2201
|
Role of Autophagy in HIV Pathogenesis and Drug Abuse. Mol Neurobiol 2016; 54:5855-5867. [PMID: 27660273 DOI: 10.1007/s12035-016-0118-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly regulated process in which excessive cytoplasmic materials are captured and degraded during deprivation conditions. The unique nature of autophagy that clears invasive microorganisms has made it an important cellular defense mechanism in a variety of clinical situations. In recent years, it has become increasingly clear that autophagy is extensively involved in the pathology of HIV-1. To ensure survival of the virus, HIV-1 viral proteins modulate and utilize the autophagy pathway so that biosynthesis of the virus is maximized. At the same time, the abuse of illicit drugs such as methamphetamine, cocaine, morphine, and alcohol is thought to be a significant risk factor for the acquirement and progression of HIV-1. During drug-induced toxicity, autophagic activity has been proved to be altered in various cell types. Here, we review the current literature on the interaction between autophagy, HIV-1, and drug abuse and discuss the complex role of autophagy during HIV-1 pathogenesis in co-exposure to illicit drugs.
Collapse
|
2202
|
Low-intensity laser (660 nm) on sternotomy healing in patients who underwent coronary artery bypass graft: a randomized, double-blind study. Lasers Med Sci 2016; 31:1907-1913. [DOI: 10.1007/s10103-016-2069-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
|
2203
|
Lima ACG, Fernandes GA, de Barros Araújo R, Gonzaga IC, de Oliveira RA, Nicolau RA. Photobiomodulation (Laser and LED) on Sternotomy Healing in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up. Photomed Laser Surg 2016; 35:24-31. [PMID: 27564925 DOI: 10.1089/pho.2016.4143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE This study aimed at analyzing the healing effects of low-level laser therapy (LLLT) (λ620 nm, 6 J/cm2) and light-emitting diode (LED) therapy (λ640 nm, 6 J/cm2) on the longitudinal sternotomy incisions of hyperglycemic and normoglycemic patients who underwent coronary artery bypass grafting (CABG). MATERIALS AND METHODS 120 volunteers were electively submitted to CABG and were randomly allocated into four different groups of equal size (n = 30): control, placebo, laser (λ of 640 nm and spatial average energy fluency [SAEF] of 1.06 J/cm2), and LED (λ of 660 ± 20 nm and SAEF of 0.24 J/cm2). Laser and LED groups were irradiated from the second to eighth day postsurgery, and sternotomy incision was photographically registered. Then, participants were also separated into hyperglycemic and normoglycemic groups, according to their fasting blood glucose test before surgery. Three researchers blindly analyzed the incision photographs to determine hyperemia and wound closure at the first day of hospital discharge (eighth postoperative day). RESULTS LLLT and LED groups had similarly less hyperemia and less incision bleeding or dehiscence (p ≤ 0.005) and the outcomes were also analogous between hyperglycemic and normoglycemic patients, which indicates no difference observed in an intragroup analysis (p ≥ 0.05). CONCLUSIONS With the present therapy parameters, it may be assumed that both coherent light (laser) and non-coherent light (LED) are effective in promoting sternotomy and healing acceleration, which are evident on the eighth day postsurgery.
Collapse
Affiliation(s)
- Andréa Conceição Gomes Lima
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil .,2 University of Piauí State (UESPI) , Teresina, Brazil
| | - Gilderlene Alves Fernandes
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil .,3 Uninovafapi College , Teresina, Brazil
| | - Raimundo de Barros Araújo
- 4 Department of Cardiac Surgery, Santa Maria Hospital, University of Piauí State (UESPI) , Teresina, Brazil
| | - Isabel Clarisse Gonzaga
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil .,3 Uninovafapi College , Teresina, Brazil
| | - Rauirys Alencar de Oliveira
- 3 Uninovafapi College , Teresina, Brazil .,5 Department of Health Sciences, University of Piauí State (UESPI) , Teresina, Brazil
| | - Renata Amadei Nicolau
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil
| |
Collapse
|
2204
|
Li Y, Ding WX. A Gene Transcription Program Decides the Differential Regulation of Autophagy by Acute Versus Chronic Ethanol? Alcohol Clin Exp Res 2016; 40:47-9. [PMID: 26727521 DOI: 10.1111/acer.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2205
|
Flores-Toro JA, Go KL, Leeuwenburgh C, Kim JS. Autophagy in the liver: cell's cannibalism and beyond. Arch Pharm Res 2016; 39:1050-61. [PMID: 27515049 DOI: 10.1007/s12272-016-0807-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Chronic liver disease and its progression to liver failure are induced by various etiologies including viral infection, alcoholic and nonalcoholic hepatosteatosis. It is anticipated that the prevalence of fatty liver disease will continue to rise due to the growing incidence of obesity and metabolic disorder. Evidence is accumulating to indicate that the onset of fatty liver disease is causatively linked to mitochondrial dysfunction and abnormal lipid accumulation. Current treatment options for this disease are limited. Autophagy is an integral catabolic pathway that maintains cellular homeostasis both selectively and nonselectively. As mitophagy and lipophagy selectively remove dysfunctional mitochondria and excess lipids, respectively, stimulation of autophagy could have therapeutic potential to ameliorate liver function in steatotic patients. This review highlights our up-to-date knowledge on mechanistic roles of autophagy in the pathogenesis of fatty liver disease and its vulnerability to surgical stress, with an emphasis on mitophagy and lipophagy.
Collapse
Affiliation(s)
- Joseph A Flores-Toro
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Kristina L Go
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32610, USA
- Institute on Aging, University of Florida, Gainesville, FL, 32610, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, R4-204 ARB, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
- Institute on Aging, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2206
|
Nayak SB, Surendran S, Nelluri VM, Kumar N, Aithal AP. A South Indian Cadaveric Study About the Relationship of Hepatic Segment of Inferior Vena Cava with the Liver. J Clin Diagn Res 2016; 10:AC04-7. [PMID: 27656424 DOI: 10.7860/jcdr/2016/19892.8295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Inferior Vena Cava (IVC) is the largest vein of the body. It runs vertically upwards in the abdomen, behind the liver. Its course is very constant in relation to liver. However, the amount of liver parenchyma related to it can vary from person to person. The data regarding its course and relations may be very useful to radiologists and surgeons during surgical treatment procedures for Budd-Chiari syndrome, liver carcinoma, liver transplant, venous cannulations and many other clinical procedures. AIM Aim of this study was to document the incidence of straight and curved course of IVC in relation to liver and also to note the pattern in which the liver tissue was related to the IVC. MATERIALS AND METHODS In the current study, 95 adult cadaveric livers were observed; specifically to study the course/direction of the hepatic segment of IVC in relation to the liver. The extent of liver tissue related to various aspects of IVC was also studied. The course of the IVC was classified as straight and curved; and the relationship of liver parenchyma to the IVC was classified into 6 categories. The data was expressed as percentage incidence. RESULTS In 78.94% cases, the IVC had a straight course in relation to the liver; whereas in 21.06% cases, it had a left sided curve (concavity of the curve towards the caudate lobe) in its course. In 6.31% cases, IVC travelled in a tunnel, being encircled by the liver parenchyma all around; in 36.84% cases, it was covered by liver parenchyma on front and sides so that only posterior surface of IVC was visible; in 3.15% cases it was covered by liver tissue on front, sides and also partly on posterior aspect; in 50.52% of cases, its anterior surface, sides and left edge of the posterior surface was covered by liver tissue; and in 3.15% cases it was covered only from the front by the liver tissue. CONCLUSION The data being reported here might be useful for surgeons while planning and executing various hepatic surgeries and also to the radiologists in planning and performing venous cannulation and therapeutic procedures. Since in many livers, the curvature of IVC was associated with enlarged caudate lobe, the curved IVC could hint about the increase in the volume of caudate lobe or liver itself.
Collapse
Affiliation(s)
- Satheesha B Nayak
- Professor, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus) Manipal University , Manipal, Karnataka, India
| | - Sudarshan Surendran
- Associate Professor, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus) Manipal University , Manipal, Karnataka, India
| | - Venu Madhav Nelluri
- Senior Grade Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus) Manipal University , Manipal, Karnataka, India
| | - Naveen Kumar
- Assistant Professor, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus) Manipal University , Manipal, Karnataka, India
| | - Ashwini P Aithal
- Lecturer, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus) Manipal University , Manipal, Karnataka, India
| |
Collapse
|
2207
|
Roberts RF, Tang MY, Fon EA, Durcan TM. Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. Int J Biochem Cell Biol 2016; 79:427-436. [PMID: 27443527 DOI: 10.1016/j.biocel.2016.07.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson's disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Rosalind F Roberts
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Matthew Y Tang
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Edward A Fon
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Thomas M Durcan
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada.
| |
Collapse
|
2208
|
Zhou L, Wu CQ, Luo YW, Liao MY, Sun ZY. Studies on the characteristics and mechanisms of testicular toxicity induced by Hydroxyurea. Toxicol Mech Methods 2016; 25:396-401. [PMID: 26399158 DOI: 10.3109/15376516.2015.1045657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Apoptosis plays a dominant role in both spontaneous spermatogenesis and germ cell death. This study was aimed to investigate the functions of related genes in testicular germ cell death induced by Hydroxyurea (HU). METHOD Wild-type (WT) and FasL transgenic (TG) DBA/C57BL mice were intraperitoneal injected with 400 mg/kg HU. Twelve hours later, testes were collected. Histomorphology of testis was observed by staining with Periodic Acid Schiff (PAS). Apoptosis was assessed by TUNEL assay. mRNA and protein levels of related genes were evaluated by quantitative RT-PCR and Western blot, respectively. RESULTS The 2 × 2 factorial design comparative experiments between the WT and TG mice showed that the TG mice exhibited a higher basal apoptotic index. The basal mRNA levels of Fas and FasL and protein levels of Fas, FasL, Caspase-3, Caspase-8 and Caspase-9 in the TG mice were also higher than that in the WT mice. Twelve hours after injection of HU, the testicular tubules exhibited no significantly morphological changes but apoptosis index remarkably increased in both the WT and TG mice, with the latter having the higher amplitude. Although, HU up-regulated the mRNA of apoptosis-related genes, such as Fas and FasL, in both the TG and WT mice, the increased amplitude was more obvious in the TG mice. By Western blot analysis, apoptosis-related proteins Fas, FasL Caspase-3, Caspase-8 and Caspase-9 were significantly increased in both the WT and TG mice, with the TG mice exhibiting a greater up-regulation. CONCLUSION Germ cell apoptosis induced by the HU treatment may be related to the FasL-mediated signal transduction pathway.
Collapse
Affiliation(s)
- Li Zhou
- a National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Department of Pharmacology and Toxicology , Shanghai Institute of Planned Parenthood Research , Shanghai , China
| | - Chun-qi Wu
- a National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Department of Pharmacology and Toxicology , Shanghai Institute of Planned Parenthood Research , Shanghai , China
| | - Yong-wei Luo
- a National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Department of Pharmacology and Toxicology , Shanghai Institute of Planned Parenthood Research , Shanghai , China
| | - Ming-yang Liao
- a National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Department of Pharmacology and Toxicology , Shanghai Institute of Planned Parenthood Research , Shanghai , China
| | - Zu-yue Sun
- a National Evaluation Centre for the Toxicology of Fertility Regulating Drugs, Department of Pharmacology and Toxicology , Shanghai Institute of Planned Parenthood Research , Shanghai , China
| |
Collapse
|
2209
|
Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A Mechanistic Review of Cell Death in Alcohol-Induced Liver Injury. Alcohol Clin Exp Res 2016; 40:1215-1223. [PMID: 27130888 PMCID: PMC5455778 DOI: 10.1111/acer.13078] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major health problem in the United States and worldwide without successful treatments. Chronic alcohol consumption can lead to ALD, which is characterized by steatosis, inflammation, fibrosis, cirrhosis, and even liver cancer. Recent studies suggest that alcohol induces both cell death and adaptive cell survival pathways in the liver, and the balance of cell death and cell survival ultimately decides the pathogenesis of ALD. This review summarizes the recent progress on the role and mechanisms of apoptosis, necroptosis, and autophagy in the pathogenesis of ALD. Understanding the complex regulation of apoptosis, necrosis, and autophagy may help to develop novel therapeutic strategies by targeting all 3 pathways simultaneously.
Collapse
Affiliation(s)
- Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert C. De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
2210
|
Pourhassanali N, Roshan-Milani S, Kheradmand F, Motazakker M, Bagheri M, Saboory E. Zinc attenuates ethanol-induced Sertoli cell toxicity and apoptosis through caspase-3 mediated pathways. Reprod Toxicol 2016; 61:97-103. [PMID: 27033740 DOI: 10.1016/j.reprotox.2016.03.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
2211
|
Abstract
Autophagy constitutes a prominent mechanism through which eukaryotic cells preserve homeostasis in baseline conditions and in response to perturbations of the intracellular or extracellular microenvironment. Autophagic responses can be relatively non-selective or target a specific subcellular compartment. At least in part, this depends on the balance between the availability of autophagic substrates ("offer") and the cellular need of autophagic products or functions for adaptation ("demand"). Irrespective of cargo specificity, adaptive autophagy relies on a panel of sensors that detect potentially dangerous cues and convert them into signals that are ultimately relayed to the autophagic machinery. Here, we summarize the molecular systems through which specific subcellular compartments-including the nucleus, mitochondria, plasma membrane, reticular apparatus, and cytosol-convert homeostatic perturbations into an increased offer of autophagic substrates or an accrued cellular demand for autophagic products or functions.
Collapse
|
2212
|
Eid N, Ito Y, Otsuki Y. Triggering of Parkin Mitochondrial Translocation in Mitophagy: Implications for Liver Diseases. Front Pharmacol 2016; 7:100. [PMID: 27199746 PMCID: PMC4850158 DOI: 10.3389/fphar.2016.00100] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence based on in vitro studies indicates that mitophagy (selective autophagic clearance of damaged mitochondria) is a prosurvival mechanism associated with cellular exposure to various mitochondrial stressors. Very recently, a limited number of publications on animal-based models of alcoholic fatty liver diseases have reported that Parkin-mediated mitophagy may mitigate hepatocyte apoptosis, improve mitochondrial quality and suppress steatosis (lipid accumulation). From this perspective, the authors focus on the mechanisms of Parkin mitochondrial translocation (a key consideration in mitophagy activation) and therapeutic implications of mitophagy in liver disease. DNA repair and other functions of Parkin beyond mitophagy are also briefly discussed. The paper additionally shows original data from the authors' current research indicating enhanced hepatic mitophagy in ethanol-treated rats, which is associated with Parkin mitochondrial translocation triggered by oxidative mitochondrial DNA damage. Natural or pharmaceutical products that may trigger Parkin mitochondrial translocation in hepatocytes and/or suppress repressors of such translocation could be a potential therapeutic target in alcoholic and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical CollegeOsaka, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical CollegeOsaka, Japan
| | | |
Collapse
|
2213
|
Pla A, Pascual M, Guerri C. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons. PLoS One 2016; 11:e0153097. [PMID: 27070930 PMCID: PMC4829237 DOI: 10.1371/journal.pone.0153097] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.
Collapse
Affiliation(s)
- Antoni Pla
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - María Pascual
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Consuelo Guerri
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
- * E-mail:
| |
Collapse
|
2214
|
Chen LY, Chen Q, Cheng YF, Jin HH, Kong DS, Zhang F, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 2016; 79:35-43. [DOI: 10.1016/j.biopha.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
|
2215
|
Liu C, Wang H, Shang Y, Liu W, Song Z, Zhao H, Wang L, Jia P, Gao F, Xu Z, Yang L, Gao F, Li W. Autophagy is required for ectoplasmic specialization assembly in sertoli cells. Autophagy 2016; 12:814-32. [PMID: 26986811 DOI: 10.1080/15548627.2016.1159377] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by Pdlim1 knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication.
Collapse
Affiliation(s)
- Chao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Hongna Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yongliang Shang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Weixiao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhenhua Song
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Haichao Zhao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lina Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Pengfei Jia
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Fengyi Gao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhiliang Xu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lin Yang
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Fei Gao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
2216
|
Bayram S, Kizilay G, Topcu-Tarladacalisir Y. Evaluation of the Fas/FasL signaling pathway in diabetic rat testis. Biotech Histochem 2016; 91:204-11. [DOI: 10.3109/10520295.2015.1129556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
2217
|
Protective effects of propolis on methotrexate-induced testis injury in rat. Biomed Pharmacother 2016; 79:44-51. [PMID: 27044811 DOI: 10.1016/j.biopha.2016.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022] Open
Abstract
Propolis is an adhesive substance which is collected and used by honeybees. Propolis is a potent antioxidant and a free radical scavenger. This study was designed to determine whether propolis could protect against dysfunction and oxidative stress induced by methotrexate-induced injury in rat testis. A total of 40 male Wistar albino rats were divided into four groups: group 1 was the untreated control. On the eighth day of the experiment, groups 2 and 3 received single intraperitoneal injections of methotrexate (MTX) at 20mg/kg. Groups 3 and 4 received 100mg/kg/day propolis (by oral gavage) for 15 days by the first day of the experimental protocol. Then the rats were decapitated under anesthesia, and their testes were removed. The histopathological and biochemical analysis along with apoptosis assessment of testis tissues were compared. Immunohistochemical analysis of Heat shock protein-70 (HSP-70) and Proliferating Cell Nuclear Antigen (PCNA) were performed. The phenolic characterization of propolis was performed by Liquid chromatography-mass spectrometry (LC-MS/MS). Methotrexate caused tended to increase in malondialdehyde level and in the number of apoptotic cells; it also caused a decrease in MSTD and JTBS, PCNA and HSP-70 expression and xanthine oxidase levels in group 2. Propolis prevented the rise in malondialdehyde, xanthine oxidase levels and HSP-70 expression and improved testicular morphology and JTBS. It was found that, methorexate gives rise to serious damage in the testes and propolis is a potent antioxidant agent in preventing testicular injury.
Collapse
|
2218
|
Cai J, Liu W, Hao J, Chen M, Li G. Increased expression of dermatopontin and its implications for testicular dysfunction in mice. Mol Med Rep 2016; 13:2431-8. [PMID: 26861869 PMCID: PMC4768960 DOI: 10.3892/mmr.2016.4879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
An array of specific and non-specific molecules, which are expressed in the testis, have been demonstrated to be responsible for testicular function. Our previous study revealed that dermatopontin (DPT) is expressed in Sertoli cells of the testis, however, its roles in testicular function remains somewhat elusive. In the present study, CdCl2- and busulfan-induced testicular dysfunction models were used to investigate the implications of DPT expression for testicular function. The mRNA and protein expression levels of DPT were detected using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. A negative correlation was observed between testicular damage and the expression of DPT, which suggested that an increase in DPT expression may be a marker for testicular dysfunction. This result was corroborated by the finding that transgenic mice exhibiting Sertoli cell-specific overexpression of DPT exhibited damage to their testicular morphology. Additionally, DPT overexpression in the testis affected the expression levels of claudin-11 and zonula occludens-1, which indicated that DPT may affect testicular function by affecting the integrity of the blood-testis barrier (BTB). In conclusion, the present study provided evidence to suggest that DPT may be indicative of mouse testicular dysfunction, since increased expression may be associated with damage to the BTB.
Collapse
Affiliation(s)
- Jun Cai
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weijia Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie Hao
- Experimental Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Maoxin Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
2219
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
2220
|
The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 2016; 37:150-6. [PMID: 26750103 DOI: 10.1038/aps.2015.87] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Although various types of drugs and therapies are available to treat atherosclerosis, it remains a major cause of mortality throughout the world. Macrophages are the major source of foam cells, which are hallmarks of atherosclerotic lesions. Consequently, the roles of macrophages in the pathophysiology of atherosclerosis are increasingly investigated. Autophagy is a self-protecting cellular catabolic pathway. Since its discovery, autophagy has been found to be associated with a variety of diseases, including cardiovascular diseases, malignant tumors, neurodegenerative diseases, and immune system disorders. Accumulating evidence demonstrates that autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis and cholesterol efflux. These facts suggest the induction of autophagy may be exploited as a potential strategy for the treatment of atherosclerosis. In this review we mainly discuss the relationship between macrophage autophagy and atherosclerosis and the molecular mechanisms, as well as the recent advances in targeting the process of autophagy to treat atherosclerosis.
Collapse
|
2221
|
Aragão JA, da Silva ACF, Anunciação CB, Reis FP. Median artery of the forearm in human fetuses in northeastern Brazil: anatomical study and review of the literature. Anat Sci Int 2016; 92:107-111. [PMID: 26747631 DOI: 10.1007/s12565-015-0322-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022]
Abstract
A persistent median artery is a rare anomaly. It accompanies the median nerve along its course in the forearm and is of variable origin. It is associated with other local anatomical variations and may contribute significantly towards formation of the superficial palmar arch. In embryos, it is responsible mainly for the blood supply to the hand. The objective of this study was to research the frequency, type (forearm or palmar) and origin of the median artery in fetuses, correlating its presence with sex and body side. Red-colored latex was injected into 32 brachial arteries of human fetuses until its arrival in the hand could be seen. Twenty-four hours after the injection, the median arteries were dissected without the aid of optical instruments. Among the 32 forearms dissected, the median artery was present in 81.25 % (26) of the cases, and it was found more frequently in females and on the left side. Regarding origin, most of the median arteries originated in the common interosseous artery (38.5 %) and anterior interosseous artery (34.6 %). The mean length of the median arteries was 21.1 mm for the palmar type and 19.8 mm for the forearm type. The median artery has a high rate of persistence. It is important to be aware of this anatomical variation, since its presence may give rise to difficulties during routine surgical procedures on the wrist. Its presence may cause serious functional complications in the carpal tunnel, anterior interosseous nerve, round pronator syndromes, and ischemia of the hand.
Collapse
Affiliation(s)
- José Aderval Aragão
- Department of Morphology and the Postgraduate Physical Education and Applied Health Science Programs, Federal University of Sergipe (UFS), Avenida Marechal Rondon, s/n, Departamento de Morfologia, Jardim Rosa Elze, Cidade Universitária Professor José Aloísio de Campos - São Cristovão, Aracaju, Sergipe, Brazil. .,Medical School of Tiradentes University (UNIT), Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, CEP: 49032490, Brazil. .,, Rua Aloisio Campos 500, Bairro Atalaia, Aracaju, Sergipe, CEP: 49035-020, Brazil.
| | - Ana Caroline Ferreira da Silva
- Medical School of Federal University of Sergipe (UFS), Avenida Marechal Rondon, s/n, Departamento de Morfologia, Jardim Rosa Elze, Cidade Universitária Professor José Aloísio de Campos - São Cristovão, Aracaju, Sergipe, Brazil
| | - Caio Barretto Anunciação
- Medical School of Federal University of Sergipe (UFS), Avenida Marechal Rondon, s/n, Departamento de Morfologia, Jardim Rosa Elze, Cidade Universitária Professor José Aloísio de Campos - São Cristovão, Aracaju, Sergipe, Brazil
| | - Francisco Prado Reis
- Medical School of Tiradentes University (UNIT), Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, CEP: 49032490, Brazil
| |
Collapse
|
2222
|
Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy. Nutrients 2016; 8:nu8010027. [PMID: 26742072 PMCID: PMC4728641 DOI: 10.3390/nu8010027] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease.
Collapse
|
2223
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:1-71. [DOI: 10.1016/b978-0-12-802937-4.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2224
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:3-73. [DOI: 10.1016/b978-0-12-802936-7.00001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2225
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2016:3-84. [DOI: 10.1016/b978-0-12-805421-5.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2226
|
Abstract
BACKGROUND/AIMS NSAID-induced enteropathy has been the focus of recent basic and clinical research subsequent to the development of the capsule endoscope and double-balloon endoscope. We review the possible pathogenic mechanisms underlying NSAID-induced enteropathy and discuss the role of the inhibition of COX-1/COX-2 and the influences of food as well as various prophylactic treatments on these lesions. METHODS Studies were performed in experimental animals. RESULTS Multiple factors, such as intestinal hypermotility, decreased mucus secretion, enterobacteria, and upregulation of iNOS/NO expression, are involved in the pathogenesis of NSAID-induced enteropathy, in addition to the decreased production of PGs due to the inhibition of COX. Enterobacterial invasion is the most important pathogenic event, and intestinal hypermotility, which was associated with this event, is essential for the development of these lesions. NSAIDs also upregulate the expression of COX-2, and the inhibition of both COX-1 and COX-2 is required for the intestinal ulcerogenic properties of NSAIDs to manifest. NSAID-induced enteropathy is prevented by PGE2, atropine, ampicillin, and aminoguanidine as well as soluble dietary fiber, and exacerbated by antisecretory drugs such as proton pump inhibitors. CONCLUSION These findings on the pathogenesis of NSAID-induced enteropathy will be useful for the future development of intestinal-sparing alternatives to standard NSAIDs.
Collapse
Affiliation(s)
- Koji Takeuchi
- Department of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina, Japan
| | | |
Collapse
|
2227
|
Harada S, Nakagawa T, Yokoe S, Edogawa S, Takeuchi T, Inoue T, Higuchi K, Asahi M. Autophagy Deficiency Diminishes Indomethacin-Induced Intestinal Epithelial Cell Damage through Activation of the ERK/Nrf2/HO-1 Pathway. J Pharmacol Exp Ther 2015; 355:353-61. [PMID: 26404472 DOI: 10.1124/jpet.115.226431] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause epithelial cell damage in the stomach, intestine, and colon. NSAIDs are reported to induce autophagy and apoptosis in intestinal epithelial cells; however, their role in cell damage is poorly understood. To examine the role of autophagy in cell damage, we used autophagy-related gene Atg5-conditional knockout mice, in which the Atg5 gene is only knocked out in intestinal epithelial cells. In an indomethacin (IM)-induced gastrointestinal ulcer mouse model, intestinal epithelium damage was reduced in Atg5-conditional knockout mice compared with wild-type mice. IM-induced damage in IEC6 rat intestinal epithelial cells was reduced when Atg5 was silenced (IEC6shAtg5 cells). Western blot analyses indicated that IM-induced apoptosis decreased, and the potent, oxidative stress-related extracellular signal-regulated kinase (ERK)/nuclear factor-erythroid2-like2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway was upregulated in IEC6shAtg5 cells. An experiment using a reactive oxygen species (ROS)-sensitive fluorescent dye in IEC6shAtg5 cells revealed that the amount of ROS at the baseline and the rate of increase after IM treatment were lower than in intact IEC6 cells. The mitochondrial membrane potential at the baseline and the reduction rate in IM-treated IEC6shAtg5 cells were lower than in intact IEC6 cells, indicating that autophagy deficiency increased ROS production caused by mitochondrial disturbance. Furthermore, MnTMPyP, a manganese-superoxide dismutase mimetic, significantly inhibited IM-induced autophagy and subsequent apoptosis as well as activation of the ERK/Nrf2/HO-1 pathway. These data suggest that autophagy deficiency and subsequent activation of the ERK/Nrf2/HO-1 pathway diminished IM-induced, apoptosis-mediated intestinal epithelial cell damage, and genetic analyses of single nucleotide polymorphisms in autophagy-related genes could predict NSAID-induced intestinal injury.
Collapse
Affiliation(s)
- Satoshi Harada
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takatoshi Nakagawa
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shunichi Yokoe
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shoko Edogawa
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Toshihisa Takeuchi
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takuya Inoue
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kazuhide Higuchi
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Michio Asahi
- Departments of Internal Medicine II (S.H., S.E., T.T., T.I., K.H.) and Pharmacology (T.N., S.Y., M.A.), Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
2228
|
Thomes PG, Trambly CS, Fox HS, Tuma DJ, Donohue TM. Acute and Chronic Ethanol Administration Differentially Modulate Hepatic Autophagy and Transcription Factor EB. Alcohol Clin Exp Res 2015; 39:2354-63. [PMID: 26556759 DOI: 10.1111/acer.12904] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic ethanol (EtOH) consumption decelerates the catabolism of long-lived proteins, indicating that it slows hepatic macroautophagy (hereafter called autophagy) a crucial lysosomal catabolic pathway in most eukaryotic cells. Autophagy and lysosome biogenesis are linked. Both are regulated by the transcription factor EB (TFEB). Here, we tested whether TFEB can be used as a singular indicator of autophagic activity, by quantifying its nuclear content in livers of mice subjected to acute and chronic EtOH administration. We correlated nuclear TFEB to specific indices of autophagy. METHODS In acute experiments, we gavaged GFP-LC3(tg) mice with a single dose of EtOH or with phosphate buffered saline (PBS). We fed mice chronically by feeding them control or EtOH liquid diets. RESULTS Compared with PBS-gavaged controls, livers of EtOH-gavaged mice exhibited greater autophagosome (AV) numbers, a higher incidence of AV-lysosome co-localization, and elevated levels of free GFP, all indicating enhanced autophagy, which correlated with a higher nuclear content of TFEB. Compared with pair-fed controls, livers of EtOH-fed mice exhibited higher AV numbers, but had lower lysosome numbers, lower AV-lysosome co-localization, higher P62/SQSTM1 levels, and lower free GFP levels. The latter findings correlated with lower nuclear TFEB levels in EtOH-fed mice. Thus, enhanced autophagy after acute EtOH gavage correlated with a higher nuclear TFEB content. Conversely, chronic EtOH feeding inhibited hepatic autophagy, associated with a lower nuclear TFEB content. CONCLUSIONS Our findings suggest that the effect of acute EtOH gavage on hepatic autophagy differs significantly from that after chronic EtOH feeding. Each regimen distinctly affects TFEB localization, which in turn, regulates hepatic autophagy and lysosome biogenesis.
Collapse
Affiliation(s)
- Paul G Thomes
- Liver Study Unit, Department of Veterans Affairs, VA Nebraska-Western Iowa Health Care System (NWIHCS), Omaha, Nebraska.,Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Casey S Trambly
- Liver Study Unit, Department of Veterans Affairs, VA Nebraska-Western Iowa Health Care System (NWIHCS), Omaha, Nebraska.,Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Liver Study Unit, Department of Veterans Affairs, VA Nebraska-Western Iowa Health Care System (NWIHCS), Omaha, Nebraska.,Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terrence M Donohue
- Liver Study Unit, Department of Veterans Affairs, VA Nebraska-Western Iowa Health Care System (NWIHCS), Omaha, Nebraska.,Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,The Center for Environmental Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
2229
|
Zhao Y, Wang Q, Qiu G, Zhou S, Jing Z, Wang J, Wang W, Cao J, Han K, Cheng Q, Shen B, Chen Y, Zhang WJ, Ma Y, Zhang J. RACK1 Promotes Autophagy by Enhancing the Atg14L-Beclin 1-Vps34-Vps15 Complex Formation upon Phosphorylation by AMPK. Cell Rep 2015; 13:1407-1417. [PMID: 26549445 DOI: 10.1016/j.celrep.2015.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/07/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022] Open
Abstract
Autophagy is essential for maintaining tissue homeostasis. Although adaptors have been demonstrated to facilitate the assembly of the Atg14L-Beclin 1-Vps34-Vps15 complex, which functions in autophagosome formation, it remains unknown whether the autophagy machinery actively recruits such adaptors. WD40-repeat proteins are a large, highly conserved family of adaptors implicated in various cellular activities. However, the role of WD40-repeat-only proteins, such as RACK1, in postnatal mammalian physiology remains unknown. Here, we report that hepatocyte-specific RACK1 deficiency leads to lipid accumulation in the liver, accompanied by impaired Atg14L-linked Vps34 activity and autophagy. Further exploration indicates that RACK1 participates in the formation of autophagosome biogenesis complex upon its phosphorylation by AMPK at Thr50. Thr50 phosphorylation of RACK1 enhances its direct binding to Vps15, Atg14L, and Beclin 1, thereby promoting the assembly of the autophagy-initiation complex. These observations provide insight into autophagy induction and establish a pivotal role for RACK1 in postnatal mammalian physiology.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC; Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Silei Zhou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC; Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Zhaofei Jing
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Jingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Wendie Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC; Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Junxia Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Kun Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Beifen Shen
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC
| | - Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100083, PRC
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PRC
| | - Yuanfang Ma
- Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, PRC
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PRC.
| |
Collapse
|
2230
|
Williams JA, Ding WX. A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules 2015; 5:2619-42. [PMID: 26501336 PMCID: PMC4693250 DOI: 10.3390/biom5042619] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major health problem worldwide, and alcohol is well-known to cause mitochondrial damage, which exacerbates alcohol-induced liver injury and steatosis. No successful treatments are currently available for treating ALD. Therefore, a better understanding of mechanisms involved in regulation of mitochondrial homeostasis in the liver and how these mechanisms may protect against alcohol-induced liver disease is needed for future development of better therapeutic options for ALD. Mitophagy is a key mechanism for maintaining mitochondrial homeostasis by removing damaged mitochondria, and mitophagy protects against alcohol-induced liver injury. Parkin, an E3 ubiquitin ligase, is well-known to induce mitophagy in in vitro models although Parkin-independent mechanisms for mitophagy induction also exist. In this review, we discuss the roles of Parkin and mitophagy in protection against alcohol-induced liver injury and steatosis. We also discuss Parkin-independent mechanisms for mitophagy induction, which have not yet been evaluated in the liver but may also potentially have a protective role against ALD. In addition to mitophagy, mitochondrial spheroid formation may also provide a novel mechanism of protection against ALD, but the role of mitochondrial spheroids in protection against ALD progression needs to be further explored. Targeting removal of damaged mitochondria by mitophagy or inducing formation of mitochondrial spheroids may be promising therapeutic options for treatment of ALD.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
2231
|
Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity. Biomolecules 2015; 5:2659-74. [PMID: 26501338 PMCID: PMC4693252 DOI: 10.3390/biom5042659] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT), CYP2E1 knockout (KO) or CYP2E1 humanized transgenic knockin (KI), mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA), an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These results suggest that autophagy is protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. We speculate that autophagy-dependent processes such as mitophagy and lipophagy help to minimize ethanol-induced CYP2E1-dependent oxidative stress and therefore the subsequent liver injury and steatosis. Attempts to stimulate autophagy may be helpful in lowering ethanol and CYP2E1-dependent liver toxicity.
Collapse
|
2232
|
Eid N, Ito Y, Otsuki Y. The topographic relationships between thoracic duct and bronchial arteries and surgical relevance. Esophagus 2015; 12:401-401. [DOI: 10.1007/s10388-014-0464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
2233
|
Ata AM, Onat ŞŞ, Özçakar L. Ultrasound imaging for diagnosis and follow-up of persistent median artery thrombosis. Muscle Nerve 2015; 53:152-4. [PMID: 26348536 DOI: 10.1002/mus.24896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Ayşe Merve Ata
- Hacettepe University Medical School, Department of Physical and Rehabilitation Medicine, Ankara, Turkey
| | - Şule Şahin Onat
- Ankara Physical and Rehabilitation Medicine Training and Research Center, Ankara, Turkey
| | - Levent Özçakar
- Hacettepe University Medical School, Department of Physical and Rehabilitation Medicine, Ankara, Turkey
| |
Collapse
|
2234
|
Beilstein F, Carrière V, Leturque A, Demignot S. Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp Cell Res 2015; 340:172-9. [PMID: 26431584 DOI: 10.1016/j.yexcr.2015.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/26/2015] [Indexed: 01/23/2023]
Abstract
Cytosolic lipid droplets (LDs) are observed in enterocytes of jejunum during lipid absorption. One important function of the intestine is to secrete chylomicrons, which provide dietary lipids throughout the body, from digested lipids in meals. The current hypothesis is that cytosolic LDs in enterocytes constitute a transient pool of stored lipids that provides lipids during interprandial period while lowering chylomicron production during the post-prandial phase. This smoothens the magnitude of peaks of hypertriglyceridemia. Here, we review the composition and functions of lipids and associated proteins of enterocyte LDs, the known physiological functions of LDs as well as the role of LDs in pathological processes in the context of the intestine.
Collapse
Affiliation(s)
- Frauke Beilstein
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France; EPHE, Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75014 Paris, France
| | - Véronique Carrière
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France
| | - Armelle Leturque
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France
| | - Sylvie Demignot
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France; EPHE, Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75014 Paris, France.
| |
Collapse
|
2235
|
Eid N, Ito Y, Otsuki Y. Mitophagy in steatotic hepatocytes of ethanol-treated wild-type and Parkin knockout mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G513-G514. [PMID: 26374875 DOI: 10.1152/ajpgi.00254.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| |
Collapse
|
2236
|
Williams JA, Ding WX. Mitophagy, mitochondrial spheroids, and mitochondrial-derived vesicles in alcohol-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2015; 309:G515. [PMID: 26374876 DOI: 10.1152/ajpgi.00264.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2237
|
Abarikwu SO, Duru QC, Chinonso OV, Njoku RC. Antioxidant enzymes activity, lipid peroxidation, oxidative damage in the testis and epididymis, and steroidogenesis in rats after co-exposure to atrazine and ethanol. Andrologia 2015; 48:548-57. [DOI: 10.1111/and.12478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 12/18/2022] Open
Affiliation(s)
- S. O. Abarikwu
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| | - Q. C. Duru
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| | - O. V. Chinonso
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| | - R.-C. Njoku
- Department of Biochemistry; University of Port Harcourt; Choba Nigeria
| |
Collapse
|
2238
|
Altinkaya N, Leblebici B. Prevalence of persistent median artery in carpal tunnel syndrome: sonographic assessment. Surg Radiol Anat 2015; 38:511-5. [DOI: 10.1007/s00276-015-1544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
|
2239
|
Motwani R, Jhajhria SK. Variant Branching Pattern of Superior Thyroid Artery and Its Clinical Relevance: A Case Report. J Clin Diagn Res 2015; 9:AD05-6. [PMID: 26266110 DOI: 10.7860/jcdr/2015/12956.6065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Thyroid surgeries are most common neck surgeries; hence thorough knowledge of the blood supply of this gland to the surgeons is of immense importance to prevent any alarming haemorrhage. We report a rare unilateral branching pattern of superior thyroid artery (STA) on right side during routine dissection on an adult male cadaver in the Department of Anatomy, A.I.I.M.S, New Delhi. Left superior thyroid artery was normal. The common trunk (CT) arose from anterior surface of right external carotid artery (ECA) just above the bifurcation of common carotid artery (CCA) soon dividing into five branches i.e., infrahyoid, superior laryngeal, superior thyroid, cricothyroid and sternocleidomastoid artery. This variant branching pattern of STA is very rare. The inferior thyroid arteries did not show any unusual distribution. Knowledge of such arterial variations related to the thyroid gland is immensely helpful to the surgeons to avoid damage of the vital organs in this region.
Collapse
Affiliation(s)
- Rohini Motwani
- Senior Resident, Department of Anatomy, All India Institute of Medical Sciences , New Delhi, India
| | - Saroj Kaler Jhajhria
- Assistant Professor, Department of Anatomy, All India Institute of Medical Sciences , New Delhi, India
| |
Collapse
|
2240
|
Cardona I, Saint‐Martin C, Daniel SJ. Effect of recurrent onabotulinum toxin a injection into the salivary glands: An ultrasound measurement. Laryngoscope 2015. [DOI: 10.1002/lary.25222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isabel Cardona
- Department of Otolaryngology–Head & Neck SurgeryMontreal Children's HospitalMcGill University Health CenterMontreal Quebec Canada
| | - Christine Saint‐Martin
- Department of Pediatric Medical ImagingMontreal Children's HospitalMcGill University Health CenterMontreal Quebec Canada
| | - Sam J. Daniel
- Department of Otolaryngology–Head & Neck SurgeryMontreal Children's HospitalMcGill University Health CenterMontreal Quebec Canada
| |
Collapse
|
2241
|
Eid N, Ito Y, Otsuki Y. Ethanol-induced hepatic autophagy: Friend or foe? World J Hepatol 2015; 7:1154-1156. [PMID: 26019731 PMCID: PMC4438490 DOI: 10.4254/wjh.v7.i9.1154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/14/2015] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
Excessive alcohol intake may induce hepatic apoptosis, steatosis, fibrosis, cirrhosis and even cancer. Ethanol-induced activation of general or selective autophagy as mitophagy or lipophagy in hepatocytes is generally considered a prosurvival mechanism. On the other side of the coin, upregulation of autophagy in non-hepatocytes as stellate cells may stimulate fibrogenesis and subsequently induce detrimental effects on the liver. The autophagic response of other non-hepatocytes as macrophages and endothelial cells is unknown yet and needs to be investigated as these cells play important roles in ethanol-induced hepatic steatosis and damage. Selective pharmacological stimulation of autophagy in hepatocytes may be of therapeutic importance in alcoholic liver disease.
Collapse
Affiliation(s)
- Nabil Eid
- Nabil Eid, Yuko Ito, Yoshinori Otsuki, Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yuko Ito
- Nabil Eid, Yuko Ito, Yoshinori Otsuki, Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshinori Otsuki
- Nabil Eid, Yuko Ito, Yoshinori Otsuki, Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
2242
|
Öz Gergin Ö, Yıldız K, Bayram A, Sencar L, Coşkun G, Yay A, Biçer C, Özdamar S, Polat S. Comparison of the Myotoxic Effects of Levobupivacaine, Bupivacaine, and Ropivacaine: An Electron Microscopic Study. Ultrastruct Pathol 2015; 39:169-76. [DOI: 10.3109/01913123.2015.1014610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2243
|
Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE, Shankland SJ, D'Agati VD, Duffield JS. Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS. J Am Soc Nephrol 2015; 26:1040-52. [PMID: 25406339 PMCID: PMC4413752 DOI: 10.1681/asn.2013111202] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
FSGS is a heterogeneous fibrosing disease of the kidney, the cause of which remains poorly understood. In most cases, there is no effective treatment to halt or retard progression to renal failure. Increasing evidence points to mitochondrial dysfunction and the generation of reactive oxygen species in the pathogenesis of CKD. Autophagy, a major intracellular lysosomal degradation system, performs homeostatic functions linked to metabolism and organelle turnover. We prevented normal autophagic pathways in nephrons of mice by mutating critical autophagy genes ATG5 or ATG7 during nephrogenesis. Mutant mice developed mild podocyte and tubular dysfunction within 2 months, profound glomerular and tubular changes bearing close similarity to human disease by 4 months, and organ failure by 6 months. Ultrastructurally, podocytes and tubular cells showed vacuolization, abnormal mitochondria, and evidence of endoplasmic reticulum stress, features that precede the appearance of histologic or clinical disease. Similar changes were observed in human idiopathic FSGS kidney biopsy specimens. Biochemical analysis of podocytes and tubules of 2-month-old mutant mice revealed elevated production of reactive oxygen species, activation of endoplasmic reticulum stress pathways, phosphorylation of p38, and mitochondrial dysfunction. Furthermore, cultured proximal tubule cells isolated from mutant mice showed marked mitochondrial dysfunction and elevated mitochondrial reactive oxygen species generation that was suppressed by a mitochondrial superoxide scavenger. We conclude that mitochondrial dysfunction and endoplasmic reticulum stress due to impaired autophagic organelle turnover in podocytes and tubular epithelium are sufficient to cause many of the manifestations of FSGS in mice.
Collapse
Affiliation(s)
- Takahisa Kawakami
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Ivan G Gomez
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Shuyu Ren
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Biogen Idec, Inc., Cambridge, Massachusetts; and
| | - Kelly Hudkins
- Division of Nephrology, Departments of Medicine & Pathology, and
| | - Allie Roach
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Biogen Idec, Inc., Cambridge, Massachusetts; and
| | - Charles E Alpers
- Division of Nephrology, Departments of Medicine & Pathology, and
| | | | | | - Jeremy S Duffield
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Biogen Idec, Inc., Cambridge, Massachusetts; and
| |
Collapse
|
2244
|
Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T, Takeuchi T, Otsuki Y, Higuchi K. Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway. J Gastroenterol 2015; 50:541-554. [PMID: 25212253 DOI: 10.1007/s00535-014-0995-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Indomethacin enhances small intestinal epithelial cell apoptosis, which may account for mucosal ulceration. However, the involvement of autophagy in indomethacin-induced enterocyte damage is unreported. METHODS Using light microscopy and electron microscopy techniques, Western blot analysis, and pharmacological inhibition of autophagy, we investigated the autophagic response of cultured rat enterocytes to indomethacin treatment (200 µM) at various time points. Furthermore, autophagy was examined in enterocytes of rats given indomethacin by gavage (10 mg/kg). RESULTS Our data indicate that indomethacin induced accumulation of cytoplasmic lipid droplets (LDs) in cultured enterocytes, which was associated with time-dependent autophagic responses. Initially (0-6 h), mediated by endoplasmic reticulum stress and suppression of mammalian target of rapamycin, a predominant cytoprotective lipophagy was activated in indomethacin-treated enterocytes, as evidenced by induction and colocalization of LC3-II with LDs, excessive formation of autophagosomes sequestering LDs (autolipophagosomes; ALPs), and decreased viability of enterocytes on blocking autophagy with 3-methyladenine. On prolonged exposure to indomethacin (6-24 h), there was a decrease of LAMP-2 expression in enterocytes coupled with accumulation of ALPs and LDs with fewer autolysosomes in addition to an elevation of lipoapoptosis. These time-dependent autophagic and apoptotic responses to indomethacin treatment were detected in enterocytes of indomethacin-treated rats, confirming in vitro results. CONCLUSIONS The findings of this study describe a novel mechanism of enterocyte damage by indomethacin mediated by endoplasmic reticulum stress, accumulation of LDs, and subsequent activation of the early phase of cytoprotective lipophagy. This is followed by a late phase characterized by reduced expression of lysosomal autophagic proteins, accumulation of ALPs, and enhanced lipoapoptosis.
Collapse
Affiliation(s)
- Ken Narabayashi
- Second Department of Internal Medicine, Osaka Medical College, Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2245
|
Multiple regenerative nodular hyperplasia in the left infrarenal vena cava accompanied by abernethy malformation. Surg Radiol Anat 2015; 38:373-8. [DOI: 10.1007/s00276-015-1460-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 03/16/2015] [Indexed: 11/26/2022]
|
2246
|
Regal JF, Gilbert JS, Burwick RM. The complement system and adverse pregnancy outcomes. Mol Immunol 2015; 67:56-70. [PMID: 25802092 DOI: 10.1016/j.molimm.2015.02.030] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
Abstract
Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health & Science University, Mail Code: L-458, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
2247
|
Franco PS, da Silva NM, de Freitas Barbosa B, de Oliveira Gomes A, Ietta F, Shwab EK, Su C, Mineo JR, Ferro EAV. Calomys callosus chronically infected by Toxoplasma gondii clonal type II strain and reinfected by Brazilian strains is not able to prevent vertical transmission. Front Microbiol 2015; 6:181. [PMID: 25806028 PMCID: PMC4354403 DOI: 10.3389/fmicb.2015.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
Considering that Toxoplasma gondii has shown high genetic diversity in Brazil, the aim of this study was to determine whether Calomys callosus chronically infected by the ME-49 strain might be susceptible to reinfection by these Brazilian strains, including vertical transmission of the parasite. Survival curves were analyzed in non-pregnant females chronically infected with ME-49 and reinfected with the TgChBrUD1 or TgChBrUD2 strain, and vertical transmission was analyzed after reinfection of pregnant females with these same strains. On the 19th day of pregnancy (dop), placentas, uteri, fetuses, liver, spleen, and lung were processed for detection of the parasite. Blood samples were collected for humoral and cellular immune response analyses. All non-pregnant females survived after reinfection and no changes were observed in body weight and morbidity scores. In pregnant females, parasites were detected in the placentas of ME-49 chronically infected females and reinfected females, but were only detected in the fetuses of reinfected females. TgChBrUD2 reinfected females showed more impaired pregnancy outcomes, presenting higher numbers of animals with fetal loss and a higher resorption rate, in parallel with higher levels of pro-inflammatory cytokines and IgG2a subclass antibodies. Vertical transmission resulting from chronic infection of immunocompetent C. callosus is considered a rare event, being attributed instead to either reactivation or reinfection. That is, the pregnancy may be responsible for reactivation of the latent infection or the reinfection may promote T. gondii vertical transmission. Our results clearly demonstrate that, during pregnancy, protection against T. gondii can be breached after reinfection with parasites belonging to different genotypes, particularly when non-clonal strains are involved in this process and in this case the reinfection promoted vertical transmission of both type II and Brazilian T. gondii strains.
Collapse
Affiliation(s)
- Priscila S Franco
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Neide M da Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia, Brazil
| | - Bellisa de Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Angelica de Oliveira Gomes
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Francesca Ietta
- Department of Life Sciences, University of Siena , Siena, Italy
| | - E K Shwab
- Department of Microbiology, The University of Tennessee , Knoxville, TN, USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee , Knoxville, TN, USA
| | - José R Mineo
- Laboratory of Immunoparasitology, Department of Immunology, Microbiology and Parasitology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Eloisa A V Ferro
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| |
Collapse
|
2248
|
Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells. Sci Rep 2015; 5:8894. [PMID: 25745956 PMCID: PMC4352847 DOI: 10.1038/srep08894] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/10/2015] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells.
Collapse
|
2249
|
Han SP, Zhou DX, Lin P, Qin Z, An L, Zheng LR, Lei L. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:323-331. [PMID: 24142868 DOI: 10.1002/tox.21910] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Formaldehyde, a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of autophagy in male reproductive injuries induced by formaldehyde exposure, by which we can further understand the molecular mechanism of spermatogenesis and develop new targets for prevention and treatment of male infertility. In this study, electron microscopy, Western blot, and RT-PCR analysis were used to detect autophagy in testicular tissues. Moreover, testicular weights, histopathology, and morphometry were used to evaluate the reproductive injuries of formaldehyde exposure. We found that formaldehyde exposure-induced autophagy in testicular tissues was dose dependent. Increasing autophagosomes in spermatogenetic cells was observed by electron microscopy in formaldehyde exposure group. In addition, RT-PCR and Western blot analysis showed the transcription levels of the LC3-II, as well as the conversion from LC3-I to LC3-II, an indicator of autophagy, significantly increased in testicular tissue of formaldehyde exposure group in a dose dependent manner when compared with those in control group. Furthermore, the alterations of autophage were basically consistent with the changes in testicular weight and morphologic findings. In summary, formaldehyde exposure triggered autophagy, and autophagy may be a scathing factor responsible for male reproductive impairment induced by formaldehyde.
Collapse
Affiliation(s)
- Shui-Ping Han
- Pathology Department, Medical School, Xi'an Jiaotong University, Xi-an City, Shaanxi Province, 710061, China
| | | | | | | | | | | | | |
Collapse
|
2250
|
Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:227-65. [PMID: 25805126 DOI: 10.1016/bs.ircmb.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum (ER), where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health.
Collapse
|