2151
|
López-Castillo LM, López-Arciniega JAI, Guerrero-Rangel A, Valdés-Rodríguez S, Brieba LG, García-Lara S, Winkler R. Identification of B6T173 (ZmPrx35) as the prevailing peroxidase in highly insect-resistant maize (Zea mays, p84C3) kernels by activity-directed purification. FRONTIERS IN PLANT SCIENCE 2015; 6:670. [PMID: 26379694 PMCID: PMC4553411 DOI: 10.3389/fpls.2015.00670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/13/2015] [Indexed: 05/03/2023]
Abstract
Plant peroxidases (PODs) are involved in diverse physiological processes, including defense against pathogens and insects. Contrary to their biological importance, only very few plant PODs have been proven on protein level, because their low abundance makes them difficult to detect in standard proteomics work-flows. A statistically significant positive correlation between POD activity and post-harvest insect resistance has been found for maize (Zea mays, p84C3) kernels. In combining activity-directed protein purification, genomic and proteomic tools we found that protein B6T173 (ZmPrx35) is responsible for the majority of the POD activity of the kernel. We successfully produced recombinant ZmPrx35 protein in Escherichia coli and demonstrate both, in vitro activity and the presence of a haem (heme) cofactor of the enzyme. Our findings support the screening for insect resistant maize variants and the construction of genetically optimized maize plants.
Collapse
Affiliation(s)
- Laura M. López-Castillo
- Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad IrapuatoIrapuato, Mexico
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados – Instituto Politécnico NacionalIrapuato, Mexico
| | - Janet A. I. López-Arciniega
- Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad IrapuatoIrapuato, Mexico
| | | | | | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados – Instituto Politécnico NacionalIrapuato, Mexico
| | | | - Robert Winkler
- Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad IrapuatoIrapuato, Mexico
- *Correspondence: Robert Winkler, Laboratory of Biochemical and Instrumental Analysis, Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico,
| |
Collapse
|
2152
|
Wang Y, Yue D, Xiao M, Qi C, Chen Y, Sun D, Zhang N, Chen R. C1QBP Negatively Regulates the Activation of Oncoprotein YBX1 in the Renal Cell Carcinoma As Revealed by Interactomics Analysis. J Proteome Res 2014; 14:804-13. [DOI: 10.1021/pr500847p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Dan Yue
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mingming Xiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Can Qi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yajing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Duxin Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ruibing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
2153
|
Krahmer J, Hindle MM, Martin SF, Le Bihan T, Millar AJ. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana. Methods Enzymol 2014; 551:405-31. [PMID: 25662467 PMCID: PMC4427183 DOI: 10.1016/bs.mie.2014.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2154
|
Gueugneau M, Coudy-Gandilhon C, Gourbeyre O, Chambon C, Combaret L, Polge C, Taillandier D, Attaix D, Friguet B, Maier AB, Butler-Browne G, Béchet D. Proteomics of muscle chronological ageing in post-menopausal women. BMC Genomics 2014; 15:1165. [PMID: 25532418 PMCID: PMC4523020 DOI: 10.1186/1471-2164-15-1165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Background Muscle ageing contributes to both loss of functional autonomy and increased morbidity. Muscle atrophy accelerates after 50 years of age, but the mechanisms involved are complex and likely result from the alteration of a variety of interrelated functions. In order to better understand the molecular mechanisms underlying muscle chronological ageing in human, we have undertaken a top-down differential proteomic approach to identify novel biomarkers after the fifth decade of age. Results Muscle samples were compared between adult (56 years) and old (78 years) post-menopausal women. In addition to total muscle extracts, low-ionic strength extracts were investigated to remove high abundance myofibrillar proteins and improve the detection of low abundance proteins. Two-dimensional gel electrophoreses with overlapping IPGs were used to improve the separation of muscle proteins. Overall, 1919 protein spots were matched between all individuals, 95 were differentially expressed and identified by mass spectrometry, and they corresponded to 67 different proteins. Our results suggested important modifications in cytosolic, mitochondrial and lipid energy metabolism, which may relate to dysfunctions in old muscle force generation. A fraction of the differentially expressed proteins were linked to the sarcomere and cytoskeleton (myosin light-chains, troponin T, ankyrin repeat domain-containing protein-2, vinculin, four and a half LIM domain protein-3), which may account for alterations in contractile properties. In line with muscle contraction, we also identified proteins related to calcium signal transduction (calsequestrin-1, sarcalumenin, myozenin-1, annexins). Muscle ageing was further characterized by the differential regulation of several proteins implicated in cytoprotection (catalase, peroxiredoxins), ion homeostasis (carbonic anhydrases, selenium-binding protein 1) and detoxification (aldo-keto reductases, aldehyde dehydrogenases). Notably, many of the differentially expressed proteins were central for proteostasis, including heat shock proteins and proteins involved in proteolysis (valosin-containing protein, proteasome subunit beta type-4, mitochondrial elongation factor-Tu). Conclusions This study describes the most extensive proteomic analysis of muscle ageing in humans, and identified 34 new potential biomarkers. None of them were previously recognized as differentially expressed in old muscles, and each may represent a novel starting point to elucidate the mechanisms of muscle chronological ageing in humans.
Collapse
Affiliation(s)
- Marine Gueugneau
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France. .,Pôle Endocrinologie, Diabétologie et Nutrition, Institut de Recherches Expérimentales et Cliniques, Université Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Cécile Coudy-Gandilhon
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Ophélie Gourbeyre
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéique, F-63122, Saint Genès Champanelle, France.
| | - Lydie Combaret
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Daniel Taillandier
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Didier Attaix
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| | - Bertrand Friguet
- UPMC Université Paris 06, UMR 8256, Biological Adaptation and Ageing - IBPS, CNRS-UMR 8256, INSERM U1164, Sorbonne Universités, F-75005, Paris, France.
| | - Andrea B Maier
- Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gillian Butler-Browne
- Institut de Myologie, Centre de Recherches en Myologie UMR 974 76, INSERM U974, CNRS FRE 3617, Sorbonne Universités, UPMC Université Paris 06, F-75013, Paris, France.
| | - Daniel Béchet
- INRA, UMR 1019, Centre de Recherche en Nutrition Humaine, Université d'Auvergne, F-63122, Saint Genès Champanelle, France. .,Clermont Université, Université d'Auvergne, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
2155
|
Paster W, Bruger AM, Katsch K, Grégoire C, Roncagalli R, Fu G, Gascoigne NRJ, Nika K, Cohnen A, Feller SM, Simister PC, Molder KC, Cordoba SP, Dushek O, Malissen B, Acuto O. A THEMIS:SHP1 complex promotes T-cell survival. EMBO J 2014; 34:393-409. [PMID: 25535246 PMCID: PMC4339124 DOI: 10.15252/embj.201387725] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation.
Collapse
Affiliation(s)
- Wolfgang Paster
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Annika M Bruger
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kristin Katsch
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andre Cohnen
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Stephan M Feller
- Biological Systems Architecture Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK Tumor Biology Unit, Institute of Molecular Medicine, ZAMED, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Philip C Simister
- Biological Systems Architecture Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kelly C Molder
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shaun-Paul Cordoba
- Molecular Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Molecular Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2156
|
Microtubule-dependent modulation of adhesion complex composition. PLoS One 2014; 9:e115213. [PMID: 25526367 PMCID: PMC4272306 DOI: 10.1371/journal.pone.0115213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/19/2014] [Indexed: 12/24/2022] Open
Abstract
The microtubule network regulates the turnover of integrin-containing adhesion complexes to stimulate cell migration. Disruption of the microtubule network results in an enlargement of adhesion complex size due to increased RhoA-stimulated actomyosin contractility, and inhibition of adhesion complex turnover; however, the microtubule-dependent changes in adhesion complex composition have not been studied in a global, unbiased manner. Here we used label-free quantitative mass spectrometry-based proteomics to determine adhesion complex changes that occur upon microtubule disruption with nocodazole. Nocodazole-treated cells displayed an increased abundance of the majority of known adhesion complex components, but no change in the levels of the fibronectin-binding α5β1 integrin. Immunofluorescence analyses confirmed these findings, but revealed a change in localisation of adhesion complex components. Specifically, in untreated cells, α5-integrin co-localised with vinculin at peripherally located focal adhesions and with tensin at centrally located fibrillar adhesions. In nocodazole-treated cells, however, α5-integrin was found in both peripherally located and centrally located adhesion complexes that contained both vinculin and tensin, suggesting a switch in the maturation state of adhesion complexes to favour focal adhesions. Moreover, the switch to focal adhesions was confirmed to be force-dependent as inhibition of cell contractility with the Rho-associated protein kinase inhibitor, Y-27632, prevented the nocodazole-induced conversion. These results highlight a complex interplay between the microtubule cytoskeleton, adhesion complex maturation state and intracellular contractile force, and provide a resource for future adhesion signaling studies. The proteomics data have been deposited in the ProteomeXchange with identifier PXD001183.
Collapse
|
2157
|
Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson MEV. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2014; 16:164-77. [PMID: 25525071 PMCID: PMC4328744 DOI: 10.15252/embr.201439263] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Two C57BL/6 mice colonies maintained in two rooms of the same specific pathogen-free (SPF) facility were found to have different gut microbiota and a mucus phenotype that was specific for each colony. The thickness and growth of the colon mucus were similar in the two colonies. However, one colony had mucus that was impenetrable to bacteria or beads the size of bacteria—which is comparable to what we observed in free-living wild mice—whereas the other colony had an inner mucus layer penetrable to bacteria and beads. The different properties of the mucus depended on the microbiota, as they were transmissible by transfer of caecal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, whereas mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus, our study shows that bacteria and their community structure affect mucus barrier properties in ways that can have implications for health and disease. It also highlights that genetically identical animals housed in the same facility can have rather distinct microbiotas and barrier structures.
Collapse
Affiliation(s)
- Hedvig E Jakobsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - André Schütte
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences Norwegian University of Life Sciences, Oslo, Norway
| | - Mats Bemark
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Felix Sommer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2158
|
Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J. Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics 2014; 15:500-7. [PMID: 25307156 DOI: 10.1002/pmic.201400171] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/07/2014] [Accepted: 10/06/2014] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive loss of cognitive function. One of the pathological hallmarks of AD is the formation of neurofibrillary tangles composed of abnormally hyperphosphorylated tau protein, but global deregulation of protein phosphorylation in AD is not well analyzed. Here, we report a pilot investigation of AD phosphoproteome by titanium dioxide enrichment coupled with high resolution LC-MS/MS. During the optimization of the enrichment method, we found that phosphate ion at a low concentration (e.g. 1 mM) worked efficiently as a nonphosphopeptide competitor to reduce background. The procedure was further tuned with respect to peptide-to-bead ratio, phosphopeptide recovery, and purity. Using this refined method and 9 h LC-MS/MS, we analyzed phosphoproteome in one milligram of digested AD brain lysate, identifying 5243 phosphopeptides containing 3715 nonredundant phosphosites on 1455 proteins, including 31 phosphosites on the tau protein. This modified enrichment method is simple and highly efficient. The AD case study demonstrates its feasibility of dissecting phosphoproteome in a limited amount of postmortem human brain. All MS data have been deposited in the ProteomeXchange with identifier PXD001180 (http://proteomecentral.proteomexchange.org/dataset/PXD001180).
Collapse
Affiliation(s)
- Haiyan Tan
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2159
|
Muthu Selvam R, Nithya R, Narmatha Devi P, Bhuvana Shree RS, Valar Nila M, Demonte NL, Thangavel C, Jeya Maheshwari J, Lalitha P, Venkatesh Prajna N, Dharmalingam K. Data set for the mass spectrometry based exoproteome analysis of Aspergillus flavus isolates. Data Brief 2014. [PMID: 26217704 PMCID: PMC4459775 DOI: 10.1016/j.dib.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Aspergillus flavus is one of the predominant causative organisms of mycotic keratitis in tropical parts of the world. Extracellular proteins are the earliest proteins that come in contact with the host and have a role in the infection process. Exoproteins of A. flavus isolated from infected cornea, sputum and a saprophyte were pooled and identified using high resolution mass spectrometry in order to get the total exoproteome from cultures isolated from different sources. A total of 637 proteins was identified from the pooled A. flavus exoproteome. Analysis based on GO annotations of the 637 identified proteins revealed that hydrolases form the predominant class of proteins in the exoproteome. Interestingly, a greater proportion of the exoproteins seem to be secreted through the non-classical pathways. This data represent the first in-depth analysis of the representative A. flavus exoproteome of a large set of isolates from distinct sources. This data have been deposited to the ProteomeXchange with identifier PXD001296.
Collapse
Affiliation(s)
- Ramu Muthu Selvam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Rathnavel Nithya
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Palraj Narmatha Devi
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - R S Bhuvana Shree
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Murugesan Valar Nila
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Naveen Luke Demonte
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Chitra Thangavel
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Jayapal Jeya Maheshwari
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Prajna Lalitha
- Department Of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | | - Kuppamuthu Dharmalingam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| |
Collapse
|
2160
|
An Insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 2014; 9:e113837. [PMID: 25503511 PMCID: PMC4263474 DOI: 10.1371/journal.pone.0113837] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/31/2014] [Indexed: 01/31/2023] Open
Abstract
The life cycle of the trypanosomatid Crithidia fasciculata is monogenetic, as the unique hosts of these parasites are different species of culicids. The comparison of these non-pathogenic microorganisms evolutionary close to other species of trypanosomatids that develop digenetic life cycles and cause chronic severe sickness to millions of people worldwide is of outstanding interest. A ground-breaking analysis of differential protein abundance in Crithidia fasciculata is reported herein. The comparison of the outcome with previous gene expression profiling studies developed in the related human pathogens of the genus Leishmania has revealed substantial differences between the motile stages of these closely related organisms in abundance of proteins involved in catabolism, redox homeostasis, intracellular signalling, and gene expression regulation. As L. major and L. infantum agglutinate with peanut lectin and non-agglutinating parasites are more infective, the agglutination properties were evaluated in C. fasciculata. The result is that choanomastigotes are able to agglutinate with peanut lectin and a non-agglutinating subpopulation can be also isolated. As a difference with L. infantum, the non-agglutinating subpopulation over-expresses the whole machinery for maintenance of redox homeostasis and the translation factors eIF5a, EF1α and EF2, what suggests a relationship between the lack of agglutination and a differentiation process.
Collapse
|
2161
|
Baert Y, Stukenborg JB, Landreh M, De Kock J, Jörnvall H, Söder O, Goossens E. Derivation and characterization of a cytocompatible scaffold from human testis. Hum Reprod 2014; 30:256-67. [PMID: 25505010 DOI: 10.1093/humrep/deu330] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Is it possible to derive a scaffold from human testis for the purpose of tissue engineering and regenerative medicine? SUMMARY ANSWER We developed a method to produce a cytocompatible decellularized testicular matrix (DTM) while maintaining the native tissue-specific characteristics and components. WHAT IS KNOWN ALREADY The potential benefits of tissue-specific scaffolds consisting of naturally-derived extracellular matrix (ECM) have been demonstrated using a wide variety of animal and human tissue sources. However, so far, testis scaffolds have never been considered for constructive remodelling purposes. STUDY DESIGN, SIZE, DURATION Human cadaveric testicular tissue was exposed for 24 or 48 h to 1% Triton X-100 and/or 1% sodium dodecyl sulphate (SDS). Acellular samples were used for further scaffold characterization purposes. PARTICIPANTS/MATERIALS, SETTING, METHODS The extent of decellularization was evaluated by histology. Confirmation of cell removal in DTM was done by a DNA quantification technique. Retention of testicular tissue-specific characteristics was evaluated by mass spectrometry, immunohistochemistry, Alcian blue staining and scanning electron microscopy. Soluble toxicity and testicular cell attachment was assessed to check the cytocompatibility of DTM scaffolds. MAIN RESULTS AND THE ROLE OF CHANCE Histological analysis showed that DTM could be obtained by mechanical agitation in 1% SDS for 24 h. The resulting DTM was found to be clear of cells while retaining the typical three-dimensional structure and the major components of the native tissue scaffold, including collagen type I and IV, fibronectin, laminin and glycosaminoglycans. In addition, using proteomic analysis, we revealed numerous additional ECM proteins in DTM, indicating its complex nature. The mass spectrometry data were deposited to the ProteomeXchange with identifier PXD001524. Importantly, we demonstrated that DTM scaffolds are not cytotoxic, as evidenced by MTT assay not showing an aberrant fibroblast proliferation activity after indirect exposure, and support testicular cell attachment and infiltration. LIMITATIONS, REASONS FOR CAUTION The functionality of human testicular cells in DTM needs to be investigated. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that the insights into the molecular composition of the testicular ECM provide new clues for the unravelling of its important yet poorly understood role in regulating testicular function, and DTM-based bioscaffolds are promising components for the development of human in vitro spermatogenesis as a treatment for various types of male fertility disorders.
Collapse
Affiliation(s)
- Y Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - J-B Stukenborg
- Pediatric Endocrinology Unit; Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - M Landreh
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - J De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - H Jörnvall
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - O Söder
- Pediatric Endocrinology Unit; Q2:08, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
2162
|
Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, Mendes M, Lopez-Lucendo M, Mazzolini R, Bonilla F, García de Herreros A, Casal JI. A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteomics 2014; 14:303-15. [PMID: 25505127 DOI: 10.1074/mcp.m114.045328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adipogenesis requires a differentiation program driven by multiple transcription factors, where PPARγ and C/EBPα play a central role. Recent findings indicate that Snail inhibits adipocyte differentiation in 3T3-L1 and murine mesenchymal stem cells (mMSC). An in-depth quantitative SILAC analysis of the nuclear fraction of Snail-induced alterations of 3T3-L1 cells was carried out. In total, 2251 overlapping proteins were simultaneously quantified in forward and reverse experiments. We observed 574 proteins deregulated by Snail1 using a fold-change ≥1.5, with 111 up- and 463 down-regulated proteins, respectively. Among other proteins, multiple transcription factors such as Trip4, OsmR, Nr2f6, Cbx6, and Prrx1 were down-regulated. Results were validated in 3T3-L1 cells and mMSC cells by Western blot and quantitative PCR. Knock-down experiments in 3T3-L1 cells demonstrated that only Nr2f6 (and Trip4 at minor extent) was required for adipocyte differentiation. Ectopic expression of Nr2f6 reversed the effects of Snail1 and promoted adipogenesis. Because Nr2f6 inhibits the expression of IL-17, we tested the effect of Snail on IL-17 expression. IL-17 and TNFα were among the most up-regulated pro-inflammatory cytokines in Snail-transfected 3T3-L1 and mMSC cells. Furthermore, the blocking of IL-17 activity in Snail-transfected cells promoted adipocyte differentiation, reverting Snail inhibition. In summary, Snail inhibits adipogenesis through a down-regulation of Nr2f6, which in turn facilitates the expression of IL-17, an anti-adipogenic cytokine. These results would support a novel and important role for Snail and Nr2f6 in obesity control.
Collapse
Affiliation(s)
- Alberto Peláez-García
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Rodrigo Barderas
- §Departamento de Biochemistry and Molecular Biology Department I, Universidad Complutense de Madrid, Spain
| | | | | | - Rubén A Bartolomé
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Sofía Torres
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Marta Mendes
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - María Lopez-Lucendo
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Félix Bonilla
- ‖Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | - J Ignacio Casal
- From the ‡Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain;
| |
Collapse
|
2163
|
Selvam RM, Nithya R, Devi PN, Shree RSB, Nila MV, Demonte NL, Thangavel C, Maheshwari JJ, Lalitha P, Prajna NV, Dharmalingam K. Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease. J Proteomics 2014; 115:23-35. [PMID: 25497218 DOI: 10.1016/j.jprot.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 01/14/2023]
Abstract
UNLABELLED Aspergillus flavus infects the human eye leading to keratitis. Extracellular proteins, the earliest proteins that come in contact with the host and virulence related exoproteins, were identified in the fungus isolated from infected cornea. Virulence of the corneal isolates was tested in the Galleria mellonella larvae model and those isolates showing higher virulence were taken for subsequent exoproteome analysis. High resolution two-dimensional electrophoresis and mass spectrometry were used to generate A. flavus exoproteome reference map as well as to profile most of the exoproteins. Analysis of the identified proteins clearly shows the major biological processes that they are involved in. Nearly 50% of the exoproteins possess catalytic activity and one of these, an alkaline serine protease (Alp1) is present in high abundance as well as multiple proteoforms. Many proteins in the A. flavus exoproteome have been shown to be virulence factors in other pathogens indicating the probable role for these proteins in the corneal infection as well. Interestingly, the majority of the exoproteins do not have secretory signal indicating that they are secreted through the non-classical pathway. Thus, this study provides a clue to the early strategies employed by the pathogen to establish an infection in an immunocompetent host. BIOLOGICAL SIGNIFICANCE The outcome of a fungal infection in an immunocompetent human eye depends on the ability of the fungus to overcome the host defense and propagate itself. In this process, the earliest events with respect to the fungal proteins involved include the secretory proteins of the invading organism. As a first step towards understanding the role of the extracellular proteins, exoproteome profile of the fungal isolates was generated. The fungal isolates from cornea showed a distinct pattern of the exoproteome when compared to the saprophyte. Since corneal isolates also showed higher virulence in the insect larval model, presumably the proteins elaborated by the corneal isolates are virulence related. One of the abundant proteins is an alkaline serine protease and this protein exists as multiple proteoforms. This study reports the comprehensive profile of exoproteome and reveals proteins that are potential virulence factors.
Collapse
Affiliation(s)
- Ramu Muthu Selvam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Rathnavel Nithya
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Palraj Narmatha Devi
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - R S Bhuvana Shree
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Murugesan Valar Nila
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Naveen Luke Demonte
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Chitra Thangavel
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Jayapal Jeya Maheshwari
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Prajna Lalitha
- Department Of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | | - Kuppamuthu Dharmalingam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.
| |
Collapse
|
2164
|
Lysine acetylproteome analysis suggests its roles in primary and secondary metabolism in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 2014; 99:1399-413. [PMID: 25487885 DOI: 10.1007/s00253-014-6144-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 01/19/2023]
Abstract
Lysine acetylation is a dynamic, reversible posttranslational modification that is known to play an important role in regulating the activity of many key enzymes in bacteria. Acetylproteome studies have been performed on some bacteria. However, until now, there have been no data on Actinomycetes, which are the major producers of therapeutic antibiotics. In this study, we investigated the first acetylproteome of the erythromycin-producing actinomycete Saccharopolyspora erythraea using a high-resolution mass spectrometry-based proteomics approach. Using immune-affinity isolation of acetyl-peptides with an anti-acetyllysine antibody followed by nano ultra performance liquid chromatography tandem mass spectroscopy (nanoUPLC-MS/MS) analysis, we identified 664 unique lysine-acetylated sites on 363 proteins. Acetylated proteins are involved in many biological processes such as protein synthesis, glycolysis/gluconeogenesis, citric acid (TCA) cycle, fatty acid metabolism, secondary metabolism, and the feeder metabolic pathways of erythromycin synthesis. We characterized the acetylproteome and analyzed in detail the impact of acetylation on diverse cellular functions according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Four motif sequences surrounding the acetylation sites (K(AC)H, K(AC)Y, K(AC)XXXXR, and K(AC)XXXXK) were found in the S. erythraea acetylproteome. These findings suggest that abundant lysine acetylation occurs in Actinomycetes, expand our current knowledge of the bacterial acetylproteome, and provide insight into the regulatory function of acetylation in primary and secondary metabolism.
Collapse
|
2165
|
Vaga S, Bernardo-Faura M, Cokelaer T, Maiolica A, Barnes CA, Gillet LC, Hegemann B, van Drogen F, Sharifian H, Klipp E, Peter M, Saez-Rodriguez J, Aebersold R. Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast. Mol Syst Biol 2014; 10:767. [PMID: 25492886 PMCID: PMC4300490 DOI: 10.15252/msb.20145112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen-activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time-resolved phosphorylation site dynamics after pathway co-stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone-induced down-regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways.
Collapse
Affiliation(s)
- Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland
| | - Marti Bernardo-Faura
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge, UK
| | - Thomas Cokelaer
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge, UK
| | - Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland
| | - Christopher A Barnes
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Ludovic C Gillet
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland
| | - Björn Hegemann
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Frank van Drogen
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Hoda Sharifian
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Edda Klipp
- Department of Biology, Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge, UK
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich, Zürich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2166
|
Mehrabian M, Brethour D, MacIsaac S, Kim JK, Gunawardana C.G, Wang H, Schmitt-Ulms G. CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 2014; 9:e114594. [PMID: 25490046 PMCID: PMC4260877 DOI: 10.1371/journal.pone.0114594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
The molecular function of the cellular prion protein (PrPC) and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer's disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium) were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼ 120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan Brethour
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sarah MacIsaac
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Jin Kyu Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - C . Geeth Gunawardana
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2167
|
Poschmann G, Grzendowski M, Stefanski A, Bruns E, Meyer HE, Stühler K. Redox proteomics reveal stress responsive proteins linking peroxiredoxin-1 status in glioma to chemosensitivity and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:624-31. [PMID: 25484280 DOI: 10.1016/j.bbapap.2014.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/16/2022]
Abstract
The combined deletion of chromosomal arms 1p and 19q has been described as a prognostic marker for oligodendroglial tumors. These tumors show a better response to chemotherapy and radiotherapy. Recently, we found a lower abundance of peroxiredoxin 1 (PRDX1) in oligodendroglial tumors with 1p/19q deletion, suggesting a potential role of this enzyme in the clearance of therapy induced reactive oxygen species (ROS). Here, we confirmed the importance of PRDX1 in tumor cell survival by PRDX1 knockdown and overexpression in A-172 cells treated with the alkylating agent bis-chloroethyl nitrosourea (BCNU). Overexpression of PRDX1 resulted in a higher resistance of cells to BCNU treatment. In addition, BCNU challenged cells showed higher levels of ROS in PRDX1 knockdown cells. We applied a modified version of the redox two dimensional difference gel electrophoresis approach to analyze ROS mediated effects on protein thiols after BCNU treatment by labeling protein thiols with fluorescent dyes. Altogether eleven proteins were identified showing PRDX1 dependent altered labeling, many of them have been previously linked to stress response processes. Furthermore, 30 additional potentially redox active proteins were identified. The majority of them is involved in therapy associated processes like cellular stress response, DNA damage and regulation of cell death and therewith suggests that tumor cells maintain a network of redox sensitive proteins to escape chemotherapy. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany.
| | - Michael Grzendowski
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany; Roche Diagnostics GmbH, Mannheim, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| | - Eva Bruns
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| | - Helmut Erich Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| |
Collapse
|
2168
|
Yu F, Han X, Geng C, Zhao Y, Zhang Z, Qiu F. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Proteomics 2014; 15:135-47. [PMID: 25316036 DOI: 10.1002/pmic.201400156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/17/2014] [Accepted: 10/09/2014] [Indexed: 11/11/2022]
Abstract
Soil waterlogging is one of the major abiotic stresses affecting maize grain yields. To understand the molecular mechanisms underlying waterlogging tolerance in maize, the iTRAQ LC-MS/MS technique was employed to map the proteomes of seedling root cells of the A3237 (tolerant inbred) and A3239 (sensitive inbred) lines under control and waterlogging conditions. Among the 3318 proteins identified, 211 were differentially abundant proteins (DAPs), of which 81 were specific to A3237 and 57 were specific to A3239. These DAPs were categorized into 11 groups that were closely related to the plant stress response, including metabolism, energy, transport, and disease/defense. In the waterlogged A3237 root cells, NADP-malic enzyme, glutamate decarboxylase, coproporphyrinogen III oxidase, GSH S-transferase, GSH dehydrogenase, and xyloglucan endotransglycosylase 6 were specifically accumulated to manage energy consumption, maintain pH levels, and minimize oxidative damage. The evaluations of five specific physiological parameters (alcohol dehydrogenase activity and GSH, malondialdehyde, adenosine 5'-triphosphate, and nicotinamide adenine dinucleotide concentrations) were in agreement with the proteomic results. Moreover, based on the proteomic assay, eight representative genes encoding DAPs were selected for validation at the transcriptional level. qRT-PCR revealed that the expression levels of these genes correlated with their observed protein abundance. These findings shed light on the complex mechanisms underlying waterlogging tolerance in maize. All MS data have been deposited into the ProteomeXchange with the identifier PXD001125 http://proteomecentral.proteomexchange.org/dataset/PXD001125.
Collapse
Affiliation(s)
- Feng Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
2169
|
Kanerva M, Vehmas A, Nikinmaa M, Vuori KA. Spatial variation in transcript and protein abundance of Atlantic salmon during feeding migration in the Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13969-13977. [PMID: 25356801 DOI: 10.1021/es502956g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The fitness and reproductive output of fishes can be affected by environmental disturbances. In this study, transcriptomics and label-free proteomics were combined to investigate Atlantic salmon (Salmo salar) sampled from three different field locations within the Baltic Sea (Baltic Main Basin (BMB), Gulf of Finland (GoF), and Bothnian Sea (BS)) during marine migration. The expression of several stress related mRNAs and proteins of xenobiotic metabolism, oxidative stress, DNA damage, and cell death were increased in salmon from GoF compared to salmon from BMB or BS. Respiratory electron chain and ATP synthesis related gene ontology-categories were upregulated in GoF salmon, whereas those associated with RNA processing and synthesis, translation, and protein folding decreased. Differences were seen also in metabolism and immune function related gene expression. Comparisons of the transcriptomic and proteomic profiles between salmon from GoF and salmon from BMB or BS suggest environmental stressors, especially exposure to contaminants, as a main explanation for differences. Salmon feeding in GoF are thus “disturbed by hazardous substances”. The results may also be applied in evaluating the conditions of pelagic ecosystems in the different parts of Baltic Sea.
Collapse
Affiliation(s)
- Mirella Kanerva
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku FI-20014, Finland.
| | | | | | | |
Collapse
|
2170
|
Sheng Q, Li R, Dai J, Li Q, Su Z, Guo Y, Li C, Shyr Y, Zeng R. Preprocessing significantly improves the peptide/protein identification sensitivity of high-resolution isobarically labeled tandem mass spectrometry data. Mol Cell Proteomics 2014; 14:405-17. [PMID: 25435543 DOI: 10.1074/mcp.o114.041376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994.
Collapse
Affiliation(s)
- Quanhu Sheng
- From the ‡Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China; §Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee 37232-6848
| | - Rongxia Li
- From the ‡Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Dai
- ¶Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Qingrun Li
- From the ‡Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiduan Su
- From the ‡Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Guo
- §Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee 37232-6848
| | - Chen Li
- From the ‡Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Shyr
- §Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee 37232-6848;
| | - Rong Zeng
- From the ‡Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
2171
|
McDonnell LA, Römpp A, Balluff B, Heeren RMA, Albar JP, Andrén PE, Corthals GL, Walch A, Stoeckli M. Discussion point: reporting guidelines for mass spectrometry imaging. Anal Bioanal Chem 2014; 407:2035-45. [DOI: 10.1007/s00216-014-8322-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2172
|
Chawade A, Sandin M, Teleman J, Malmström J, Levander F. Data Processing Has Major Impact on the Outcome of Quantitative Label-Free LC-MS Analysis. J Proteome Res 2014; 14:676-87. [DOI: 10.1021/pr500665j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aakash Chawade
- Department
of Immunotechnology, Medicon Village, Lund University, Scheelevägen
2, S-223 63 Lund, Sweden
| | - Marianne Sandin
- Department
of Immunotechnology, Medicon Village, Lund University, Scheelevägen
2, S-223 63 Lund, Sweden
| | - Johan Teleman
- Department
of Immunotechnology, Medicon Village, Lund University, Scheelevägen
2, S-223 63 Lund, Sweden
- Department
of Clinical Sciences, Faculty of Medicine, Lund University, SE-221
84 Lund, Sweden
| | - Johan Malmström
- Department
of Clinical Sciences, Faculty of Medicine, Lund University, SE-221
84 Lund, Sweden
| | - Fredrik Levander
- Department
of Immunotechnology, Medicon Village, Lund University, Scheelevägen
2, S-223 63 Lund, Sweden
- Bioinformatics
Infrastructure for Life Sciences (BILS), Lund University, P.O. Box 117, 221 00 Lund, Sweden
| |
Collapse
|
2173
|
Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hickey G, Hinrichs AS, Hubley R, Karolchik D, Learned K, Lee BT, Li CH, Miga KH, Nguyen N, Paten B, Raney BJ, Smit AFA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res 2014; 43:D670-81. [PMID: 25428374 PMCID: PMC4383971 DOI: 10.1093/nar/gku1177] [Citation(s) in RCA: 718] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.
Collapse
Affiliation(s)
- Kate R Rosenbloom
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Joel Armstrong
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Galt P Barber
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jonathan Casper
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Hiram Clawson
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Mark Diekhans
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Timothy R Dreszer
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Pauline A Fujita
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Luvina Guruvadoo
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Maximilian Haeussler
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Rachel A Harte
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Steve Heitner
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Glenn Hickey
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Angie S Hinrichs
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Robert Hubley
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Donna Karolchik
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Katrina Learned
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Brian T Lee
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Chin H Li
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Karen H Miga
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ngan Nguyen
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Brian J Raney
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | | | - Matthew L Speir
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ann S Zweig
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA Howard Hughes Medical Institute, UCSC, Santa Cruz, CA 95064, USA
| | - Robert M Kuhn
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - W James Kent
- Center for Biomolecular Science and Engineering, CBSE, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
2174
|
Turek I, Marondedze C, Wheeler JI, Gehring C, Irving HR. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress. FRONTIERS IN PLANT SCIENCE 2014; 5:661. [PMID: 25505478 PMCID: PMC4244590 DOI: 10.3389/fpls.2014.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/05/2014] [Indexed: 05/20/2023]
Abstract
In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms "oxidation-reduction process," "translation" and "response to salt stress" and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.
Collapse
Affiliation(s)
- Ilona Turek
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Claudius Marondedze
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Janet I. Wheeler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourne, VIC, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Helen R. Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
2175
|
Ghali F, Krishna R, Perkins S, Collins A, Xia D, Wastling J, Jones AR. ProteoAnnotator - Open source proteogenomics annotation software supporting PSI standards. Proteomics 2014; 14:2731-41. [DOI: 10.1002/pmic.201400265] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/10/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Fawaz Ghali
- Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Ritesh Krishna
- Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Simon Perkins
- Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Andrew Collins
- Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Dong Xia
- Department of Infection Biology; Institute of Infection and Global Health; University of Liverpool; Liverpool UK
| | - Jonathan Wastling
- Department of Infection Biology; Institute of Infection and Global Health; University of Liverpool; Liverpool UK
- Health Protection Research Unit in Emerging and Zoonotic Infections; The National Institute for Health Research; University of Liverpool; Liverpool UK
| | - Andrew R. Jones
- Institute of Integrative Biology; University of Liverpool; Liverpool UK
| |
Collapse
|
2176
|
A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl Environ Microbiol 2014; 81:699-712. [PMID: 25398855 DOI: 10.1128/aem.02947-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortia in situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O2, and presumably fixing CO2 for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided between Alpha- and Gammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, with Marinobacter, Chromatiaceae, and Labrenzia the most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified from Chromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed for Chromatiaceae. These findings represent the first description of putative EET and CO2 fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics.
Collapse
|
2177
|
Hampel M, Alonso E, Aparicio I, Santos JL, Leaver M. Hepatic proteome analysis of Atlantic salmon (Salmo salar) after exposure to environmental concentrations of human pharmaceuticals. Mol Cell Proteomics 2014; 14:371-81. [PMID: 25394398 DOI: 10.1074/mcp.m114.045120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pharmaceuticals are pseudopersistent aquatic pollutants with unknown effects at environmentally relevant concentrations. Atlantic salmon (Salmo salar) were exposed to Acetaminophen: 54.77 ± 34.67; Atenolol: 11.08 ± 7.98, and Carbamazepine: 7.85 ± 0.13 μg·L(-1) for 5 days. After Acetaminophen treatment, 19 proteins were differently expressed, of which 11 were significant with respect to the control group (eight up-regulated and three down-regulated). After Atenolol treatment, seven differently expressed proteins were obtained in comparison with the control, of which six could be identified (four up-regulated and two down-regulated). Carbamazepine exposure resulted in 15 differently expressed proteins compared with the control, with 10 of them identified (seven up-regulated and three down-regulated). Out of these, three features were common between Acetaminophen and Carbamazepine and one between Carbamazepine and Atenolol. One feature was common across all treatments. Principal component analysis and heat map clustering showed a clear grouping of the variability caused by the applied treatments. The obtained data suggest (1) that exposure to environmentally relevant concentrations of the pharmaceuticals alters the hepatic protein expression profile of the Atlantic salmon; and (2) the existence of treatment specific processes that may be useful for biomarker development.
Collapse
Affiliation(s)
- Miriam Hampel
- From the ‖Department for Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Polígono Rio San Pedro s/n, 11510 Puerto Real, Cadiz, Spain; ¶¶Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz, Spain; ‡‡Andalusian Institute for Marine Sciences (ICMAN), Spanish Council for Scientific Research (CSIC), Polígono Rio San Pedro s/n, 11510 Puerto Real, Cadiz, Spain;
| | - Esteban Alonso
- §Department of Analytical Chemistry, University of Seville, C/Virgen de África 741011 Seville, Spain
| | - Irene Aparicio
- §Department of Analytical Chemistry, University of Seville, C/Virgen de África 741011 Seville, Spain
| | - Juan Luis Santos
- §Department of Analytical Chemistry, University of Seville, C/Virgen de África 741011 Seville, Spain
| | - Michael Leaver
- ‡Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, UK
| |
Collapse
|
2178
|
Kroll JE, de Souza SJ, de Souza GA. Identification of rare alternative splicing events in MS/MS data reveals a significant fraction of alternative translation initiation sites. PeerJ 2014; 2:e673. [PMID: 25405079 PMCID: PMC4232841 DOI: 10.7717/peerj.673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023] Open
Abstract
Integration of transcriptome data is a crucial step for the identification of rare protein variants in mass-spectrometry (MS) data with important consequences for all branches of biotechnology research. Here, we used Splooce, a database of splicing variants recently developed by us, to search MS data derived from a variety of human tumor cell lines. More than 800 new protein variants were identified whose corresponding MS spectra were specific to protein entries from Splooce. Although the types of splicing variants (exon skipping, alternative splice sites and intron retention) were found at the same frequency as in the transcriptome, we observed a large variety of modifications at the protein level induced by alternative splicing events. Surprisingly, we found that 40% of all protein modifications induced by alternative splicing led to the use of alternative translation initiation sites. Other modifications include frameshifts in the open reading frame and inclusion or deletion of peptide sequences. To make the dataset generated here available to the community in a more effective form, the Splooce portal (http://www.bioinformatics-brazil.org/splooce) was modified to report the alternative splicing events supported by MS data.
Collapse
Affiliation(s)
- José E Kroll
- Institute of Bioinformatics and Biotechnology , Natal , Brazil ; Brain Institute, UFRN , Natal , Brazil
| | | | - Gustavo A de Souza
- Department of Immunology and Centre for Immune Regulation, Oslo University Hospital HF Rikshospitalet, University of Oslo , Oslo , Norway
| |
Collapse
|
2179
|
Borgatta M, Hernandez C, Decosterd LA, Chèvre N, Waridel P. Shotgun Ecotoxicoproteomics of Daphnia pulex: Biochemical Effects of the Anticancer Drug Tamoxifen. J Proteome Res 2014; 14:279-91. [DOI: 10.1021/pr500916m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Myriam Borgatta
- Institute
of Earth Surface Dynamics, Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
| | - Céline Hernandez
- Protein
Analysis Facility, Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Arthur Decosterd
- Division
of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute
of Earth Surface Dynamics, Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein
Analysis Facility, Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2180
|
Bourderioux M, Nguyen-Khoa T, Chhuon C, Jeanson L, Tondelier D, Walczak M, Ollero M, Bekri S, Knebelmann B, Escudier E, Escudier B, Edelman A, Guerrera IC. A New Workflow for Proteomic Analysis of Urinary Exosomes and Assessment in Cystinuria Patients. J Proteome Res 2014; 14:567-77. [DOI: 10.1021/pr501003q] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Ludovic Jeanson
- INSERM/UMR
S933, Université Pierre et Marie Curie, 75005 Paris, France
| | | | | | - Mario Ollero
- INSERM
U955, Université Paris−Est Créteil Val-de-Marne, 94010 Créteil, France
| | - Soumeya Bekri
- Department
of Biochemistry, CHU Charles Nicolle, 76000 Rouen, France
| | | | - Estelle Escudier
- INSERM/UMR
S933, Université Pierre et Marie Curie, 75005 Paris, France
| | - Bernard Escudier
- Department
of Medical Oncology, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | |
Collapse
|
2181
|
Kelstrup CD, Jersie-Christensen RR, Batth TS, Arrey TN, Kuehn A, Kellmann M, Olsen JV. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer. J Proteome Res 2014; 13:6187-95. [DOI: 10.1021/pr500985w] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christian D. Kelstrup
- Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Rosa R. Jersie-Christensen
- Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tanveer S. Batth
- Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tabiwang N. Arrey
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath-Strasse 11, 28199 Bremen, Germany
| | - Andreas Kuehn
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath-Strasse 11, 28199 Bremen, Germany
| | - Markus Kellmann
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath-Strasse 11, 28199 Bremen, Germany
| | - Jesper V. Olsen
- Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
2182
|
Misra SK, Moussan Désirée Aké F, Wu Z, Milohanic E, Cao TN, Cossart P, Deutscher J, Monnet V, Archambaud C, Henry C. Quantitative proteome analyses identify PrfA-responsive proteins and phosphoproteins in Listeria monocytogenes. J Proteome Res 2014; 13:6046-57. [PMID: 25383790 DOI: 10.1021/pr500929u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is a major mechanism of signal transduction in bacteria. Here, we analyzed the proteome and phosphoproteome of a wild-type strain of the food-borne pathogen Listeria monocytogenes that was grown in either chemically defined medium or rich medium containing glucose. We then compared these results with those obtained from an isogenic prfA* mutant that produced a constitutively active form of PrfA, the main transcriptional activator of virulence genes. In the prfA* mutant grown in rich medium, we identified 256 peptides that were phosphorylated on serine (S), threonine (T), or tyrosine (Y) residues, with a S/T/Y ratio of 155:75:12. Strikingly, we detected five novel phosphosites on the virulence protein ActA. This protein was known to be phosphorylated by a cellular kinase in the infected host, but phosphorylation by a listerial kinase had not previously been reported. Unexpectedly, SILAC experiments with the prfA* mutant grown in chemically defined medium revealed that, in addition to previously described PrfA-regulated proteins, several other proteins were significantly overproduced, among them were several proteins involved in purine biosynthesis. This work provides new information for our understanding of the correlation among protein phosphorylation, virulence mechanisms, and carbon metabolism.
Collapse
|
2183
|
Bileck A, Kreutz D, Muqaku B, Slany A, Gerner C. Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells. J Proteome Res 2014; 13:5989-6000. [PMID: 25347463 DOI: 10.1021/pr5008625] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammation is a physiological process involved in many diseases. Monitoring proteins involved in regulatory effects may help to improve our understanding of inflammation. We have analyzed proteome alterations induced in peripheral blood mononuclear cells (PBMCs) upon inflammatory activation in great detail using high-resolution mass spectrometry. Moreover, the activated cells were treated with dexamethasone to investigate their response to this antiphlogistic drug. From a total of 6886 identified proteins, 469 proteins were significantly regulated upon inflammatory activation. Data are available via ProteomeXchange with identifiers PXD001415-23. Most of these proteins were counter-regulated by dexamethasone, with some exceptions concerning members of the interferon-induced protein family. To confirm some of these results, we performed targeted MRM analyses of selected peptides. The inflammation-induced upregulation of proteins such as IL-1β, IL-6, CXCL2, and GROα was confirmed, however, with strong quantitative interindividual differences. Furthermore, the inability of dexamethasone to downregulate inflammation-induced proteins such as PTX3 and TSG6 was clearly demonstrated. In conclusion, the relation of cell function as well as drug-induced modulation thereof was successfully mapped to proteomes, suggesting targeted analysis as a novel and powerful drug evaluation method. Although most consequences of dexamethasone were found to be compatible with the expected mode of action, some unexpected but significant observations may be related to adverse effects.
Collapse
Affiliation(s)
- Andrea Bileck
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Vienna 1090, Austria
| | | | | | | | | |
Collapse
|
2184
|
Hagen L, Sharma A, Aas PA, Slupphaug G. Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:84-90. [PMID: 25448019 DOI: 10.1016/j.bbapap.2014.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 11/16/2022]
Abstract
Transient transfection of mammalian cells with plasmid expression vectors and chemical transfection reagents is widely used to study protein transport and dynamics as well as phenotypic alterations mediated by the overexpressed protein. Despite the undisputed impact of this technique, surprisingly little is known about the cellular effects mediated by the transfection process per se. Conceivably, off-target effects could have implications upon proteins or processes being studied and understanding the molecular pathways affected would add value to the interpretation of experimental observations subsequent to cell transfection. Here we have used a SILAC-based proteomic approach to study differentially expressed proteins after transfection of HeLa cells with ECFP vector using a commonly employed non-liposome based transfection reagent, Fugene®HD. Whereas the transfection reagent itself mediated minimal effects upon protein expression, 11 proteins were found to be significantly upregulated after transfection, all of which were associated with an interferon type I/II response. The upregulated proteins might potentially inflict major cellular processes such as RNA splicing, chromatin remodeling, post-translational protein modification and cell cycle control. The results were validated by western analysis as well as quantitative RT-PCR and this demonstrated that an essentially identical response was induced in HeLa by transfection using an empty pUC18 vector, which does not contain a mammalian virus promoter, as well as a liposome-based transfection reagent, Lipofectamine(TM)2000. Notably, no induction of the interferon response was observed in HEK293 cells, suggesting that these cells might be preferable to HeLa to avoid undesired off-target effects in transfection studies encompassing interferon-signaling and antiviral responses.
Collapse
Affiliation(s)
- Lars Hagen
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Per Arne Aas
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway.
| |
Collapse
|
2185
|
Carney KE, Milanese M, van Nierop P, Li KW, Oliet SHR, Smit AB, Bonanno G, Verheijen MHG. Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins. J Proteome Res 2014; 13:5918-27. [PMID: 25308431 DOI: 10.1021/pr500829z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are being increasingly recognized as crucial contributors to neuronal function at synapses, axons, and somas. Reliable methods that can provide insight into astrocyte proteins at the neuron-astrocyte functional interface are highly desirable. Here, we conducted a mass spectrometry analysis of Percoll gradient-isolated gliosomes, a viable preparation of glial subcellular particles often used to study mechanisms of astrocytic transmitter uptake and release and their regulation. Gliosomes were compared with synaptosomes, a preparation containing the neurotransmitter release machinery, and, accordingly, synaptosomes were enriched for proteins involved in synaptic vesicle-mediated transport. Interestingly, gliosome preparations were found to be enriched for different classes of known astrocyte proteins, such as VAMP3 (involved in astrocyte exocytosis), Ezrin (perisynaptic astrocyte cytoskeletal protein), and Basigin (astrocyte membrane glycoprotein), as well as for G-protein-mediated signaling proteins. Mass spectrometry data are available via ProteomeXchange with the identifier PXD001375. Together, these data provide the first detailed description of the gliosome proteome and show that gliosomes can be a useful preparation to study glial membrane proteins and associated processes.
Collapse
Affiliation(s)
- Karen E Carney
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam , 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
2186
|
Mackey AM, Sarkes DA, Bettencourt I, Asara JM, Rameh LE. PIP4kγ is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Sci Signal 2014; 7:ra104. [PMID: 25372051 DOI: 10.1126/scisignal.2005191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol-5-phosphate 4-kinases (PIP4ks) are a family of lipid kinases that specifically use phosphatidylinositol 5-monophosphate (PI-5-P) as a substrate to synthesize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Suppression of PIP4k function in Drosophila results in smaller cells and reduced target of rapamycin complex 1 (TORC1) signaling. We showed that the γ isoform of PIP4k stimulated signaling through mammalian TORC1 (mTORC1). Knockdown of PIP4kγ reduced cell mass in cells in which mTORC1 is constitutively activated by Tsc2 deficiency. In Tsc2 null cells, mTORC1 activation was partially independent of amino acids or glucose and glutamine. PIP4kγ knockdown inhibited the nutrient-independent activation of mTORC1 in Tsc2 knockdown cells and reduced basal mTORC1 signaling in wild-type cells. PIP4kγ was phosphorylated by mTORC1 and associated with the complex. Phosphorylated PIP4kγ was enriched in light microsomal vesicles, whereas the unphosphorylated form was enriched in heavy microsomal vesicles associated with the Golgi. Furthermore, basal mTORC1 signaling was enhanced by overexpression of unphosphorylated wild-type PIP4kγ or a phosphorylation-defective mutant and decreased by overexpression of a phosphorylation-mimetic mutant. Together, these results demonstrate that PIP4kγ and mTORC1 interact in a self-regulated feedback loop to maintain low and tightly regulated mTORC1 activation during starvation.
Collapse
Affiliation(s)
- Ashley M Mackey
- Boston Biomedical Research Institute, Watertown, MA 02472, USA. Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Ian Bettencourt
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Lucia E Rameh
- Boston Biomedical Research Institute, Watertown, MA 02472, USA. Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
2187
|
Batth TS, Francavilla C, Olsen JV. Off-Line High-pH Reversed-Phase Fractionation for In-Depth Phosphoproteomics. J Proteome Res 2014; 13:6176-86. [DOI: 10.1021/pr500893m] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tanveer S. Batth
- Proteomics
Program, Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Science, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- Proteomics
Program, Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Science, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Jesper V. Olsen
- Proteomics
Program, Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Science, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
2188
|
Turtoi A, Blomme A, Bianchi E, Maris P, Vannozzi R, Naccarato AG, Delvenne P, De Pauw E, Bevilacqua G, Castronovo V. Accessibilome of human glioblastoma: collagen-VI-alpha-1 is a new target and a marker of poor outcome. J Proteome Res 2014; 13:5660-9. [PMID: 25325876 DOI: 10.1021/pr500657w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional targeted therapy has unfortunately failed to improve the outcome of glioblastoma patients. Success stories evidenced by the use of antibody-drug conjugates in other tumor types are encouraging, but targets specific to glioblastoma and accessible through the bloodstream remain scarce. In the current work, we have identified and characterized novel and accessible proteins using an innovative proteomic approach on six human glioblastomas; the corresponding data have been deposited in the PRIDE database identifier PXD001398. Among several clusters of uniquely expressed proteins, we highlight collagen-VI-alpha-1 (COL6A1) as a highly expressed tumor biomarker with low levels in most normal tissues. Immunohistochemical analysis of glioma samples from 61 patients demonstrated that COL6A1 is a significant and consistent feature of high-grade glioma. Deposits of COL6A1 were evidenced in the perivascular regions of the tumor-associated vasculature and in glioma cells found in pseudopalisade structures. Retrospective analysis of public gene-expression data sets from over 300 glioma patients demonstrated a significant correlation of poor patient outcome and high COL6A1 expression. In a proof-of-concept study, we use chicken chorioallantoic membrane in vivo model to show that COL6A1 is a reachable target for IV-injected antibodies. The present data warrant further development of human COL6A1 antibodies for assessing the quantitative biodistribution in the preclinical tumor models.
Collapse
Affiliation(s)
- Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer and ‡Department of Pathology, University of Liege , Bat. B23, Liege 4000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2189
|
Keilhauer EC, Hein MY, Mann M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteomics 2014; 14:120-35. [PMID: 25363814 PMCID: PMC4288248 DOI: 10.1074/mcp.m114.041012] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein–protein interactions are fundamental to the understanding of biological processes. Affinity purification coupled to mass spectrometry (AP-MS) is one of the most promising methods for their investigation. Previously, complexes were purified as much as possible, frequently followed by identification of individual gel bands. However, todays mass spectrometers are highly sensitive, and powerful quantitative proteomics strategies are available to distinguish true interactors from background binders. Here we describe a high performance affinity enrichment-mass spectrometry method for investigating protein–protein interactions, in which no attempt at purifying complexes to homogeneity is made. Instead, we developed analysis methods that take advantage of specific enrichment of interactors in the context of a large amount of unspecific background binders. We perform single-step affinity enrichment of endogenously expressed GFP-tagged proteins and their interactors in budding yeast, followed by single-run, intensity-based label-free quantitative LC-MS/MS analysis. Each pull-down contains around 2000 background binders, which are reinterpreted from troubling contaminants to crucial elements in a novel data analysis strategy. First the background serves for accurate normalization. Second, interacting proteins are not identified by comparison to a single untagged control strain, but instead to the other tagged strains. Third, potential interactors are further validated by their intensity profiles across all samples. We demonstrate the power of our AE-MS method using several well-known and challenging yeast complexes of various abundances. AE-MS is not only highly efficient and robust, but also cost effective, broadly applicable, and can be performed in any laboratory with access to high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Eva C Keilhauer
- From the ‡Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marco Y Hein
- From the ‡Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- From the ‡Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2190
|
Seymour SL, Farrah T, Binz PA, Chalkley RJ, Cottrell JS, Searle BC, Tabb DL, Vizcaíno JA, Prieto G, Uszkoreit J, Eisenacher M, Martínez-Bartolomé S, Ghali F, Jones AR. A standardized framing for reporting protein identifications in mzIdentML 1.2. Proteomics 2014; 14:2389-99. [PMID: 25092112 PMCID: PMC4384534 DOI: 10.1002/pmic.201400080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/02/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022]
Abstract
Inferring which protein species have been detected in bottom-up proteomics experiments has been a challenging problem for which solutions have been maturing over the past decade. While many inference approaches now function well in isolation, comparing and reconciling the results generated across different tools remains difficult. It presently stands as one of the greatest barriers in collaborative efforts such as the Human Proteome Project and public repositories such as the PRoteomics IDEntifications (PRIDE) database. Here we present a framework for reporting protein identifications that seeks to improve capabilities for comparing results generated by different inference tools. This framework standardizes the terminology for describing protein identification results, associated with the HUPO-Proteomics Standards Initiative (PSI) mzIdentML standard, while still allowing for differing methodologies to reach that final state. It is proposed that developers of software for reporting identification results will adopt this terminology in their outputs. While the new terminology does not require any changes to the core mzIdentML model, it represents a significant change in practice, and, as such, the rules will be released via a new version of the mzIdentML specification (version 1.2) so that consumers of files are able to determine whether the new guidelines have been adopted by export software.
Collapse
Affiliation(s)
| | - Terry Farrah
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Pierre-Alain Binz
- Swiss-Prot group, Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; current address: Service de Biomédecine, Centre Hospitalier Universitaire Vaudois CHUV, Rte du Bugnon 46, CH-1011 Lausanne
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16 Street, Genentech Hall, Room N474A, San Francisco, CA 94158, USA
| | | | - Brian C. Searle
- Proteome Software, Inc., 1340 SW Bertha Blvd, Suite 10, Portland, OR, 97219, USA
| | - David L. Tabb
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8575, USA
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232-6840, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Proteomics Services Team, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Alda. Urquijo s/n Bilbao, 48013, Spain
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | | | - Fawaz Ghali
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R. Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
2191
|
OWEN CHRISTOPHERB, HUGHES DAVIDJ, BAQUERO-PEREZ BELINDA, BERNDT ANJA, SCHUMANN SOPHIE, JACKSON BRIANR, WHITEHOUSE ADRIAN. Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol Clin Oncol 2014; 2:891-903. [PMID: 25279171 PMCID: PMC4179824 DOI: 10.3892/mco.2014.341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
The γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are successful pathogens, each infecting a large proportion of the human population. These viruses persist for the life of the host and may each contribute to a number of malignancies, for which there are currently no cures. Large-scale proteomic-based approaches provide an excellent means of increasing the collective understanding of the proteomes of these complex viruses and elucidating their numerous interactions within the infected host cell. These large-scale studies are important for the identification of the intricacies of viral infection and the development of novel therapeutics against these two important pathogens.
Collapse
Affiliation(s)
- CHRISTOPHER B. OWEN
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - DAVID J. HUGHES
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - BELINDA BAQUERO-PEREZ
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - ANJA BERNDT
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - SOPHIE SCHUMANN
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - BRIAN R. JACKSON
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - ADRIAN WHITEHOUSE
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
2192
|
Reina R, Kellner H, Jehmlich N, Ullrich R, García-Romera I, Aranda E, Liers C. Differences in the secretion pattern of oxidoreductases from Bjerkandera adusta induced by a phenolic olive mill extract. Fungal Genet Biol 2014; 72:99-105. [DOI: 10.1016/j.fgb.2014.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 01/20/2023]
|
2193
|
Lundberg KC, Fritz Y, Johnston A, Foster AM, Baliwag J, Gudjonsson JE, Schlatzer D, Gokulrangan G, McCormick TS, Chance MR, Ward NL. Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. Mol Cell Proteomics 2014; 14:109-19. [PMID: 25351201 DOI: 10.1074/mcp.m114.042242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.
Collapse
Affiliation(s)
| | - Yi Fritz
- §Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Andrew Johnston
- ¶Dermatology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Jaymie Baliwag
- ¶Dermatology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | - Thomas S McCormick
- §Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Nicole L Ward
- §Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
2194
|
Fang NN, Chan GT, Zhu M, Comyn SA, Persaud A, Deshaies RJ, Rotin D, Gsponer J, Mayor T. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 2014; 16:1227-37. [PMID: 25344756 PMCID: PMC5224936 DOI: 10.1038/ncb3054] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
The heat-shock response is a complex cellular program that induces major changes in protein translation, folding and degradation to alleviate toxicity caused by protein misfolding. Although heat shock has been widely used to study proteostasis, it remained unclear how misfolded proteins are targeted for proteolysis in these conditions. We found that Rsp5 and its mammalian homologue Nedd4 are important E3 ligases responsible for the increased ubiquitylation induced by heat stress. We determined that Rsp5 ubiquitylates mainly cytosolic misfolded proteins upon heat shock for proteasome degradation. We found that ubiquitylation of heat-induced substrates requires the Hsp40 co-chaperone Ydj1 that is further associated with Rsp5 upon heat shock. In addition, ubiquitylation is also promoted by PY Rsp5-binding motifs found primarily in the structured regions of stress-induced substrates, which can act as heat-induced degrons. Our results support a bipartite recognition mechanism combining direct and chaperone-dependent ubiquitylation of misfolded cytosolic proteins by Rsp5.
Collapse
Affiliation(s)
- Nancy N Fang
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Mang Zhu
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Avinash Persaud
- Program in Cell Biology, Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Raymond J Deshaies
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, 114-96 Caltech, 1200 E. California Boulevard Pasadena, California 91125, USA
| | - Daniela Rotin
- Program in Cell Biology, Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Joerg Gsponer
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
2195
|
Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase. Mol Cell Biol 2014; 35:167-81. [PMID: 25332235 DOI: 10.1128/mcb.00857-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to "trap" ubiquitylated substrates on the SCF(FBXW11) E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCF(FBXW11) bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062.
Collapse
|
2196
|
Exploring the human plasma proteome for humoral mediators of remote ischemic preconditioning--a word of caution. PLoS One 2014; 9:e109279. [PMID: 25333471 PMCID: PMC4198105 DOI: 10.1371/journal.pone.0109279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022] Open
Abstract
Despite major advances in early revascularization techniques, cardiovascular diseases are still the leading cause of death worldwide, and myocardial infarctions contribute heavily to this. Over the past decades, it has become apparent that reperfusion of blood to a previously ischemic area of the heart causes damage in and of itself, and that this ischemia reperfusion induced injury can be reduced by up to 50% by mechanical manipulation of the blood flow to the heart. The recent discovery of remote ischemic preconditioning (RIPC) provides a non-invasive approach of inducing this cardioprotection at a distance. Finding its endogenous mediators and their operative mode is an important step toward increasing the ischemic tolerance. The release of humoral factor(s) upon RIPC was recently demonstrated and several candidate proteins were published as possible mediators of the cardioprotection. Before clinical applicability, these potential biomarkers and their efficiency must be validated, a task made challenging by the large heterogeneity in reported data and results. Here, in an attempt to reproduce and provide more experimental data on these mediators, we conducted an unbiased in-depth analysis of the human plasma proteome before and after RIPC. From the 68 protein markers reported in the literature, only 28 could be mapped to manually reviewed (Swiss-Prot) protein sequences. 23 of them were monitored in our untargeted experiment. However, their significant regulation could not be reproducibly estimated. In fact, among the 394 plasma proteins we accurately quantified, no significant regulation could be confidently and reproducibly assessed. This indicates that it is difficult to both monitor and reproduce published data from experiments exploring for RIPC induced plasma proteomic regulations, and suggests that further work should be directed towards small humoral factors. To simplify this task, we made our proteomic dataset available via ProteomeXchange, where scientists can mine for novel potential targets.
Collapse
|
2197
|
Marie P, Labas V, Brionne A, Harichaux G, Hennequet-Antier C, Nys Y, Gautron J. Data set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization. Data Brief 2014. [PMID: 26217689 PMCID: PMC4459565 DOI: 10.1016/j.dib.2014.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015) [1].
Collapse
Affiliation(s)
- Pauline Marie
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| | - Valérie Labas
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Aurélien Brionne
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| | - Grégoire Harichaux
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | | | - Yves Nys
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| | - Joël Gautron
- INRA, UR83 Recherches avicoles, Fonction et Régulation des protéines de l'œuf, F-37380 Nouzilly, France
| |
Collapse
|
2198
|
Gopinath RK, You ST, Chien KY, Swamy KBS, Yu JS, Schuyler SC, Leu JY. The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity. Genome Biol Evol 2014; 6:2851-65. [PMID: 25316598 PMCID: PMC4224352 DOI: 10.1093/gbe/evu226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hsp90 is one of the most abundant and conserved proteins in the cell. Reduced levels or activity of Hsp90 causes defects in many cellular processes and also reveals genetic and nongenetic variation within a population. Despite information about Hsp90 protein–protein interactions, a global view of the Hsp90-regulated proteome in yeast is unavailable. To investigate the degree of dependency of individual yeast proteins on Hsp90, we used the “stable isotope labeling by amino acids in cell culture” method coupled with mass spectrometry to quantify around 4,000 proteins in low-Hsp90 cells. We observed that 904 proteins changed in their abundance by more than 1.5-fold. When compared with the transcriptome of the same population of cells, two-thirds of the misregulated proteins were observed to be affected posttranscriptionally, of which the majority were downregulated. Further analyses indicated that the downregulated proteins are highly conserved and assume central roles in cellular networks with a high number of protein interacting partners, suggesting that Hsp90 buffers genetic and nongenetic variation through regulating protein network hubs. The downregulated proteins were enriched for essential proteins previously not known to be Hsp90-dependent. Finally, we observed that downregulation of transcription factors and mating pathway components by attenuating Hsp90 function led to decreased target gene expression and pheromone response, respectively, providing a direct link between observed proteome regulation and cellular phenotypes.
Collapse
Affiliation(s)
- Rajaneesh Karimpurath Gopinath
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting You
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2199
|
Orchard S, Albar JP, Binz PA, Kettner C, Jones AR, Salek RM, Vizcaino JA, Deutsch EW, Hermjakob H. Meeting new challenges: The 2014 HUPO-PSI/COSMOS Workshop: 13-15 April 2014, Frankfurt, Germany. Proteomics 2014; 14:2363-8. [PMID: 25297050 DOI: 10.1002/pmic.201470164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Annual 2014 Spring Workshop of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) was held this year jointly with the metabolomics COordination of Standards in MetabOlomicS (COSMOS) group. The range of existing MS standards (mzML, mzIdentML, mzQuantML, mzTab, TraML) was reviewed and updated in the light of new methodologies and advances in technologies. Adaptations to meet the needs of the metabolomics community were incorporated and a new data format for NMR, nmrML, was presented. The molecular interactions workgroup began work on a new version of the existing XML data interchange format. PSI-MI XML3.0 will enable the capture of more abstract data types such as protein complex topology derived from experimental data, allosteric binding, and dynamic interactions. Further information about the work of the HUPO-PSI can be found at http://www.psidev.info.
Collapse
Affiliation(s)
- Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
2200
|
Zhao X, Wu Y, Duan J, Ma Y, Shen Z, Wei L, Cui X, Zhang J, Xie Y, Liu J. Quantitative Proteomic Analysis of Exosome Protein Content Changes Induced by Hepatitis B Virus in Huh-7 Cells Using SILAC Labeling and LC–MS/MS. J Proteome Res 2014; 13:5391-402. [PMID: 25265333 DOI: 10.1021/pr5008703] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xue Zhao
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
- Microbiology
Laboratory, Shanghai Municipal Center for Disease Control and Prevention, No. 1380 West Zhongshan Road, Shanghai 200336, People’s Republic of China
| | - Yanxin Wu
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| | - Jinlin Duan
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
- Department
of Pathology, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 786 YuYuan Road, Shanghai 200336, People’s Republic of China
| | - Yanchun Ma
- Lab
Center, Putuo District Center Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200062, People’s Republic of China
| | - Zhongliang Shen
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| | - Lili Wei
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| | - Xiaoxian Cui
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| | - Junqi Zhang
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| | - Youhua Xie
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| | - Jing Liu
- Key
Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes
of Biomedical Sciences, Shanghai Medical College, Fudan University, 138
YiXueYuan Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|