part of a syndrome. Msx1, Pax9, and Axin2 are involved in non-syndromic hypodontia, while genes such as Shh, Pitx2, Irf6, and p63 are considered to participate in syndromic genetic disorders, which include tooth agenesis. In dentistry, artificial tooth implants represent a common solution to tooth loss problems; however, molecular dentistry offers promising solutions for the future. In this paper, the genetic and molecular bases of non-syndromic and syndromic hypodontia are reviewed, and the advantages and disadvantages of tissue engineering in the clinical treatment of tooth agenesis are discussed.
Collapse
Affiliation(s)
- E Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic.
| | | | | | | |
Collapse
|
2005
|
Shkoporov AN, Efimov BA, Khokhlova EV, Steele JL, Kafarskaia LI, Smeianov VV. Characterization of plasmids from human infant Bifidobacterium strains: sequence analysis and construction of E. coli-Bifidobacterium shuttle vectors. Plasmid 2008; 60:136-48. [PMID: 18652842 DOI: 10.1016/j.plasmid.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 11/29/2022]
Abstract
A survey of infant fecal Bifidobacterium isolates for plasmid DNA revealed that a significant portion of the strains, 17.6%, carry small plasmids. The majority of plasmid-harboring strains belonged to the Bifidobacterium longum/infantis group. Most of the plasmids could be assigned into two groups based on their sizes and the restriction profiles. Three plasmids, pB44 (3.6 kb) from B. longum, pB80 (4.9 kb) from Bifidobacterium bifidum, and pB21a (5.2kb) from Bifidobacterium breve were sequenced. While the former two plasmids were found to be highly similar to previously characterized rolling-circle replicating pKJ36 and pKJ56, respectively, the third plasmid, pB21a, does not share significant nucleotide homology with known plasmids. However, it might be placed into the pCIBb1-like group of bifidobacterial rolling-plasmids based on the homology of its Rep protein and the overall molecular organization. Two sets of Escherichia coli-Bifidobacterium shuttle vectors constructed based on pB44 and pB80 replicons were capable of transforming B. bifidum and B. breve strains with efficiency up to 3x10(4)cfu/microg DNA. Additionally, an attempt was made to employ a broad host range conjugation element, RP4, in developing of E. coli-Bifidobacterium gene transfer system.
Collapse
Affiliation(s)
- Andrei N Shkoporov
- Department of Microbiology, Russia State Medical University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
2006
|
Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 2008; 13:1551-69. [PMID: 18794772 PMCID: PMC6244944 DOI: 10.3390/molecules13081551] [Citation(s) in RCA: 505] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/01/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022] Open
Abstract
The purpose of this work is to review the published studies on the mechanisms of action and resistance of 5-fluorouracil. The review is divided into three main sections: mechanisms of anti-tumor action, studies of the resistance to the drug, and procedures for the identification of new genes involved in resistance with microarray techniques. The details of the induction and reversal of the drug resistance are also described.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, P.R. China; E-mail:
| | - Ying Yin
- Institute of Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou, 310016, P.R. China; E-mails: ;
| | - Sheng-Jie Xu
- Institute of Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 East Qingchun Road, Hangzhou, 310016, P.R. China; E-mails: ;
| | - Wei-Shan Chen
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, P.R. China; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
2007
|
Abstract
Our long-term objective is to develop methods to form, in the jaw, bioengineered replacement teeth that exhibit physical properties and functions similar to those of natural teeth. Our results show that cultured rat tooth bud cells, seeded onto biodegradable scaffolds, implanted into the jaws of adult rat hosts and grown for 12 weeks, formed small, organized, bioengineered tooth crowns, containing dentin, enamel, pulp, and periodontal ligament tissues, similar to identical cell-seeded scaffolds implanted and grown in the omentum. Radiographic, histological, and immunohistochemical analyses showed that bioengineered teeth consisted of organized dentin, enamel, and pulp tissues. This study advances practical applications for dental tissue engineering by demonstrating that bioengineered tooth tissues can be regenerated at the site of previously lost teeth, and supports the use of tissue engineering strategies in humans, to regenerate previously lost and/or missing teeth. The results presented in this report support the feasibility of bioengineered replacement tooth formation in the jaw.
Collapse
Affiliation(s)
- S.E. Duailibi
- University Federal of São Paulo, Department of Plastic Surgery, UNIFESP-CINTERGEN, Interdisciplinary Center of Gene Therapy, São Paulo, Brazil
| | - M.T. Duailibi
- University Federal of São Paulo, Department of Plastic Surgery, UNIFESP-CINTERGEN, Interdisciplinary Center of Gene Therapy, São Paulo, Brazil
| | - W. Zhang
- Division of Craniofacial and Molecular Genetics, Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA 02111, USA
| | - R. Asrican
- Department of Cytokine Biology, The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine
| | - J.P. Vacanti
- Laboratory for Tissue Engineering and Organ Fabrication, Massachusetts General Hospital and Department of Surgery, and Harvard Medical School, Boston, MA, USA
| | - P.C. Yelick
- Division of Craniofacial and Molecular Genetics, Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
2008
|
Epithelial histogenesis during tooth development. Arch Oral Biol 2008; 54 Suppl 1:S25-33. [PMID: 18656852 DOI: 10.1016/j.archoralbio.2008.05.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 12/31/2022]
Abstract
This paper reviews the current understanding of the progressive changes mediating dental epithelial histogenesis as a basis for future collaborative studies. Tooth development involves morphogenesis, epithelial histogenesis and cell differentiation. The consecutive morphological stages of lamina, bud, cap and bell are also characterized by changes in epithelial histogenesis. Differential cell proliferation rates, apoptosis, and alterations in adhesion and shape lead to the positioning of groups of cells with different functions. During tooth histo-morphogenesis changes occur in basement membrane composition, expression of signalling molecules and the localization of cell surface components. Cell positional identity may be related to cell history. Another important parameter is cell plasticity. Independently of signalling molecules, which play a major role in inducing or modulating specific steps, cell-cell and cell-matrix interactions regulate the plasticity/rigidity of particular domains of the enamel organ. This involves specifying in space the differential growth and influences the progressive tooth morphogenesis by shaping the epithelial-mesenchymal junction. Deposition of a mineralized matrix determines the final shape of the crown. All data reviewed in this paper were investigated in the mouse.
Collapse
|
2009
|
Grech JM, Mano JF, Reis RL. Chitosan Beads as Templates for Layer-by-Layer Assembly and their Application in the Sustained Release of Bioactive Agents. J BIOACT COMPAT POL 2008; 23:367-380. [DOI: 10.1177/0883911508093389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Uncoated chitosan beads and chitosan beads coated with hyaluronic acid/chitosan (HA/Ch) multilayers, were used to investigate the controlled release of gentamicin sulphate (GS). Greater encapsulation efficiency was observed for the layer—by-layer multilayer coated beads. The in vitro drug release was in a slower sustained manner compared with noncoated chitosan beads. The differences in in vitro drug release results may be explained by the barrier effect of the coating that impedes diffusion of GS and supporting complementary water uptake. These findings indicated that a slower sustained release of gentamicin can be obtained using multilayer coatings of HA/Ch on chitosan beads and that this process could be used as a drug delivery system. In addition, agglomerates of these bead could provide a porous support in tissue engineering applications.
Collapse
Affiliation(s)
- Jessica M.R. Grech
- 3B's Research Group- Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering Campus de Gualtar, Braga, 4710-057 Portugal, IBB — Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga, Portugal
| | - Joao F. Mano
- 3B's Research Group- Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering Campus de Gualtar, Braga, 4710-057 Portugal, , IBB — Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga, Portugal
| | - Rui L. Reis
- 3B's Research Group- Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering Campus de Gualtar, Braga, 4710-057 Portugal, IBB — Institute for Biotechnology and Bioengineering PT Government Associated Laboratory, Braga, Portugal
| |
Collapse
|
2010
|
Nakao K, Tsuji T. Dental regenerative therapy: Stem cell transplantation and bioengineered tooth replacement. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2007.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
2011
|
Improved cloning vectors for bifidobacteria, based on the Bifidobacterium catenulatum pBC1 replicon. Appl Environ Microbiol 2008; 74:4656-65. [PMID: 18539807 DOI: 10.1128/aem.00074-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports the development of several cloning vectors for bifidobacteria based on the replicon of pBC1, a cryptic plasmid from Bifidobacterium catenulatum L48 thought to replicate via the theta mode. These vectors, in which antibiotic resistance genes encoding either erythromycin or tetracycline resistance acted as selection markers, were able to replicate in a series of eight Bifidobacterium species at frequencies ranging from 4.0 x 10(1) to 1.0 x 10(5) transformants microg(-1) but not in Lactococcus lactis or Lactobacillus casei. They showed a relative copy number of around 30 molecules per chromosome equivalent and a good segregational stability, with more than 95% of the cells retaining the vectors after 80 to 100 generations in the absence of selection. Vectors contain multiple cloning sites of different lengths, and the lacZalpha peptide gene was introduced into one of the molecules, thus allowing the easy selection of colonies harboring recombinant plasmids in Escherichia coli. The functionality of the vectors for engineering Bifidobacterium strains was assessed by cloning and examining the expression of an alpha-l-arabinofuranosidase gene belonging to Bifidobacterium longum. E. coli and Bifidobacterium pseudocatenulatum recombinant clones were stable and showed an increase in alpha-arabinofuranosidase activity of over 100-fold compared to that of the untransformed hosts.
Collapse
|
2012
|
Yu J, Jin F, Deng Z, Li Y, Tang L, Shi J, Jin Y. Epithelial-Mesenchymal Cell Ratios Can Determine the Crown Morphogenesis of Dental Pulp Stem Cells. Stem Cells Dev 2008; 17:475-82. [PMID: 18513162 DOI: 10.1089/scd.2007.0120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jinghua Yu
- Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhihong Deng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanfei Li
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liang Tang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junnan Shi
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2013
|
Morsczeck C, Schmalz G, Reichert TE, Völlner F, Galler K, Driemel O. Somatic stem cells for regenerative dentistry. Clin Oral Investig 2008; 12:113-118. [PMID: 18172700 DOI: 10.1007/s00784-007-0170-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 11/27/2007] [Indexed: 02/07/2023]
Abstract
Complex human tissues harbour stem cells and/or precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as periodontal ligament (PDL), dental papilla or dental follicle have been identified as easily accessible sources of undifferentiated cells. The dental stem cell biology might provide meaningful insights into the development of dental tissues and cellular differentiation processes. Dental stem cells could also be feasible tools for dental tissue engineering. Constructing complex structures like a periodontium, which provides the functional connection between a tooth or an implant and the surrounding jaw, could effectively improve modern dentistry. Dental precursor cells are attractive for novel approaches to treat diseases like periodontitis, dental caries or to improve dental pulp healing and the regeneration of craniofacial bone and teeth. These cells are easily accessible and, in contrast to bone-marrow-derived mesenchymal stem cells, are more closely related to dental tissues. This review gives a short overview of stem cells of dental origin.
Collapse
|
2014
|
Liu Y, Wang X, Jin Y. Can bone marrow cells give rise to cornea epithelial cells? Med Hypotheses 2008; 71:411-3. [PMID: 18495366 DOI: 10.1016/j.mehy.2008.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/15/2022]
Abstract
The corneal epithelium plays a critical role in maintaining the cornea's transparency and its avascularity. Severe damage to the limbal region results in serious problems with the corneal surface such as persistent epithelial defects, conjunctivalisation with vascularisation, keratinisation, scarring, etc. with associated profound visual loss. In order to rescue such damaged ocular surfaces, corneal epithelial stem cells were used to reconstruct artificial corneas by employing tissue engineering method. This procedure, however, requires a large limbal graft from the healthy eye and it is not possible in patients who have bilateral lesions. Therefore we should find other autologous cells as a source of cells for the reconstruction of the corneal surface. c-kit+ enriched bone marrow stem cells can give rise to different epithelial cells. So we hypothesize that this might apply to the cornea as well. Cultured cell sheets composed of autologous c-kit+ enriched bone marrow stem cells may be used to reconstruct corneal surfaces and can restore vision in patients with bilateral severe disorders of the ocular surface.
Collapse
Affiliation(s)
- Yuan Liu
- Center for Tissue Engineering, Department of Oral Histology and Pathology, Stomatological College, The Fourth Military Medical University, Xi'an, China
| | | | | |
Collapse
|
2015
|
Kato A, Ohno N. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clin Oral Investig 2008; 13:43-6. [PMID: 18386082 DOI: 10.1007/s00784-008-0198-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
The study of dental morphology is essential in terms of phylogeny. Advances in three-dimensional (3D) measurement devices have enabled us to make 3D images of teeth without destruction of samples. However, raw fundamental data on tooth shape requires complex equipment and techniques. An online database of 3D teeth models is therefore indispensable. We aimed to explore the basic methodology for constructing 3D teeth models, with application for data sharing. Geometric information on the human permanent upper left incisor was obtained using micro-computed tomography (micro-CT). Enamel, dentine, and pulp were segmented by thresholding of different gray-scale intensities. Segmented data were separately exported in STereo-Lithography Interface Format (STL). STL data were converted to Wavefront OBJ (OBJect), as many 3D computer graphics programs support the Wavefront OBJ format. Data were also applied to Quick Time Virtual Reality (QTVR) format, which allows the image to be viewed from any direction. In addition to Wavefront OBJ and QTVR data, the original CT series were provided as 16-bit Tag Image File Format (TIFF) images on the website. In conclusion, 3D teeth models were constructed in general-purpose data formats, using micro-CT and commercially available programs. Teeth models that can be used widely would benefit all those who study dental morphology.
Collapse
Affiliation(s)
- A Kato
- First Department of Anatomy, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya, Japan.
| | | |
Collapse
|
2016
|
Matsushita H, Nakamura N, Asai S, Yabe M, Hayama N, Kondo Y, Urano T, Miyachi H. A leukemic change as an initial manifestation of the common variant type of ALK-positive anaplastic large cell lymphoma in a patient with lung adenocarcinoma. Intern Med 2008; 47:2057-62. [PMID: 19043261 DOI: 10.2169/internalmedicine.47.1297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report an 81-year-old man who had leukemic presentation of ALK-positive anaplastic large cell lymphoma (ALCL) as an initial manifestation. He had been well after chemotherapy and irradiation for the advanced lung adenocarcinoma, but suddenly suffered from severe lactic acidosis and hypotension. The peripheral blood smear and bone marrow aspiration revealed the infiltration of atypical large cells with horseshoe-shaped or lobulated nuclei. The detection of CD30 expression and the t (2;5) (p23;q35) translocation in these cells was confirmatory of a diagnosis of common variant ALK-positive ALCL in a leukemic phase. He deteriorated rapidly and died before administration of the chemotherapy. An adequate, prompt diagnosis is necessary for this rare disease status in oncologic emergency to improve the disease management.
Collapse
Affiliation(s)
- Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University School of Medicine, Isehara.
| | | | | | | | | | | | | | | |
Collapse
|
2017
|
Ren K, Crouzier T, Roy C, Picart C. Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. ADVANCED FUNCTIONAL MATERIALS 2008; 18:1378-1389. [PMID: 18841249 PMCID: PMC2561337 DOI: 10.1002/adfm.200701297] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Beside chemical properties and topographical features, mechanical properties of gels have been recently demonstrated to play an important role in various cellular processes, including cell attachment, proliferation, and differentiation. In this work, we used multilayer films made of poly(L-lysine)/Hyaluronan (PLL/HA) of controlled stiffness to investigate the effects of mechanical properties of thin films on skeletal muscle cells (C2C12 cells) differentiation. Prior to differentiation, cells need to adhere and proliferate in growth medium. Stiff films (E(0) > 320 kPa) promoted formation of focal adhesions and organization of the cytoskeleton as well as an enhanced proliferation, whereas soft films were not favorable for cell anchoring, spreading or proliferation. Then C2C12 cells were switched to a low serum containing medium to induce cell differentiation, which was also greatly dependent on film stiffness. Although myogenin and troponin T expressions were only moderately affected by film stiffness, the morphology of the myotubes exhibited striking stiffness-dependent differences. Soft films allowed differentiation only for few days and the myotubes were very short and thick. Cell clumping followed by aggregates detachment could be observed after ~2 to 4 days. On stiffer films, significantly more elongated and thinner myotubes were observed for up to ~ 2 weeks. Myotube striation was also observed but only for the stiffer films. These results demonstrate that film stiffness modulates deeply adhesion, proliferation and differentiation, each of these processes having its own stiffness requirement.
Collapse
Affiliation(s)
- Kefeng Ren
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Thomas Crouzier
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Christian Roy
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Catherine Picart
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| |
Collapse
|
2018
|
Duncan MB, Kalluri R. Basement Membrane Derived Inhibitors of Angiogenesis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2019
|
Abstract
Implantology is an ancient art that can be traced back several thousand years. Although modern implants have improved substantially over the last 50 years, the basic principle remains unchanged: replace a missing tooth with an inert non-biological material (metal, ceramic etc.). The rate of technological improvements in implants has reached a plateau and substantial new developments will require major changes to the basic approach. Rapid advances in the development of cell-based therapies in medicine suggest that similar approaches should be considered in dental treatment. The use of cell-based implants that will develop into natural teeth and the employment of cells to restore/repair caries lesions is thus an area of considerable interest and excitement.
Collapse
Affiliation(s)
- C F Ferreira
- Department of Periodontology, University of Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
2020
|
Abstract
The 2.1-kb cryptic plasmid pCIBAO89 from Bifidobacterium asteroides harbors a 1.4-kb segment which is sufficient for its autonomous replication. The segment is divided into two parts, the presumed replication origin, ori89, and the rep gene encoding the putative 41-kDa Rep89 replication initiation protein. This minimal replication region of pCIBAO89 was functionally dissected by transcriptional analyses as well as by DNA-binding studies, and the information obtained was exploited to create a number of Escherichia coli-Bifidobacterium shuttle vectors capable of transforming various bifidobacteria with an efficiency of up to 10(6) transformants/mug DNA.
Collapse
|
2021
|
Maldaun MVC, Aguiar PHP, Lang F, Suki D, Wildrick D, Sawaya R. Radiosurgery in the treatment of brain metastases: critical review regarding complications. Neurosurg Rev 2007; 31:1-8; discussion 8-9. [PMID: 17957397 DOI: 10.1007/s10143-007-0110-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 06/20/2007] [Accepted: 08/26/2007] [Indexed: 10/22/2022]
Abstract
Stereotactic radiosurgery (SRS) has been described as an effective treatment option for brain metastases. In general, SRS has been indicated for the treatment of lesions smaller than 3 cm in maximum diameter and for lesions considered not surgically treatable, owing to the patient's clinical status or because the lesion was located in or near eloquent brain areas. In several studies, SRS has been associated with clinical and radiographic improvement of the lesions and has been compared with surgery as the modality of choice for brain metastases. Beyond the high rate of local disease control with SRS, the few complications that have been described occurred mainly in the acute post treatment period. Most publications have addressed the outcome and effectiveness of this treatment modality but have not critically analyzed long-term complications, steroid dependency, or results relating to specific brain locations. It is important to understand the radiobiologic effects of a well-demarcated high dose of radiation on the brain lesion, controlling the tumor growth and not causing significant alteration of the related brain region, especially in an area controlling eloquent function.
Collapse
Affiliation(s)
- Marcos Vinícius Calfat Maldaun
- Division of Neurosurgery, Department of Neurology, São Paulo Medical School, Rua Barata Ribeiro, 414-Cj 63, 01308-000 São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
2022
|
Nakao K, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan, Tsuji T, Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. Tooth Regenerative Therapy, Approached from Organogenesis. JOURNAL OF ROBOTICS AND MECHATRONICS 2007; 19:506-511. [DOI: 10.20965/jrm.2007.p0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Regenerative medicine is expected to be a novel therapeutic system in this century [1-3]. The human body consists of 200 cell species generated from immature stem cells. In the 1990s, a treatment transplanting hematopoietic stem cells to replace all blood cells was established and successfully cured leukemia [4]. With this as a model, stem cell transplantation therapy is being developed to restore the partial loss of organ function [5, 6]. The ultimate goal of regenerative medicine is to replace loss or damaged organs with artificial organs, so-called organ replacement therapy. Technical development to produce “tissues” made of a single cell species modeled on skin, bone, heart muscle, and cornea is advancing, but little development of organs per se has been attempted. In the sections that follow, we discuss why and explain how we are trying with the problems of “tooth regeneration.”
Collapse
|
2023
|
Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2007; 331:359-72. [PMID: 17938970 DOI: 10.1007/s00441-007-0467-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/04/2007] [Indexed: 01/09/2023]
Abstract
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Department of Craniofacial Development, Dental Institute, Guy's Hospital, Kings College London, London Bridge, London, SE1 9RT, UK
| | | |
Collapse
|
2024
|
Nakahara T, Ide Y. Tooth regeneration: implications for the use of bioengineered organs in first-wave organ replacement. Hum Cell 2007; 20:63-70. [PMID: 17645725 DOI: 10.1111/j.1749-0774.2007.00031.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Experiments with animal models have shown that the tooth crown structure can be regenerated using tissue engineering techniques that combine tooth bud cells and biodegradable materials, or by using embryonic tissue and adult stem cells. Moreover, tooth roots and periodontal tissues have been reconstructed by grafting dental stem cells, which leads to the recovery of tooth function, suggesting that tooth regeneration will become possible in humans in the near future. The present article reviews current research on tooth regeneration, discusses a model of tooth replacement that could be used clinically, and proposes a new tooth regeneration approach that overcomes the difficulties associated with the tooth replacement model. Tooth regeneration is an important stepping stone in the establishment of engineered organ transplantation, which is one of the ultimate goals of regenerative therapies.
Collapse
Affiliation(s)
- Taka Nakahara
- Section of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | | |
Collapse
|
2025
|
Nadiri A, Kuchler-Bopp S, Mjahed H, Hu B, Haikel Y, Schaaf P, Voegel JC, Benkirane-Jessel N. Cell apoptosis control using BMP4 and noggin embedded in a polyelectrolyte multilayer film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:1577-1583. [PMID: 17705312 DOI: 10.1002/smll.200700115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Programmed cell death (apoptosis) is a genetically regulated process of cell elimination essential during development. During development, programmed cell death is involved in the specific shaping of organs, in the elimination of cells having achieved their program, and in regulating the number of cells to differentiate. Tooth development includes these three aspects and was used here as a model to study the control of apoptosis. Bone morphogenetic proteins (BMPs) are currently considered as playing a major role in signaling apoptosis. This apoptosis could be stopped by treatments with a BMP antagonist ("Noggin"). We selected a model system made by a layer-by-layer approach using poly-L-glutamic acid (PlGA) and poly-L-lysine (PlL) films into which BMP4 and/or Noggin have been embedded. Our results indicate that in situ control of apoptosis during tooth differentiation mediated by both BMP4 and Noggin embedded in a polyelectrolyte multilayer film is possible. We show here for the first time that in the presence of BMP4 and Noggin embedded in a multilayered film, we can induce or inhibit cell death in tooth differentiation, and conserve their biological effects.
Collapse
Affiliation(s)
- Amal Nadiri
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Médecine, Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
2026
|
Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007; 99:465-74. [PMID: 17371295 DOI: 10.1042/bc20070013] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Although adult bone-marrow-derived cell populations have been used to make teeth when recombined with embryonic oral epithelium, the differences between dental and non-dental stem-cell-mediated odontogenesis remain an open question. RESULTS STRO-1(+) (stromal precursor cell marker) DPSCs (dental pulp stem cells) and BMSSCs (bone marrow stromal stem cells) were isolated from rat dental pulp and bone marrow respectively by magnetic-activated cell-sorting techniques. Their odontogenic capacity was compared under the same inductive microenvironment produced by ABCs (apical bud cells) from 2-day-old rat incisors. Co-cultured DPSCs/ABCs in vitro showed more active odontogenic differentiation ability than mixed BMSSCs/ABCs, as indicated by the accelerated matrix mineralization, up-regulated alkaline phosphatase activity, cell-cycle modification, and the expression of tooth-specific proteins and genes. After cultured for 14 days in the renal capsules of rat hosts, recombined DPSC/ABC pellets formed typical tooth-shaped tissues with balanced amelogenesis and dentinogenesis, whereas BMSSC/ABC recombinants developed into atypical dentin-pulp complexes without enamel formation. DPSC and BMSSC pellets in vivo produced osteodentin-like structures and fibrous connective tissues respectively. CONCLUSIONS DPSCs presented more striking odontogenic capability than BMSSCs under the induction of postnatal ABCs. This report provides critical insights into the selection of candidate cells for tooth regeneration between dental and non-dental stem cell populations.
Collapse
Affiliation(s)
- Jinhua Yu
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
2027
|
Jing W, Wu L, Lin Y, Liu L, Tang W, Tian W. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy. Med Hypotheses 2007; 70:540-542. [PMID: 17703893 DOI: 10.1016/j.mehy.2007.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/11/2007] [Indexed: 01/03/2023]
Abstract
Tooth regeneration using tissue engineering concepts is a promising biological approach to solving problems of tooth loss in elderly patients. The seeding cells, however, for tooth regeneration such as odontoblasts from dental germ, stem cells from dental pulp and deciduous teeth, and ectomesenchymal cells from the first branchial arch are difficult, even impossible to harvest in clinic. Bone marrow mesenchymal stem cells have odontogenic capacity, but their differentiation abilities significantly decrease with the increasing age of the donors. Therefore, the cells mentioned above are not practical in the clinical application of tooth regeneration in the old. Adipose derived stem cells have many clinical advantages over bone marrow mesenchymal stem cells, and their differentiation potential can be maintained with aging. Here we propose the hypothesis that adipose derived stem cells could be induced into odontogenic lineage and might be used as suitable seeding cells for tooth regeneration to replace the lost tooth of elderly patients.
Collapse
Affiliation(s)
- Wei Jing
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Sichuan Province, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
2028
|
Alvarez-Martín P, O'Connell-Motherway M, van Sinderen D, Mayo B. Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48. Appl Microbiol Biotechnol 2007; 76:1395-402. [PMID: 17704917 DOI: 10.1007/s00253-007-1115-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/06/2007] [Accepted: 07/07/2007] [Indexed: 10/22/2022]
Abstract
To determine the minimal replicon of pBC1 (a 2.5-kb cryptic plasmid of Bifidobacterium catenulatum L48) and to check the functionality of its identified open reading frames (ORFs) and surrounding sequences, different segments of pBC1 were amplified by polymerase chain reaction (PCR) and cloned into pBif, a replication probe vector for bifidobacteria. The largest fragment tested in this manner encompassed most of the pBC1 sequence, while the shortest just included the repB gene and its immediate upstream sequences. Derivatives were all shown to allow replication in bifidobacteria. Surprisingly, both the transformation frequency and segregational stability in the absence of antibiotic selection decreased with reducing plasmid length. The relative copy number of the constructs (ranging from around 3 to 23 copies per chromosome equivalent, as compared to 30 copies for the original pBC1) was shown to be strain dependent and to decrease with reducing plasmid length. These results suggest that, although not essential, the copG-like and orfX-like genes of pBC1 play important roles in pBC1 replication. Interruption of repB produced a construct incapable of replicating in bifidobacteria. The analysis of pBC1 will allow its use in the construction of general and specific cloning vectors.
Collapse
Affiliation(s)
- Pablo Alvarez-Martín
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
2029
|
|
2030
|
Nakashima M. Tissue Engineering of Teeth. HANDBOOK OF BIOMINERALIZATION 2007:265-282. [DOI: 10.1002/9783527619443.ch61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2031
|
Abstract
The dentine-pulp complex displays exquisite regenerative potential in response to injury. The postnatal dental pulp contains a variety of potential progenitor/stem cells, which may participate in dental regeneration. A population of multipotent mesenchymal progenitor cells known as dental pulp stem cells with high proliferative potential for self-renewal has been described and may be important to the regenerative capacity of the tissue. The nature of the progenitor/stem cell populations in the pulp is of importance in understanding their potentialities and development of isolation or recruitment strategies, and allowing exploitation of their use in regeneration and tissue engineering. Various strategies will be required to ensure not only effective isolation of these cells, but also controlled signalling of their differentiation and regulation of secretory behaviour. Characterization of these cells and determination of their potentialities in terms of specificity of regenerative response will form the foundation for development of new clinical treatment modalities, whether involving directed recruitment of the cells and seeding of stem cells at sites of injury for regeneration or use of the stem cells with appropriate scaffolds for tissue engineering solutions. Such approaches will provide an innovative and novel biologically based new generation of clinical treatments for dental disease.
Collapse
Affiliation(s)
- A J Sloan
- Oral Surgery, Medicine & Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, UK.
| | | |
Collapse
|
2032
|
Milano MT, Constine LS, Okunieff P. Normal Tissue Tolerance Dose Metrics for Radiation Therapy of Major Organs. Semin Radiat Oncol 2007; 17:131-40. [PMID: 17395043 DOI: 10.1016/j.semradonc.2006.11.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Late organ toxicity from therapeutic radiation is a function of many confounding variables. The total dose delivered to the organ and the volumes of organ exposed to a given dose of radiation are 2 important variables that can be used to predict the risk of late toxicity. Three-dimensional radiation planning enables accurate calculation of the volume of tissue exposed to a given dose of radiation, graphically depicted as a dose-volume histogram. Dose metrics obtained from this 3-dimensional dataset can be used as a quantitative measure to predict late toxicity. This review summarizes the published clinical data on the risk of late toxicity as a function of quantitative dose metrics and attempts to offer suggested dose constraints for radiation treatment planning.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology and James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | | | | |
Collapse
|
2033
|
Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods 2007; 4:227-30. [PMID: 17322892 DOI: 10.1038/nmeth1012] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 01/09/2007] [Indexed: 02/06/2023]
Abstract
To bioengineer ectodermal organs such as teeth and whisker follicles, we developed a three-dimensional organ-germ culture method. The bioengineered tooth germ generated a structurally correct tooth, after both in vitro organ culture as well as transplantation under a tooth cavity in vivo, showing penetration of blood vessels and nerve fibers. Our method provides a substantial advance in the development of bioengineered organ replacement strategies and regenerative therapies.
Collapse
Affiliation(s)
- Kazuhisa Nakao
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2034
|
(Tony) Smith AJ, Sharpe PT. Biological Tooth Replacement and Repair. PRINCIPLES OF TISSUE ENGINEERING 2007:1067-1077. [DOI: 10.1016/b978-012370615-7/50074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2035
|
Abstract
Tissue engineering is a rapidly expanding field, which applies the principles and methods of physical sciences, life sciences and engineering to understand physiological and pathological systems and to modify and create cells and tissues for therapeutic applications. It has emerged as a rapidly expanding ‘interdisciplinary field’ that is a significant potential alternative wherein tissue and organ failure is addressed by implanting natural, synthetic, or semi synthetic tissue or organ mimics that grow into the required functionality or that are fully functional from the start. This review presents in a comprehensive manner the various considerations for the reconstruction of various tissues and organs as well as the various applications of this young emerging field in different disciplines.
Collapse
Affiliation(s)
- S Parveen
- Laboratory of Nanomedicine, Institute of Life Sciences , Bhubaneswar, India
| | - K Krishnakumar
- Department of Ocular pathology Vision Research Foundation Sankara Nethralaya , Chennai, India
| | - Sk Sahoo
- Laboratory of Nanomedicine, Institute of Life Sciences , Bhubaneswar, India
| |
Collapse
|
2036
|
Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J, Zhang Y, Chen Y. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 2006; 235:1334-44. [PMID: 16628661 DOI: 10.1002/dvdy.20706] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) has recently become a powerful tool to silence gene expression in mammalian cells, but its application in assessing gene function in mammalian developing organs remains highly limited. Here we describe several unique developmental properties of the mouse molar germ. Embryonic molar mesenchyme, but not the incisor mesenchyme, once dissociated into single cell suspension and re-aggregated, retains its odontogenic potential, the capability of a tissue to instruct an adjacent tissue to initiate tooth formation. Dissociated molar mesenchymal cells, even after being plated in cell culture, retain odontogenic competence, the capability of a tissue to respond to odontogenic signals and to support tooth formation. Most interestingly, while dissociated epithelial and mesenchymal cells of molar tooth germ are mixed and re-aggregated, the epithelial cells are able to sort out from the mesenchymal cells and organize into a well-defined dental epithelial structure, leading to the formation of a well-differentiated tooth organ after sub-renal culture. These unique molar developmental properties allow us to develop a strategy using a lentivirus-mediated RNAi approach to silence gene expression in dental mesenchymal cells and assess gene function in tooth development. We show that knockdown of Msx1 or Dlx2 expression in the dental mesenchyme faithfully recapitulates the tooth phenotype of their targeted mutant mice. Silencing of Barx1 expression in the dental mesenchyme causes an arrest of tooth development at the bud stage, demonstrating a crucial role for Barx1 in tooth formation. Our studies have established a reliable and rapid assay that would permit large-scale analysis of gene function in mammalian tooth development.
Collapse
Affiliation(s)
- Yiqiang Song
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2037
|
Abstract
AbstractFor many years, operative dentistry has been using regenerative approaches to treat dental disease. The use of calcium hydroxide to stimulate reparative or reactionary dentin is clearly an example of such a therapeutic strategy. The advent of tissue engineering is allowing dentistry to move forward in the use of regeneration as an underlying principle for the treatment of dental disease. Tissue engineering is a multi-disciplinary science that brings together biology, engineering and clinical sciences with developing new tissues and organs. It is based on fundamental principles that involve the identification of appropriate cells, the development of conducive scaffolds and an understanding of the morphogenic signals required to induce cells to regenerate the tissues that were lost. This review is focused on the presentation and discussion of existing literature that covers the engineering of enamel, dentin and pulp, as well on the engineering of entire teeth. There are clearly major roadblocks to overcome before such strategies move to the clinic and are used regularly to treat patients. However, existing evidence strongly suggests that the engineering of new dental structures to replace tissues lost during the process of caries or trauma will have a place in the future of operative dentistry.
Collapse
Affiliation(s)
- Jacques E Nör
- Dept of Cariology, Restorative Sciences, Endodontics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2038
|
Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation of Dental Pulp Stem Cells into Regular-Shaped Dentin-Pulp Complex Induced by Tooth Germ Cell Conditioned Medium. ACTA ACUST UNITED AC 2006; 12:3097-105. [PMID: 17518625 DOI: 10.1089/ten.2006.12.3097] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigations of the odontoblast phenotype are hindered by obstacles such as the limited number of odontoblasts within the dental pulp and the difficulty in purification of these cells. Therefore, it is necessary to develop a cell culture system in which the local environment is inductive and can promote dental pulp stem cells (DPSCs) to differentiate into odontoblast lineage. In this study, we investigated the effect of conditioned medium from developing tooth germ cells (TGCs) on the differentiation and dentinogenesis of DPSCs both in vitro and in vivo. DPSCs were enzymatically isolated from the lower incisors of 4-week-old Sprague-Dawley rats and co-cultured with TGC conditioned medium (TGC-CM). The cell phenotype of induced DPSCs presents many features of odontoblasts, as assessed by the morphologic appearance, cell cycle modification, increased alkaline phosphatase level, synthesis of dentin sialoprotein, type I collagen and several other noncollagenous proteins, expression of the dentin sialophosphoprotein and dentin matrix protein 1 genes, and the formation of mineralized nodules in vitro. The induced DPSC pellets in vivo generated a regular-shaped dentin-pulp complex containing distinct dentinal tubules and predentin, while untreated pellets spontaneously differentiated into bone-like tissues. To our knowledge, this is the first study to mimic the dentinogenic microenvironment from TGCs in vitro, and our data suggest that TGC-CM creates the most odontogenic microenvironment, a feature essential and effective for the regular dentinogenesis mediated by DPSCs.
Collapse
Affiliation(s)
- Jinhua Yu
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
2039
|
Iwatsuki S, Honda MJ, Harada H, Ueda M. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci 2006; 114:310-7. [PMID: 16911102 DOI: 10.1111/j.1600-0722.2006.00385.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tissue engineering can now reproduce tooth from postnatal tooth cells. However, crown formation is not accurately reconstituted, even when the complex structure of the enamel dentin is reproduced. Here, we showed that a tissue-engineered (TE) tooth, exhibiting morphogenesis according to regular crown-cusp pattern formation, was produced by embryonic tooth germ cells in a three-dimensional scaffold. Heterogeneous cells dissociated from embryonic day 14 (E14) mice tooth germs were seeded on a scaffold and implanted under a kidney capsule in adult mice. The developmental process of the implants was examined for up to 14 d. At 5 d, the cells had formed initial tooth germ, followed by enamel-covered dentin tissue formed symmetrically. To study the developmental process, we examined the growth pattern using 5-bromo-2'-deoxyuridine (BrdU)-labeling analysis. The initial cell-proliferation patterns of the TE teeth were similar to that at the cap and early bell stages in natural teeth. This was particularly true in the cervical loop, which showed a similar distribution pattern of BrdU-positive cells in TE- and natural teeth. These results suggested that even when embryonic tooth germs are dissociated, the single cells can reconstitute tooth, and that enamel organ morphogenesis proceeds as in natural teeth.
Collapse
Affiliation(s)
- Shinji Iwatsuki
- Tooth Regeneration, Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
2040
|
Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 2006; 13:611-20. [PMID: 16319946 DOI: 10.1038/sj.gt.3302687] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Odontoblasts are postmitotic cells that differentiate from the dental papilla. These cells are responsible for producing the calcified dentin matrix. The pulp-odontoblast interphase contains undifferentiated mesenchymal stem cells, which have the ability to cytodifferentiate into odontoblast-like cells in response to specific signaling molecules. Dentin matrix protein 1 (DMP1) is one of the dentin noncollagenous extracellular matrix proteins that has been implicated in regulation of mineralization. In this study, we have examined the potential role of DMP1 in inducing cytodifferentiation of dental pulp stem cells into odontoblast-like cells and formation of reparative dentin in a rat model. Cavities were drilled and pulps exposed in maxillary first molars. Collagen matrix impregnated with recombinant DMP1 was implanted directly in Group 1, while calcium hydroxide, a commonly used pulp-capping agent was implanted in group 2, collagen matrix that was not impregnated with rDMP1 was implanted directly in group 3, which served as control. Each of these three groups was subdivided into two subgroups, A for 2 weeks time duration and B for 4 weeks duration. At the end of the time period the maxillae were excised, tissues were processed for histological and immunohistochemical evaluations. The results showed that DMP1 could act as a morphogen on undifferentiated mesenchymal cells present in the dentin-pulp complex. These differentiated cells had the potential to regenerate dentin-like tissue, which was confirmed by the presence of collagenous matrix, odontoblast specific markers and calcified deposits.
Collapse
Affiliation(s)
- A Almushayt
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
2041
|
Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. TISSUE ENGINEERING 2006; 12:2069-2075. [PMID: 16968149 DOI: 10.1089/ten.2006.12.2069] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue engineering of teeth requires the coordinated formation of correctly shaped crowns, roots, and periodontal ligament. Previous studies have shown that the dental mesenchyme controls crown morphogenesis and epithelial histogenesis during tooth development in vivo, but little is known about the inductive potential of dissociated mesenchymal cells used in ex vivo cultures. A 2-step method is described in which, by using different types of reassociations between epithelial and mesenchymal tissues and/or cells from mouse embryos, reassociations were cultured in vitro before in vivo implantation. In vitro, the reassociated tissues developed and resulted in tooth-like structures that exhibited normal epithelial histogenesis and allowed the functional differentiation of odontoblasts and ameloblasts. After implantation, the reassociations formed roots and periodontal ligament, the latter connected to developing bone. The shape of the crown, initially suspected to depend on the integrity of the mesenchyme, could be modulated by adjusting the number of dissociated mesenchymal cells reassociated with the epithelial compartment. Based on these results, we propose a refined strategy for tooth tissue engineering that may help to eventually generate morphologically defined teeth.
Collapse
Affiliation(s)
- Bing Hu
- Institut National de la Santé et de la Recherche Médicale, UMR S595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
2042
|
Honda MJ, Shinohara Y, Sumita Y, Tonomura A, Kagami H, Ueda M. Shear stress facilitates tissue-engineered odontogenesis. Bone 2006; 39:125-33. [PMID: 16469551 DOI: 10.1016/j.bone.2005.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/27/2005] [Accepted: 12/07/2005] [Indexed: 11/27/2022]
Abstract
Numerous studies have demonstrated the effect of shear stress on osteoblasts, but its effect on odontogenic cells has never been reported. In this study, we focused on the effect of shear stress on facilitating tissue-engineered odontogenesis by dissociated single cells. Cells were harvested from the porcine third molar tooth at the early stage of crown formation, and the isolated heterogeneous cells were seeded on a biodegradable polyglycolic acid fiber mesh. Then, cell-polymer constructs with and without exposure to shear stress were evaluated by in vitro and in vivo studies. In in vitro studies, the expression of both epithelial and mesenchymal odontogenic-related mRNAs was significantly enhanced by shear stress for 2 h. At 12 h after exposure to shear stress, the expression of amelogenin, bone sialoprotein and vimentin protein was significantly enhanced compared with that of control. Moreover, after 7 days, alkaline phosphatase activity exhibited a significant increase without any significant effect on cell proliferation in vitro. In vivo, enamel and dentin tissues formed after 15 weeks of in vivo implantation in constructs exposure to in vitro shear stress for 12 h. Such was not the case in controls. We concluded that shear stress facilitates odontogenic cell differentiation in vitro as well as the process of tooth tissue engineering in vivo.
Collapse
Affiliation(s)
- M J Honda
- Tooth Regeneration, The Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
2043
|
Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006; 346:116-24. [PMID: 16750168 DOI: 10.1016/j.bbrc.2006.05.096] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 05/14/2006] [Indexed: 11/23/2022]
Abstract
We isolated dental papilla mesenchymal cells (DPMCs) from different rat incisor germs at the late bell stage and incubated them as cell pellets in polypropylene tubes. In vitro pellet culture of DPMCs presented several crucial characteristics of odontoblasts, as indicated by accelerated mineralization, positive immunostaining for dentin sialophosphoprotein and dentin matrix protein 1, and expression of dentin sialophosphoprotein mRNA. The allotransplantation of these pellets into renal capsules was also performed. Despite the absence of dental epithelial components, dissociated DPMCs with a complete loss of positional information rapidly underwent dentinogenesis and morphogenesis, and formed a cusp-like dentin-pulp complex containing distinctive odontoblasts, predentin, dentin, and dentinal tubules. These results imply that DPMCs at the late bell stage can reexhibit the dental morphogenesis and dentinogenesis by themselves, and epithelial-mesenchymal interactions at this stage may not be indispensable. Furthermore, different DPMC populations from the similar stage may keep the same developmental pattern.
Collapse
Affiliation(s)
- Jin-Hua Yu
- Department of Endodontics, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | |
Collapse
|
2044
|
Yen AHH, Sharpe PT. Regeneration of teeth using stem cell-based tissue engineering. Expert Opin Biol Ther 2006; 6:9-16. [PMID: 16370910 DOI: 10.1517/14712598.6.1.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tooth autotransplantation, allotransplantation and dental implants have existed for many years, but have never been totally satisfactory. Thus, the development of new methods of tooth replacement has become desirable, and with the increasing knowledge of stem cell biology becomes a realistic possibility. Stem cell-based tissue engineering involving the recapitulation of the embryonic environment demonstrates that dental, non-dental, embryonic and adult stem cells can contribute to teeth formation in the appropriate setting. Evidence that stem cell populations may be present in human teeth provides the opportunity to consider biological tooth replacement 'new for old'.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Dental Institute, Department of Craniofacial Development, Odontis Ltd, Kings College London, Guy's Hospital, London Bridge, SE1 9RT, UK
| | | |
Collapse
|
2045
|
Hu B, Unda F, Bopp-Kuchler S, Jimenez L, Wang XJ, Haïkel Y, Wang SL, Lesot H. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res 2006; 85:416-421. [PMID: 16632753 DOI: 10.1177/154405910608500504] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Post-eruptive loss of ameloblasts requires identification of alternative sources for these cells to realize tooth-tissue-engineering strategies. Recent reports showed that bone-marrow-derived cells can give rise to different types of epithelial cells, suggesting their potential to serve as a source for ameloblasts. To investigate this potential, we mixed c-Kit(+)-enriched bone marrow cells with embryonic dental epithelial cells and cultured them in re-association with dental mesenchyme. Non-dividing, polarized, and secretory ameloblast-like cells were achieved without cell fusion. Before basement membrane reconstitution, some bone marrow cells migrated to the mesenchyme, where they exhibited morphological, molecular, and functional characteristics of odontoblasts. These results show, for the first time, that bone-marrow-derived cells can be reprogrammed to give rise to ameloblast-like cells, offering novel possibilities for tooth-tissue engineering and the study of the simultaneous differentiation of one bone marrow cell subpopulation into cells of two different embryonic lineages.
Collapse
Affiliation(s)
- B Hu
- INSERM, U595, Faculty of Medicine, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
2046
|
Hu B, Nadiri A, Bopp-Küchler S, Perrin-Schmitt F, Lesot H. Dental Epithelial Histomorphogenesis in vitro. J Dent Res 2005; 84:521-525. [PMID: 15914588 DOI: 10.1177/154405910508400607] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent developments in tooth-tissue engineering require that we understand the regulatory processes to be preserved to achieve histomorphogenesis and cell differentiation, especially for enamel tissue engineering. Using mouse first lower molars, our objectives were: (1) to determine whether the cap-stage dental mesenchyme can control dental epithelial histogenesis, (2) to test the role of the primary enamel knot (PEK) in specifying the potentialities of the dental mesenchyme, and (3) to evaluate the importance of positional information in epithelial cells. After tissue dissociation, the dental epithelium was further dissociated into individual cells, re-associated with dental mesenchyme, and cultured. Epithelial cells showed a high plasticity: Despite a complete loss of positional information, they rapidly underwent typical dental epithelial histogenesis. This was stimulated by the mesenchyme. Experiments performed at E13 demonstrated that the initial potentialities of the mesenchyme are not specified by the PEK. Positional information of dental epithelial cells does not require the memorization of their history.
Collapse
Affiliation(s)
- B Hu
- UMR INSERM 595, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|