2101
|
Life is a huge compromise: Is the complexity of the vertebrate immune-neuroendocrine system an advantage or the price to pay? Comp Biochem Physiol A Mol Integr Physiol 2010; 155:134-8. [DOI: 10.1016/j.cbpa.2009.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 01/11/2023]
|
2102
|
Park SH, Piao S, Kwon HM, Kim EH, Lee BL, Ha NC. Crystallization and preliminary X-ray crystallographic analysis of a highly specific serpin from the beetle Tenebrio molitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:198-200. [PMID: 20124722 PMCID: PMC2815692 DOI: 10.1107/s1744309109053147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022]
Abstract
The Toll signalling pathway, which is crucial for innate immunity, is transduced in insect haemolymph via a proteolytic cascade consisting of three serine proteases. The proteolytic cascade is downregulated by a specific serine protease inhibitor (serpin). Recently, the serpin SPN48 was found to show an unusual specific reactivity towards the terminal serine protease, Spätzle-processing enzyme, in the beetle Tenebrio molitor. In this study, the mature form of SPN48 was overexpressed in Escherichia coli and purified. The purified SPN48 protein was crystallized using 14% polyethylene glycol 8000 and 0.1 M 2-(N-morpholino)ethanesulfonic acid pH 6.0 as the precipitant. The crystals diffracted X-rays to 2.1 A resolution and were suitable for structure determination. The crystals belonged to space group P2(1). The crystal structure will provide information regarding how SPN48 achieves its unusual specificity for its target protease.
Collapse
Affiliation(s)
- Sun Hee Park
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Shunfu Piao
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Hyun-Mi Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Bok Luel Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Nam-Chul Ha
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| |
Collapse
|
2103
|
Masova A, Sanda M, Jiracek J, Selicharova I. Changes in the proteomes of the hemocytes and fat bodies of the flesh fly Sarcophaga bullata larvae after infection by Escherichia coli. Proteome Sci 2010; 8:1. [PMID: 20142993 PMCID: PMC2817646 DOI: 10.1186/1477-5956-8-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
Background Insects have an efficient self-defense system that is based on innate immunity. Recent findings have disclosed many parallels between human and insect innate immunity, and simultaneously fine differences in the processes between various species have been revealed. Studies on the immune systems of various insect species may uncover the differences in their host defense strategies. Results We analyzed the proteomes of the hemocytes and fat bodies of Sarcophaga bullata larvae after infection by Escherichia coli. The 2-DE gels of the hemocytes and fat bodies of infected larvae were compared with those of aseptically injured larvae. Our analysis included the construction of protein maps of the hemocyte cells and cells from fat bodies, the identification of the changed proteins, in response to infection, using LC-MS/MS, and the estimation of the trends in expression of these proteins at three time points (30 min, 6 hours and 22 hours) after infection. In total, seven changed spots were found in the hemocytes, and four changed spots were found in the fat bodies. Three types of trends in protein expression were observed. Cofilin and transgelin were undetectable at 30 min after infection but were continuously up-regulated in the induced larvae after 22 hours. A prophenoloxidase isoform and lectin subunit α were slightly up-regulated at 30 min after infection, and their protein levels reached the highest points after 6 hours but decreased after 22 hours. T-Complex subunit α, GST, ferritin-like protein and an anterior fat body protein (regucalcin homologue) were down-regulated at 22 hours after infection. Conclusions Many proteins identified in our study corresponded to the proteins identified in other insects. Compared to the former studies performed in insects, we presented 2-D protein maps of the hemocytes and fat bodies and showed the trends in expression of the immune-elicited proteins.
Collapse
Affiliation(s)
- Alice Masova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, vvi Flemingovo nám 2, 166 10 Praha, Czech Republic
| | | | | | | |
Collapse
|
2104
|
Rab35 mediates transport of Cdc42 and Rac1 to the plasma membrane during phagocytosis. Mol Cell Biol 2010; 30:1421-33. [PMID: 20065041 DOI: 10.1128/mcb.01463-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of invading microbes requires dynamic rearrangement of the plasma membrane and its associated cytoskeletal actin network. The polarization of Cdc42 and Rac1 Rho GTPases to the site of plasma membrane protrusion is responsible for the remodeling of actin structures. However, the mechanism of Rho GTPase recruitment to these sites and the identities of accessory molecules involved in this process are not well understood. In this study, we uncovered several new components involved in innate immunity in Drosophila melanogaster. Our data demonstrate that Rab35 is a regulator of vesicle transport required specifically for phagocytosis. Moreover, recruitment of Cdc42 and Rac1 to the sites of filopodium and lamellipodium formation is Rab35 dependent and occurs by way of microtubule tracks. These results implicate Rab35 as the immune cell-specific regulator of vesicle transport within the actin-remodeling complex.
Collapse
|
2105
|
Sackton TB, Lazzaro BP, Clark AG. Genotype and gene expression associations with immune function in Drosophila. PLoS Genet 2010; 6:e1000797. [PMID: 20066029 PMCID: PMC2793509 DOI: 10.1371/journal.pgen.1000797] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 12/03/2009] [Indexed: 12/30/2022] Open
Abstract
It is now well established that natural populations of Drosophila melanogaster harbor substantial genetic variation associated with physiological measures of immune function. In no case, however, have intermediate measures of immune function, such as transcriptional activity of immune-related genes, been tested as mediators of phenotypic variation in immunity. In this study, we measured bacterial load sustained after infection of D. melanogaster with Serratia marcescens, Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis in a panel of 94 third-chromosome substitution lines. We also measured transcriptional levels of 329 immune-related genes eight hours after infection with E. faecalis and S. marcescens in lines from the phenotypic tails of the test panel. We genotyped the substitution lines at 137 polymorphic markers distributed across 25 genes in order to test for statistical associations among genotype, bacterial load, and transcriptional dynamics. We find that genetic polymorphisms in the pathogen recognition genes (and particularly in PGRP-LC, GNBP1, and GNBP2) are most significantly associated with variation in bacterial load. We also find that overall transcriptional induction of effector proteins is a significant predictor of bacterial load after infection with E. faecalis, and that a marker upstream of the recognition gene PGRP-SD is statistically associated with variation in both bacterial load and transcriptional induction of effector proteins. These results show that polymorphism in genes near the top of the immune system signaling cascade can have a disproportionate effect on organismal phenotype due to the amplification of minor effects through the cascade. Genetic variation for resistance to infection is widespread among insects and other organisms. However, the extent to which this variation in resistance is mediated by changes in infection-induced gene expression is not known. In this study, we assayed expression of immune system genes and bacterial load after infection in a genotyped panel of lines of the model insect Drosophila melanogaster. We find that statistical associations between genetic variants and bacterial load tend to cluster in genes encoding proteins involved in microbial recognition. Variation in suppression of bacterial growth is also determined in part by genetic variation in the expression of downstream components of the immune system that function to directly kill bacteria, despite finding no genetic variation in any single of these effector gene significantly associated with phenotype. Instead, it appears that activity differences in upstream components of the pathway have a cascading effect that results in larger variation in the expression of coordinately regulated downstream effector genes. These results imply that the interactions among genes need to be taken into account when assessing the phenotypic consequences of genetic variation, as signaling cascades such as those in the immune response have the potential to amplify the phenotypic effects of minor genetic variation in individual genes.
Collapse
Affiliation(s)
- Timothy B Sackton
- Field of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America.
| | | | | |
Collapse
|
2106
|
Jiang R, Kim EH, Gong JH, Kwon HM, Kim CH, Ryu KH, Park JW, Kurokawa K, Zhang J, Gubb D, Lee BL. Three pairs of protease-serpin complexes cooperatively regulate the insect innate immune responses. J Biol Chem 2010; 284:35652-8. [PMID: 19858208 DOI: 10.1074/jbc.m109.071001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins (SPN40, SPN55, and SPN48) from the hemolymph of T. molitor. These serpins made specific serpin-serine protease pairs with three Toll cascade-activating serine proteases, such as modular serine protease, Spätzle-processing enzyme-activating enzyme, and Spätzle-processing enzyme and cooperatively blocked the Toll signaling cascade and beta-1,3-glucan-mediated melanin biosynthesis. Also, the levels of SPN40 and SPN55 were dramatically increased in vivo by the injection of a Toll ligand, processed Spätzle, into Tenebrio larvae. This increase in SPN40 and SPN55 levels indicates that these serpins function as inducible negative feedback inhibitors. Unexpectedly, SPN55 and SPN48 were cleaved at Tyr and Glu residues in reactive center loops, respectively, despite being targeted by trypsin-like Spätzle-processing enzyme-activating enzyme and Spätzle-processing enzyme. These cleavage patterns are also highly similar to those of unusual mammalian serpins involved in blood coagulation and blood pressure regulation, and they may contribute to highly specific and timely inactivation of detrimental serine proteases during innate immune responses. Taken together, these results demonstrate the specific regulatory evidences of innate immune responses by three novel serpins.
Collapse
Affiliation(s)
- Rui Jiang
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2107
|
|
2108
|
Abstract
Dicistroviruses are members of a recently defined and rapidly growing family of picornavirus-like RNA viruses called the Dicistroviridae. Dicistroviruses are pathogenic to beneficial arthropods such as honey bees and shrimp and to insect pests of medical and agricultural importance. Our understanding of these viruses is uneven. We present highly advanced studies of the virus particle structure, remarkable mechanisms of internal ribosome entry in translation of viral RNA, and the use of dicistroviruses to study the insect immune system. However, little is known about dicistrovirus RNA replication mechanisms or gene function, except by comparison with picornaviruses. The recent construction of infectious clones of dicistrovirus genomes may fill these gaps in knowledge. We discuss economically important diseases caused by dicistroviruses. Future research may lead to protection of beneficial arthropods from dicistroviruses and to application of dicistroviruses as biopesticides targeting pestiferous insects.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
2109
|
Schmidt O, Söderhäll K, Theopold U, Faye I. Role of adhesion in arthropod immune recognition. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:485-504. [PMID: 19743913 DOI: 10.1146/annurev.ento.54.110807.090618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The recognition and inactivation of toxins and pathogens are mediated by a combination of cell-free and cellular mechanisms. A number of soluble and membrane-bound pattern recognition molecules interact with elicitors to become involved in both cell-free inactivation as well as cellular uptake reactions. Here we describe the possible recognition and effector function of key arthropod immune proteins, such as peroxinectin, hemolin, and hemomucin, as an outcome of changes in adhesiveness, which drive self-assembly reactions leading to cell-free coagulation and cellular uptake reactions. The fact that some of these proteins are essential for immune and developmental functions in some species, but are not found in closely related species, may point to the existence of multiprotein assemblies, which are conserved at the mechanistic level and can function with more than one combination of protein constituents.
Collapse
Affiliation(s)
- Otto Schmidt
- Insect Molecular Biology, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | | | | | |
Collapse
|
2110
|
Park JW, Kim CH, Rui J, Park KH, Ryu KH, Chai JH, Hwang HO, Kurokawa K, Ha NC, Söderhill I, Söderhill K, Lee BL. Beetle immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:163-80. [PMID: 21528698 DOI: 10.1007/978-1-4419-8059-5_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic studies have elegantly characterized the innate immune response in Drosophila melanogaster. However, these studies have a limited ability to reveal the biochemical mechanisms underlying the innate immune response. To investigate the biochemical basis of how insects recognize invading microbes and how these recognition signals activate the innate immune response, it is necessary to use insects, from which larger amounts of hemolymph can be extracted. Using the larvae from two species of beetle, Tenebrio molitor and Holotrichia diomphalia, we elucidated the mechanisms underlying pathogenic microbe recognition. In addition, we studied the mechanism of host defense molecule amplification. In particular, we identified several pattern recognition proteins, serine proteases, serpins and antimicrobial peptides and examined how these molecules affect innate immunity.
Collapse
Affiliation(s)
- Ji-Won Park
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2111
|
Song L, Wang L, Qiu L, Zhang H. Bivalve Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:44-65. [DOI: 10.1007/978-1-4419-8059-5_3] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2112
|
|
2113
|
Silke J, Brink R. Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 2010; 17:35-45. [PMID: 19680262 DOI: 10.1038/cdd.2009.114] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
There have been a number of recent discoveries relating to the functions of inhibitors of apoptosis (IAPs) and TNF receptor-associated factors (TRAFs) in regulating signalling from TNF receptor superfamily (TNFRSF) members and some tantalizing glimpses into a wider area of influence, that of innate immune signalling. Discoveries relating to the function of these ubiquitin E3 ligases in regulating signalling from the eponymous member of the family, TNF-R1, are dealt with superbly in a separate review by Wertz and Dixit and so we will confine our discussion to the subset of the TNFRSF that does not contain a death domain (DD). In line with the available data we will divide the review into two parts, the first is restricted to the role of TRAFs 2 and 3 and cIAPs in regulating TNFRSF signalling, whereas the second will be more speculative, asking what role IAPs and TRAFs have in innate immune signalling.
Collapse
Affiliation(s)
- J Silke
- Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia.
| | | |
Collapse
|
2114
|
Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 2010; 30:1-29. [PMID: 20370617 PMCID: PMC3038989 DOI: 10.1615/critrevimmunol.v30.i1.10] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.
Collapse
Affiliation(s)
- Egest J. Pone
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Hong Zan
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Jinsong Zhang
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Ahmed Al-Qahtani
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Zhenming Xu
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Paolo Casali
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| |
Collapse
|
2115
|
Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 2009; 22:39-47. [PMID: 20022762 DOI: 10.1016/j.smim.2009.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/18/2009] [Indexed: 12/20/2022]
Abstract
Detailed understanding of animal immunity derives almost entirely from investigations of vertebrates, with a smaller, but significant, contribution from studies in fruit flies. This limited phylogenetic scope has artificially polarized the larger view of animal immunity toward the complex adaptive immune systems of vertebrates on the one hand and systems driven by relatively small, stable families of innate receptors of insects on the other. In the past few years analyses of a series of invertebrate deuterostome genome sequences, including those from echinoderms and cephalochordates, sharply modify this view. These findings have far-reaching implications for characterizing the potential range of animal immunity and for inferring the evolutionary pathway that led to vertebrate immune systems.
Collapse
Affiliation(s)
- Cynthia Messier-Solek
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm. S126B, Toronto, ON M4N 3M5, Canada.
| | | | | |
Collapse
|
2116
|
Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog 2009; 5:e1000694. [PMID: 20019799 PMCID: PMC2787014 DOI: 10.1371/journal.ppat.1000694] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 11/17/2009] [Indexed: 12/11/2022] Open
Abstract
The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. Innate immunity is the first line of antimicrobial defence for vertebrates and the only immune response present in invertebrates such as the fruitfly Drosophila, which provides a powerful model system to study innate immunity. Interestingly, local infections of epithelia like the gut and, in our study, the genital tract, result not only in a local immune response, but in an immune response of the whole body. The latter seems to protect Drosophila against the potential spread of local infections. We have investigated the immune response to bacteria placed on the genitalia, at the entrance to both the genital tract and hindgut. This could be a natural entry route of pathogens, possibly linked to sexually transmitted infections. We observe a strong immune response to Gram-negative bacteria, mediated by the immune responsive Imd signalling pathway. This response depends on peptidoglycan, a crucial component of the bacterial cell wall, as pure peptidoglycan placed on the genitalia is sufficient to trigger a whole body immune response. Finally, we present strong evidence that peptidoglycan fragments within the genital tract or hindgut can cross these epithelia, enter the body cavity and thus induce a system wide immune response to a local infection.
Collapse
|
2117
|
Abstract
To maintain tissue homeostasis and avoid disease, epithelial cells damaged by pathogens need to be readily replenished, and this is mainly achieved by the activation of stem cells. In this Short Review, we discuss recent developments in the exciting field of host epithelia-pathogen interaction in Drosophila as well as in mammals.
Collapse
|
2118
|
Thevenon D, Engel E, Avet-Rochex A, Gottar M, Bergeret E, Tricoire H, Benaud C, Baudier J, Taillebourg E, Fauvarque MO. The Drosophila ubiquitin-specific protease dUSP36/Scny targets IMD to prevent constitutive immune signaling. Cell Host Microbe 2009; 6:309-20. [PMID: 19837371 DOI: 10.1016/j.chom.2009.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/10/2009] [Accepted: 09/08/2009] [Indexed: 02/07/2023]
Abstract
Ubiquitin proteases remove ubiquitin monomers or polymers to modify the stability or activity of proteins and thereby serve as key regulators of signal transduction. Here, we describe the function of the Drosophila ubiquitin-specific protease 36 (dUSP36) in negative regulation of the immune deficiency (IMD) pathway controlled by the IMD protein. Overexpression of catalytically active dUSP36 ubiquitin protease suppresses fly immunity against Gram-negative pathogens. Conversely, silencing dUsp36 provokes IMD-dependent constitutive activation of IMD-downstream Jun kinase and NF-kappaB signaling pathways but not of the Toll pathway. This deregulation is lost in axenic flies, indicating that dUSP36 prevents constitutive immune signal activation by commensal bacteria. dUSP36 interacts with IMD and prevents K63-polyubiquitinated IMD accumulation while promoting IMD degradation in vivo. Blocking the proteasome in dUsp36-expressing S2 cells increases K48-polyubiquitinated IMD and prevents its degradation. Our findings identify dUSP36 as a repressor whose IMD deubiquitination activity prevents nonspecific activation of innate immune signaling.
Collapse
Affiliation(s)
- Dominique Thevenon
- CEA, DSV, iRTSV, LTS, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Transduction du Signal, CEA Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2119
|
Linde A, Wachter B, Höner OP, Dib L, Ross C, Tamayo AR, Blecha F, Melgarejo T. Natural History of Innate Host Defense Peptides. Probiotics Antimicrob Proteins 2009; 1:97-112. [DOI: 10.1007/s12602-009-9031-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2120
|
Altincicek B, Berisha A, Mukherjee K, Spengler B, Römpp A, Vilcinskas A. Identification of collagen IV derived danger/alarm signals in insect immunity by nanoLC-FTICR MS. Biol Chem 2009; 390:1303-11. [DOI: 10.1515/bc.2009.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractThe immune system can be stimulated by microbial molecules as well as by endogenously derived danger/alarm signals of host origin. Using the lepidopteran model insectGalleria mellonella, we recently discovered that fragments of collagen IV, resulting from hydrolysis by microbial metalloproteinases, represent danger/alarm signals in insects. Here, we characterized immune-stimulatory peptides generated by thermolysin-mediated degradation of collagen IV using nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) after separation by nanoscale liquid chromatography (nanoLC). The combination of FTICR MS analysis andde novopeptide sequencing resulted in the identification of 38 specific collagen IV fragments of which several peptides included the integrin-binding motif RGD/E known from numerous mammalian immune-related proteins. Custom-synthesized peptides corresponding either to the presently identified collagen peptide GIRGEHyp or to a well-known integrin-binding RGD peptide (GRGDS) were injected intoG. mellonellato determine their immune-stimulatory activitiesin vivo. Both peptides stimulated immune cells and systemically the expression of lysozyme and a specific inhibitor of microbial metalloproteinases. Further examination using specific MAP kinase inhibitors indicated that MEK/ERK and p38 are involved in RGD/E-mediated immune-signaling pathways, whereas JNK seems to play only a minor role.
Collapse
|
2121
|
Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS One 2009; 4:e8098. [PMID: 19956592 PMCID: PMC2780328 DOI: 10.1371/journal.pone.0008098] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/04/2009] [Indexed: 11/18/2022] Open
Abstract
Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between pathogens and their hosts. Bacillus bombysepticus (Bb) which can produces spores and parasporal crystals was firstly separated from the corpses of the infected silkworms (Bombyx mori). Bb naturally infects the silkworm can cause an acute fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt), Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also triggered the host immune responses, including cellular immune response and serine protease cascade melanization response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll pathway. Anti-microorganism peptides (AMPs), including of Attacin, Lebocin, Enbocin, Gloverin and Moricin families, were upregulated at 24 hours post the infection.
Collapse
Affiliation(s)
- Lulin Huang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Economic Crops Breeding and Cultivation, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Tingcai Cheng
- Institute of Agronomy and Life Science, Chongqing University, Chongqing, China
| | - Pingzhen Xu
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Daojun Cheng
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ting Fang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Agronomy and Life Science, Chongqing University, Chongqing, China
- * E-mail:
| |
Collapse
|
2122
|
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15:2377-92. [PMID: 19601838 DOI: 10.2174/138161209788682325] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Gill Diamond
- Department of Oral Biology, UMDNJ-New Jersey Dental School, Newark, NJ 07101, USA.
| | | | | | | |
Collapse
|
2123
|
Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae. Proc Natl Acad Sci U S A 2009; 106:21270-5. [PMID: 19940242 DOI: 10.1073/pnas.0909463106] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Insect hemocytes mediate important cellular immune responses including phagocytosis and encapsulation and also secrete immune factors such as opsonins, melanization factors, and antimicrobial peptides. However, the molecular composition of these important immune cells has not been elucidated in depth, because of their scarcity in the circulating hemolymph, their adhesion to multiple tissues and the lack of primary culture methods to produce sufficient material for a genome-wide analysis. In this study, we report a genome-wide molecular characterization of circulating hemocytes collected from the hemolymph of adult female Anopheles gambiae mosquitoes--the major mosquito vector of human malaria in subSaharan Africa. Their molecular profile identified 1,485 transcripts with enriched expression in these cells, and many of these genes belong to innate immune gene families. This hemocyte-specific transcriptome is compared to those of Drosophila melanogaster and two other mosquitoes, Aedes aegypti and Armigeres subalbatus. We report the identification of two genes as ubiquitous hemocyte markers and several others as hemocyte subpopulation markers. We assess, via an RNAi screen, the roles in development of Plasmodium berghei of 63 genes expressed in hemocytes and provide a molecular comparison of the transcriptome of these cells during malaria infection.
Collapse
|
2124
|
Nappi A, Poirié M, Carton Y. The role of melanization and cytotoxic by-products in the cellular immune responses of Drosophila against parasitic wasps. ADVANCES IN PARASITOLOGY 2009; 70:99-121. [PMID: 19773068 DOI: 10.1016/s0065-308x(09)70004-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cellular innate immune response of several species of Drosophila terminates with the encasement of large foreign objects within melanotic capsules comprised of several layers of adhering blood cells or hemocytes. This reaction is manifested by various Drosophila hosts in response to infection by endoparasitic wasps (i.e., parasitoids). Creditable assessments of the factor(s) causing, or contributing to, parasite mortality have long been considered as cytotoxic elements certain molecules associated with enzyme-mediated melanogenesis. However, observations that warrant additional or alternative considerations are those documenting parasitoid survival despite melanotic encapsulation, and those where parasitoids are destroyed with no evidence of this host response. Recent studies of the production of some reactive intermediates of oxygen and nitrogen during infection provide a basis for proposing that these molecules constitute important components of the immune arsenal of Drosophila. Studies of the virulence factors injected by female wasps during oviposition that suppress the host response will likely facilitate identification of the cytotoxic molecules as well as the cell-signaling pathways that regulate their synthesis.
Collapse
Affiliation(s)
- A Nappi
- Department of Biology, Loyola University of Chicago, Chicago, IL 60525, USA
| | | | | |
Collapse
|
2125
|
Lee MJ, Kalamarz ME, Paddibhatla I, Small C, Rajwani R, Govind S. Virulence factors and strategies of Leptopilina spp.: selective responses in Drosophila hosts. ADVANCES IN PARASITOLOGY 2009; 70:123-45. [PMID: 19773069 DOI: 10.1016/s0065-308x(09)70005-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range.
Collapse
Affiliation(s)
- Mark J Lee
- Department of Biology, City College of New York, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
2126
|
Eslin P, Prévost G, Havard S, Doury G. Immune resistance of Drosophila hosts against Asobara parasitoids: cellular aspects. ADVANCES IN PARASITOLOGY 2009; 70:189-215. [PMID: 19773071 DOI: 10.1016/s0065-308x(09)70007-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immunity of Drosophila relies on a variety of defenses cooperating to fight parasites and pathogens. The encapsulation reaction is the main hemocytic response neutralizing large parasites like endophagous parasitoids. The diversity of the mechanisms of immunoevasion evolved by Asobara parasitoids, together with the wide spectrum of Drosophila host species they can parasitize, make them ideal models to study and unravel the physiological and cellular aspects of host immunity. This chapter summarizes what could be learnt on the cellular features of the encapsulation process in various Drosophila spp., and also on the major role played by Drosophila hosts hemocytes subpopulations, both in a quantitative and qualitative manner, regarding the issue of the immune Asobara-Drosophila interactions.
Collapse
Affiliation(s)
- Patrice Eslin
- Laboratoire de Biologie des Entomophages, EA 3900 BioPI, Université de Picardie-Jules Verne, 80039 Amiens cedex, France
| | | | | | | |
Collapse
|
2127
|
Evans JD, Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 2009; 103 Suppl 1:S62-72. [PMID: 19909975 DOI: 10.1016/j.jip.2009.06.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/30/2009] [Indexed: 11/16/2022]
Abstract
Honey bees are attacked by numerous parasites and pathogens toward which they present a variety of individual and group-level defenses. In this review, we briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biology of specific taxonomic groups mainly as they relate to virulence and possible defenses. Second, we describe physiological, immunological, and behavioral responses of individual bees toward pathogens and parasites. Third, bees also show behavioral mechanisms for reducing the disease risk of their nestmates. Accordingly, we discuss the dynamics of hygienic behavior and other group-level behaviors that can limit disease. Finally, we conclude with several avenues of research that seem especially promising for understanding host-parasite relationships in bees and for developing breeding or management strategies for enhancing honey bee health. We discuss how human efforts to maintain healthy colonies intersect with similar efforts by the bees, and how bee management and breeding protocols can affect disease traits in the short and long term.
Collapse
Affiliation(s)
- Jay D Evans
- USDA-ARS Bee Research Lab, BARC-East Bldg. 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
2128
|
p38 MAPK-dependent phagocytic encapsulation confers infection tolerance in Drosophila. Cell Host Microbe 2009; 6:244-52. [PMID: 19748466 DOI: 10.1016/j.chom.2009.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/11/2009] [Accepted: 07/27/2009] [Indexed: 12/30/2022]
Abstract
Hosts employ a combination of two distinct yet compatible strategies to defend themselves against parasites: resistance, the ability to limit parasite burden, and tolerance, the ability to limit damage caused by a given parasite burden. Animals typically exhibit considerable genetic variation in resistance to a variety of pathogens; however, little is known about whether animals can evolve tolerance. Using a bacterial infection model in Drosophila, we uncovered a p38 MAP kinase-mediated mechanism of tolerance to intracellular bacterial infection as measured by the extent to which the host's survival rate increased or was maintained despite increasing bacterial burden. This increased survival was conferred primarily by a tolerance strategy whereby p38-dependent phagocytic encapsulation of bacteria resulted in enlarged phagocytes that trap bacteria. These results suggest that phagocytic responses are not restricted to resistance mechanisms but can also be applied to tolerance strategies for intracellular encapsulation of pathogens during the invertebrate immune response.
Collapse
|
2129
|
Bond D, Foley E. A quantitative RNAi screen for JNK modifiers identifies Pvr as a novel regulator of Drosophila immune signaling. PLoS Pathog 2009; 5:e1000655. [PMID: 19893628 PMCID: PMC2766254 DOI: 10.1371/journal.ppat.1000655] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 10/13/2009] [Indexed: 01/08/2023] Open
Abstract
Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-κB and caspase modules. While many modifiers of NF-κB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-κB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling. Innate immunity is the sole immune response in the overwhelming majority of multicellular organisms and drives the sophisticated antigen-specific adaptive defenses of vertebrates. Defective regulation of immune signal transduction pathways has disastrous consequences for affected individuals and can result in life-threatening conditions that include cancer, autoimmune and neurological conditions. Thus, there is a major need to identify the regulatory circuits that govern activation of critical innate immune response pathways. The genetically accessible model organism Drosophila melanogaster is an ideal springboard for such studies, as core aspects of innate immune pathways are evolutionarily conserved and novel discoveries in Drosophila often inspire subsequent developments in the characterization of biomedically relevant mammalian pathways. Drosophila responses to certain bacterial invaders proceed through the IMD pathway, which contains partially overlapping signal transduction JNK and NF-κB arms. While substantial efforts have illuminated much of the NF-κB arm, there is a considerable paucity of information on the regulation of the JNK arm. We conducted a survey of the entire Drosophila genome for novel regulators the Imd/dJNK pathway. In this study, we uncovered a novel link between the proliferative Pvr pathway and the IMD pathway.
Collapse
Affiliation(s)
- David Bond
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta Institute for Viral Immunology, Edmonton, Alberta, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta Institute for Viral Immunology, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
2130
|
Hashimoto Y, Tabuchi Y, Sakurai K, Kutsuna M, Kurokawa K, Awasaki T, Sekimizu K, Nakanishi Y, Shiratsuchi A. Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. THE JOURNAL OF IMMUNOLOGY 2009; 183:7451-60. [PMID: 19890048 DOI: 10.4049/jimmunol.0901032] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.
Collapse
Affiliation(s)
- Yumi Hashimoto
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2131
|
Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:792-800. [PMID: 19786100 DOI: 10.1016/j.ibmb.2009.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The complete antimicrobial peptide repertoire of Galleria mellonella was investigated for the first time by LC/MS. Combining data from separate trypsin, Glu-C and Asp-N digests of immune hemolymph allowed detection of 18 known or putative G. mellonella antimicrobial peptides or proteins, namely lysozyme, moricin-like peptides (5), cecropins (2), gloverin, Gm proline-rich peptide 1, Gm proline-rich peptide 2, Gm anionic peptide 1 (P1-like), Gm anionic peptide 2, galiomicin, gallerimycin, inducible serine protease inhibitor 2, 6tox and heliocin-like peptide. Six of these were previously known only as nucleotide sequences, so this study provides the first evidence for expression of these genes. LC/MS data also provided insight into the expression and processing of the antimicrobial Gm proline-rich peptide 1. The gene for this peptide was isolated and shown to be unique to moths and to have an unusually long precursor region (495 bp). The precursor region contained other proline-rich peptides and LC/MS data suggested that these were being specifically processed and were present in hemolymph at very high levels. This study shows that G. mellonella can concurrently release an impressive array of at least 18 known or putative antimicrobial peptides from 10 families to defend itself against invading microbes.
Collapse
|
2132
|
Reumer A, Bogaerts A, Van Loy T, Husson SJ, Temmerman L, Choi C, Clynen E, Hassan B, Schoofs L. Unraveling the protective effect of a Drosophila phosphatidylethanolamine-binding protein upon bacterial infection by means of proteomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1186-1195. [PMID: 19545586 DOI: 10.1016/j.dci.2009.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/12/2009] [Accepted: 06/13/2009] [Indexed: 05/28/2023]
Abstract
This study addresses the biological function of CG18594, a Drosophila melanogaster phosphatidylethanolamine-binding protein (PEBP) that we named PEBP1, by combining fly genetics, survival experiments and differential proteomics. We demonstrate that transgenic flies overexpressing PEBP1 are highly protected against bacterial infection due to the release of immunity-related proteins in their hemolymph. Apart from proteins that have been reported earlier to participate in insect immunity, we also identify proteins involved in metabolism and signaling, and, in addition, twelve (hypothetical) proteins with unknown function. This is the first report demonstrating an immune function for a Drosophila PEBP protein.
Collapse
Affiliation(s)
- Ank Reumer
- Department of Biology, Functional Genomics and Proteomics Unit, K.U. Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
2133
|
Hao YJ, Montiel R, Abubucker S, Mitreva M, Simões N. Transcripts analysis of the entomopathogenic nematode Steinernema carpocapsae induced in vitro with insect haemolymph. Mol Biochem Parasitol 2009; 169:79-86. [PMID: 19836423 DOI: 10.1016/j.molbiopara.2009.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 01/24/2023]
Abstract
Steinernema carpocapsae is an insect parasitic nematode widely used in pest control programs. The efficacy of this nematode in controlling insects has been found to be related to the pathogenicity of the infective stage. In order to study the parasitic mechanisms exhibited by this parasite, a cDNA library of the induced S. carpocapsae parasitic phase was generated. A total of 2500 clones were sequenced and 2180 high-quality ESTs were obtained from this library. Cluster analysis generated a total of 1592 unique sequences including 1393 singletons. About 63% of the unique sequences had significant hits (e</=1e-05) to the non-redundant protein database. The remaining sequences most likely represent putative novel protein coding genes. Comparative analysis identified 377 homologs in C. elegans, 431 in C. briggsae and 75 in other nematodes. Classification of the predicted proteins revealed involvement in diverse cellular, metabolic and extracellular functions. One hundred and nineteen clusters were predicted to encode putative secreted proteins such as proteases, proteases inhibitors, lectins, saposin-like proteins, acetylcholinesterase, anti-oxidants, and heat-shock proteins, which can possibly have host interactions. This dataset provides a basis for genomic studies towards a better understanding of the events that occur in the parasitic process of this entomopathogenic nematode, including invasion of the insect haemocoelium, adaptations to insect innate immunity and stress responses, and production of virulence factors. The identification of key genes in the parasitic process provides useful tools for the improvement of S. carpocapsae as a biological agent.
Collapse
Affiliation(s)
- You-Jin Hao
- CIRN and Department of Biology, University of Azores, 9501-801 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|
2134
|
Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection. Proc Natl Acad Sci U S A 2009; 106:18710-5. [PMID: 19846771 DOI: 10.1073/pnas.0905925106] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elevated CO(2) levels (hypercapnia) frequently occur in patients with obstructive pulmonary diseases and are associated with increased mortality. However, the effects of hypercapnia on non-neuronal tissues and the mechanisms that mediate these effects are largely unknown. Here, we develop Drosophila as a genetically tractable model for defining non-neuronal CO(2) responses and response pathways. We show that hypercapnia significantly impairs embryonic morphogenesis, egg laying, and egg hatching even in mutants lacking the Gr63a neuronal CO(2) sensor. Consistent with previous reports that hypercapnic acidosis can suppress mammalian NF-kappaB-regulated innate immune genes, we find that in adult flies and the phagocytic immune-responsive S2* cell line, hypercapnia suppresses induction of specific antimicrobial peptides that are regulated by Relish, a conserved Rel/NF-kappaB family member. Correspondingly, modest hypercapnia (7-13%) increases mortality of flies inoculated with E. faecalis, A. tumefaciens, or S. aureus. During E. faecalis and A. tumefaciens infection, increased bacterial loads were observed, indicating that hypercapnia can decrease host resistance. Hypercapnic immune suppression is not mediated by acidosis, the olfactory CO(2) receptor Gr63a, or by nitric oxide signaling. Further, hypercapnia does not induce responses characteristic of hypoxia, oxidative stress, or heat shock. Finally, proteolysis of the Relish IkappaB-like domain is unaffected by hypercapnia, indicating that immunosuppression acts downstream of, or in parallel to, Relish proteolytic activation. Our results suggest that hypercapnic immune suppression is mediated by a conserved response pathway, and illustrate a mechanism by which hypercapnia could contribute to worse outcomes of patients with advanced lung disease, who frequently suffer from both hypercapnia and respiratory infections.
Collapse
|
2135
|
|
2136
|
Welchman DP, Aksoy S, Jiggins F, Lemaitre B. Insect immunity: from pattern recognition to symbiont-mediated host defense. Cell Host Microbe 2009; 6:107-14. [PMID: 19683677 DOI: 10.1016/j.chom.2009.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Jacques Monod conference "Insect Immunity in Action: From Fundamental Mechanisms of Host Defense to Resistance Against Infections in Nature," organized by Ulrich Theopold (Stockholm University, Sweden) and Dominique Ferrandon (CNRS, France), was held in May 2009 in Aussois, France. Here, we review key topics and concepts that were presented and highlight emerging trends in the field of insect immunity.
Collapse
|
2137
|
Hetru C, Hoffmann JA. NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 2009; 1:a000232. [PMID: 20457557 DOI: 10.1101/cshperspect.a000232] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nuclear factor kappaB (NF-kappaB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades.
Collapse
Affiliation(s)
- Charles Hetru
- Centre National de la Recherche Scientifique, Institute of Molecular and Cellular Biology, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
2138
|
Ursic-Bedoya R, Buchhop J, Lowenberger C. Cloning and characterization of Dorsal homologues in the hemipteran Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2009; 18:681-9. [PMID: 19754745 DOI: 10.1111/j.1365-2583.2009.00909.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rhodnius prolixus is an ancient haematophagous hemipteran insect capable of mounting a powerful immune response. This response is transcriptionally regulated in part by transcription factors of the Rel/Nuclear Factor kappa B (Rel/NF-kappaB) family. We have cloned and characterized three members of this transcription factor family in this insect. Dorsal 1A is primarily expressed in early developmental stages. In contrast, dorsal 1B and 1C, both differentially spliced products of dorsal 1A, are expressed primarily in the adult fat body in response to septic injury, suggesting their exclusive role in immunity. Additionally, we identified putative kappaB binding sites in the 5' upstream regions of target genes known to be involved in the innate immune response of insects.
Collapse
Affiliation(s)
- R Ursic-Bedoya
- Department of Biological Sciences, Simon Fraser University, Burnaby BC, Canada.
| | | | | |
Collapse
|
2139
|
Zhang ZT, Zhu SY. Drosomycin, an essential component of antifungal defence in Drosophila. INSECT MOLECULAR BIOLOGY 2009; 18:549-556. [PMID: 19754735 DOI: 10.1111/j.1365-2583.2009.00907.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drosomycin is an inducible antifungal peptide of 44 residues initially isolated from bacteria-challenged Drosophila melanogaster. The systemic expression of drosomycin is regulated by the Toll pathway present in fat body, whereas inducible local expression in the respiratory tract is controlled by the Immune Deficiency (IMD) pathway. Drosomycin belongs to the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) superfamily and is composed of an alpha-helix and a three-stranded beta-sheet stabilized by four disulphide bridges. Drosomycin exhibits a narrow antimicrobial spectrum and is only active against some filamentous fungi. However, recent work using recombinant drosomycin expressed in Escherichia coli revealed its antiparasitic and anti-yeast activities. Two evolutionary epitopes (alpha- and gamma-patch) and the m-loop have been proposed as putative functional regions of drosomycin for interaction with fungi and parasites, respectively. Similarity in sequence, structure and biological activity suggests that drosomycin and some defensin molecules from plants and fungi could originate from a common ancestor.
Collapse
Affiliation(s)
- Z-T Zhang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
2140
|
Lee H, Kwon HM, Park JW, Kurokawa K, Lee BL. N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor. BMB Rep 2009; 42:506-10. [PMID: 19712587 DOI: 10.5483/bmbrep.2009.42.8.506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-kappaB-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.
Collapse
Affiliation(s)
- Hanna Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan 609-735, Korea
| | | | | | | | | |
Collapse
|
2141
|
The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 2009; 191:7063-73. [PMID: 19767427 DOI: 10.1128/jb.00892-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dlt operon encodes proteins that alanylate teichoic acids, the major components of cell walls of gram-positive bacteria. This generates a net positive charge on bacterial cell walls, repulsing positively charged molecules and conferring resistance to animal and human cationic antimicrobial peptides (AMPs) in gram-positive pathogenic bacteria. AMPs damage the bacterial membrane and are the most effective components of the humoral immune response against bacteria. We investigated the role of the dlt operon in insect virulence by inactivating this operon in Bacillus cereus, which is both an opportunistic human pathogen and an insect pathogen. The Delta dlt(Bc) mutant displayed several morphological alterations but grew at a rate similar to that for the wild-type strain. This mutant was less resistant to protamine and several bacterial cationic AMPs, such as nisin, polymyxin B, and colistin, in vitro. It was also less resistant to molecules from the insect humoral immune system, lysozyme, and cationic AMP cecropin B from Spodoptera frugiperda. Delta dlt(Bc) was as pathogenic as the wild-type strain in oral infections of Galleria mellonella but much less virulent when injected into the hemocoels of G. mellonella and Spodoptera littoralis. We detected the dlt operon in three gram-negative genera: Erwinia (Erwinia carotovora), Bordetella (Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), and Photorhabdus (the entomopathogenic bacterium Photorhabdus luminescens TT01, the dlt operon of which did not restore cationic AMP resistance in Delta dlt(Bc)). We suggest that the dlt operon protects B. cereus against insect humoral immune mediators, including hemolymph cationic AMPs, and may be critical for the establishment of lethal septicemia in insects and in nosocomial infections in humans.
Collapse
|
2142
|
Stanley DW, Shapiro M. Eicosanoids influence insect susceptibility to nucleopolyhedroviruses. J Invertebr Pathol 2009; 102:245-9. [PMID: 19761772 DOI: 10.1016/j.jip.2009.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
Abstract
Nine pharmaceutical inhibitors of eicosanoid biosynthesis (e.g., bromophenacyl bromide, clotrimazole, diclofenamic acid, esculetin, flufenamic acid, indomethacin, nimesulide, sulindac, tolfenamic acid) that increased the susceptibility of the gypsy moth, Lymantria dispar (L.), to the nucleopolyhedrovirus LdMNPV were tested against the beet armyworm Spodoptera exigua (Hübner), the corn earworm Helicoverpa zea (Boddie) and the fall armyworm Spodoptera frugiperda (J.E. Smith) and their respective NPVs to determine whether these compounds also alter the susceptibility of these insects. The susceptibility of the beet armyworm was increased by six inhibitors (bromophenacyl bromide, clotrimazole, diclofenic acid, esculetin, flufenamic acid, nimesulide). The susceptibility of the fall armyworm was increased by seven inhibitors, (bromophenacyl bromide, diclofenamic acid, esculetin, indomethacin, nimesulide, sulindac, tolfenamic acid), whereas the susceptibility of the corn earworm was increased by only one inhibitor (sulindac). The influence of the cyclooxygenase inhibitor, indomethacin was expressed in a concentration-related manner in beet armyworms. We infer from these findings that eicosanoids, including prostaglandins and lipoxygenase products, act in insect anti-viral defenses.
Collapse
Affiliation(s)
- David W Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia MO 65203, USA.
| | | |
Collapse
|
2143
|
Mitri C, Jacques JC, Thiery I, Riehle MM, Xu J, Bischoff E, Morlais I, Nsango SE, Vernick KD, Bourgouin C. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog 2009; 5:e1000576. [PMID: 19750215 PMCID: PMC2734057 DOI: 10.1371/journal.ppat.1000576] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/12/2009] [Indexed: 01/13/2023] Open
Abstract
Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized. The African malaria vector mosquito Anopheles gambiae possesses immune mechanisms that can protect it against infection with malaria parasites, which kill more than one million people per year. Much work studying mosquito response to malaria has used model rodent malaria parasites that do not infect people, but are in the same genus and overall share most major features with the human parasites. Here, we show that the immune response used by A. gambiae to protect itself against infection by human and rodent malaria parasites utilizes different immune signaling pathways. A family of proteins called APL1 appears to be responsible for the ability of the mosquito to distinguish between the human or rodent malaria parasites. An individual APL1 relative is required for protection against the human malaria parasite but has no effect against the rodent parasite, and another APL1 relative is required for protection against rodent but not human malaria. This represents the finest ability yet demonstrated of mosquito immunity to distinguish between relatively similar pathogens, and highlights the distinct nature of mosquito response against human as compared to rodent malaria parasites.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Jean-Claude Jacques
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Isabelle Thiery
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jiannong Xu
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
| | - Isabelle Morlais
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement IRD-OCEAC, Yaoundé, Cameroun
| | - Sandrine E. Nsango
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement IRD-OCEAC, Yaoundé, Cameroun
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| | - Catherine Bourgouin
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| |
Collapse
|
2144
|
Zsindely N, Pankotai T, Ujfaludi Z, Lakatos D, Komonyi O, Bodai L, Tora L, Boros IM. The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes. Nucleic Acids Res 2009; 37:6665-80. [PMID: 19740772 PMCID: PMC2777428 DOI: 10.1093/nar/gkp722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently.
Collapse
Affiliation(s)
- Nóra Zsindely
- Chromatin Research Group of HAS, Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
2145
|
Abstract
Like every metazoan species hosting a gut flora, drosophila tolerate commensal microbiota yet remain able to mount an efficient immune response to food-borne pathogens. New findings explain how the quantity of reactive oxygen species in the gut is 'tuned' to microbial burden and how intestinal immune homeostasis is thereby maintained
Collapse
|
2146
|
Wei Y, Xiao Q, Zhang T, Mou Z, You J, Ma WJ. Differential regulation of mRNA stability controls the transient expression of genes encoding Drosophila antimicrobial peptide with distinct immune response characteristics. Nucleic Acids Res 2009; 37:6550-61. [PMID: 19726583 PMCID: PMC2770663 DOI: 10.1093/nar/gkp693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tight regulation of transiently expressed antimicrobial peptides (AMPs) with a distinct antimicrobial spectrum and different expression kinetics contributes greatly to the properly regulated immune response for resistance to pathogens and for the maintenance of mutualistic microbiota in Drosophila. The important role of differential regulation of AMP expression at the posttranscriptional level needs to be elucidated. It was observed that the highly expressed Cecropin A1 (CecA1) mRNA encoding a broad antimicrobial spectrum AMP against both bacteria and fungi decayed more quickly than did the moderately expressed Diptericin mRNA encoding AMP against Gram negative bacteria. The mRNA stability of AMPs is differentially regulated and is attributed to the specific interaction between cis-acting ARE in 3'-UTR of AMP mRNA and the RNA destabilizing protein transactor Tis11 as shown in co-immunoprecipitation of the Tis11 RNP complex with CecA1 mRNA but not other AMP mRNA. The p38MAPK was further demonstrated to play a crucial role in stabilizing ARE-bearing mRNAs by inhibiting Tis11-mediated degradation in LPS induced AMP expression. This evidence suggests an evolutionarily conserved and functionally important molecular basis for and effective approach to exact control of AMP gene expression. These mechanisms thereby orchestrate a well balanced and dynamic antimicrobial spectrum of innate immunity to resist infection and maintain resident microbiota properly.
Collapse
Affiliation(s)
- Youheng Wei
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
2147
|
Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J Virol 2009; 83:11560-8. [PMID: 19726502 DOI: 10.1128/jvi.00519-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a novel insect picorna-like virus, termed Kakugo virus (KV), obtained from the brains of aggressive honeybee worker bees that had counterattacked giant hornets. Here we examined the tissue distribution of KV and alterations of gene expression profiles in the brains of KV-infected worker bees to analyze possible effects of KV infection on honeybee neural and physiological states. By use of in situ hybridization, KV was broadly detected in the brains of the naturally KV-infected worker bees. When inoculated experimentally into bees, KV was detected in restricted parts of the brain at the early infectious stage and was later detected in various brain regions, including the mushroom bodies, optic lobes, and ocellar nerve. KV was detected not only in the brain but also in the hypopharyngeal glands and fat bodies, indicating systemic KV infection. Next, we compared the gene expression profiles in the brains of KV-inoculated and noninoculated bees. The expression of 11 genes examined was not significantly affected in KV-infected worker bees. cDNA microarray analysis, however, identified a novel gene whose expression was induced in the periphery of the brains of KV-infected bees, which was commonly observed in naturally infected and experimentally inoculated bees. The gene encoded a novel hypothetical protein with a leucine zipper motif. A gene encoding a similar protein was found in the parasitic wasp Nasonia genome but not in other insect genomes. These findings suggest that KV infection may affect brain functions and/or physiological states in honeybees.
Collapse
|
2148
|
Carpenter J, Hutter S, Baines JF, Roller J, Saminadin-Peter SS, Parsch J, Jiggins FM. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae). PLoS One 2009; 4:e6838. [PMID: 19718442 PMCID: PMC2730013 DOI: 10.1371/journal.pone.0006838] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.
Collapse
Affiliation(s)
- Jennifer Carpenter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
2149
|
Destoumieux-Garzón D, Brehelin M, Bulet P, Boublik Y, Girard PA, Baghdiguian S, Zumbihl R, Escoubas JM. Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins. PLoS One 2009; 4:e6795. [PMID: 19710910 PMCID: PMC2728511 DOI: 10.1371/journal.pone.0006795] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/20/2009] [Indexed: 11/21/2022] Open
Abstract
Background X-tox proteins are a family of immune-related proteins only found in Lepidoptera and characterized by imperfectly conserved tandem repeats of several defensin-like motifs. Previous phylogenetic analysis of X-tox genes supported the hypothesis that X-tox have evolved from defensins in a lineage-specific gene evolution restricted to Lepidoptera. In this paper, we performed a protein study in which we asked whether X-tox proteins have conserved the antimicrobial functions of their ancestral defensins and have evolved as defensin reservoirs. Methodology/Principal Findings We followed the outcome of Spod-11-tox, an X-tox protein characterized in Spodoptera frugiperda, in bacteria-challenged larvae using both immunochemistry and antimicrobial assays. Three hours post infection, the Spod-11-tox protein was expressed in 80% of the two main classes of circulating hemocytes (granulocytes and plasmatocytes). Located in secretory granules of hemocytes, Spod-11-tox was never observed in contact with microorganisms entrapped within phagolyzosomes showing that Spod-11-tox is not involved in intracellular pathogen killing. In fact, the Spod-11-tox protein was found to be secreted into the hemolymph of experimentally challenged larvae. In order to determine antimicrobial properties of the Spod-11-tox protein, it was consequently fractionated according to a protocol frequently used for antimicrobial peptide purification. Over the course of purification, the anti-Spod-11-tox immunoreactivity was found to be dissociated from the antimicrobial activity. This indicates that Spod-11-tox is not processed into bioactive defensins in response to a microbial challenge. Conclusions/Significance Altogether, our results show that X-tox proteins have not evolved as defensin reservoirs and have lost the antimicrobial properties of the ancestral insect defensins. The lepidopteran X-tox protein family will provide a valuable and tractable model to improve our knowledge on the molecular evolution of defensins, a class of innate immune effectors largely distributed over the three eukaryotic kingdoms.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, UMR5119 Laboratoire Ecosystèmes Lagunaires, CC80, Montpellier, France
- IFREMER, UMR 5119 Laboratoire Ecosystèmes Lagunaires, CC80, Montpellier, France
- Université Montpellier 2, UMR5119 Laboratoire Ecosystèmes Lagunaires, CC80, Montpellier, France
| | - Michel Brehelin
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
| | - Philippe Bulet
- Université Joseph Fourier, CNRS, UMR5525, TIMC-IMAG, Bat Le Forum Plateforme BioPark d'Archamps, Archamps, France
| | - Yvan Boublik
- CNRS, UMR5237 Plateforme Protéines recombinantes, Montpellier, France
| | - Pierre-Alain Girard
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
| | - Stephen Baghdiguian
- Université Montpellier 2, CNRS, Institut des sciences de l'évolution UMR5554, CC63, Montpellier, France
| | - Robert Zumbihl
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
| | - Jean-Michel Escoubas
- INRA, UMR 1133 Laboratoire Écologie Microbienne des Insectes et Interactions Hôte-Pathogène (EMIP), CC54, Montpellier, France
- Université Montpellier 2, UMR1133 Laboratoire EMIP, CC54, Montpellier, France
- * E-mail:
| |
Collapse
|
2150
|
Markovic MP, Kylsten P, Dushay MS. Drosophila lamin mutations cause melanotic mass formation and lamellocyte differentiation. Mol Immunol 2009; 46:3245-50. [PMID: 19716177 DOI: 10.1016/j.molimm.2009.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
Abstract
The fruit fly immune system is a valuable model for invertebrate and innate immunity. Cellular immune reactions in Drosophila are of great interest, especially the molecular genetic mechanisms of hemocyte differentiation and the encapsulation of foreign bodies. Here we report that changes in the lamin gene cause melanotic masses. These darkened clusters of cells result from autoimmune-like encapsulation of self-tissue, as shown by the presence in lam larvae of lamellocytes, effector hemocytes that appear in larvae following wounding or parasitization. Lamins thus affect immunity in Drosophila, and lam mutations can serve as genetic tools to dissect cellular immune signaling and effector pathways.
Collapse
|