2251
|
Koloteva N, Hughes JM, McCarthy JE. 9 Reporter Genes and their Use in Studying Yeast Gene Expression. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2252
|
Branchini BR, Nemser AR, Zimmer M. A Computational Analysis of the Unique Protein-Induced Tight Turn That Results in Posttranslational Chromophore Formation in Green Fluorescent Protein. J Am Chem Soc 1998. [DOI: 10.1021/ja973019j] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2253
|
Zhao H, Thompson RB, Lockatell V, Johnson DE, Mobley HL. Use of green fluorescent protein to assess urease gene expression by uropathogenic Proteus mirabilis during experimental ascending urinary tract infection. Infect Immun 1998; 66:330-5. [PMID: 9423875 PMCID: PMC107894 DOI: 10.1128/iai.66.1.330-335.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proteus mirabilis, a cause of complicated urinary tract infection, expresses urease when exposed to urea. While it is recognized that the positive transcriptional activator UreR induces gene expression, the levels of expression of the enzyme during experimental infection are not known. To investigate in vivo expression of P. mirabilis urease, the gene encoding green fluorescent protein (GFP) was used to construct reporter fusions. Translational fusions of urease accessory gene ureD, which is preceded by a urea-inducible promoter, were made with gfp (modified to express S65T/V68L/S72A [B. P. Cormack et al. Gene 173:33-38, 1996]). Constructs were confirmed by sequencing of the fusion junctions. UreD-GFP fusion protein was induced by urea in both Escherichia coli DH5alpha and P. mirabilis HI4320. By using Western blotting with antiserum raised against GFP, expression level was shown to correlate with urea concentration (tested from 0 to 500 mM), with highest induction at 200 to 500 mM urea. Fluorescent E. coli and P. mirabilis bacteria were observed by fluorescence microscopy following urea induction, and the fluorescence intensity of GFP in cell lysates was measured by spectrophotofluorimetry. P. mirabilis HI4320 carrying the UreD-GFP fusion plasmid was transurethrally inoculated into the bladders of CBA mice. One week postchallenge, fluorescent bacteria were detected in thin sections of both bladder and kidney samples; the fluorescence intensity of bacteria in bladder tissue was higher than that in the kidney. Kidneys were primarily infected with single-cell-form fluorescent bacteria, while aggregated bacterial clusters were observed in the bladder. Elongated swarmer cells were only rarely observed. These observations demonstrate that urease is expressed in vivo and that using GFP as a reporter protein is a viable approach to investigate in vivo expression of P. mirabilis virulence genes in experimental urinary tract infection.
Collapse
Affiliation(s)
- H Zhao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | | | |
Collapse
|
2254
|
Arai R, Ueda H, Nagamune T. Construction of chimeric proteins between protein G and fluorescence-enhanced green fluorescent protein, and their application to immunoassays. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(98)80148-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2255
|
1.1 Detection of Virulence Genes Expressed within Infected Cells. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2256
|
Pluk H, Soffner J, Lührmann R, van Venrooij WJ. cDNA cloning and characterization of the human U3 small nucleolar ribonucleoprotein complex-associated 55-kilodalton protein. Mol Cell Biol 1998; 18:488-98. [PMID: 9418896 PMCID: PMC121518 DOI: 10.1128/mcb.18.1.488] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic nucleolus contains a large number of small RNA molecules (snoRNAs) which, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. The most abundant and one of the best-conserved snoRNAs is the U3 RNA. So far, only one human U3 snoRNA-associated protein, fibrillarin, has been characterized. Previously, the U3 snoRNPwas purified from CHO cells, and three proteins of 15, 50, and 55 kDa were found to copurify with the U3 snoRNA (B. Lübben, C. Marshallsay, N. Rottmann, and R. Lührmann, Nucleic Acids Res. 21:5377-5385, 1993). Here we report the cDNA cloning and characterization of the human U3 snoRNP-associated 55-kDa protein. The isolated cDNA codes for a novel nucleolar protein which is specifically associated with the U3 snoRNA. This protein, referred to as hU3-55k, is the first characterized U3 snoRNP-specific protein from humans. hU3-55k is a new member of the family of WD-40 repeat proteins and is conserved throughout evolution. It appears that the C-terminal end of hU3-55k is required for nucleolar localization and U3 snoRNA binding.
Collapse
Affiliation(s)
- H Pluk
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
2257
|
Qin H, Gunning P. The 3'-end of the human beta-actin gene enhances activity of the beta-actin expression vector system: construction of improved vectors. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1997; 36:63-72. [PMID: 9507373 DOI: 10.1016/s0165-022x(97)00045-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human beta-actin promoter has been widely used to drive expression of genes of interest in mammalian cell lines and transgenic mice. The original form of the human beta-actin expression vector contains upstream sequences, 5'UTR (untranslated region) and intron 1 from the beta-actin gene linked to a three restriction site polylinker and SV40 (Simian Virus 40) 3'UTR. We have modified this vector now to contain the highly conserved beta-actin 3'UTR plus flanking region which replaces the SV40 sequences. An additional modification has removed the mRNA peripheral localization sequences present in the beta-actin 3'UTR. The new vectors also contain an improved polylinker. The activity of these two new vectors has been compared with that of the original vector and that of a vector using the popular cytomegalovirus (CMV) promoter. Mouse C2 myoblasts were transfected with each vector driving expression of enhanced green fluorescent protein (EGFP) and analyzed for EGFP mRNA levels. We find that both new vectors drive twice the level of mRNA accumulation of the original vector and over 30-times that of the CMV promoter. This suggests that these new vectors will provide a substantial elevation in levels of expression by virtue of inclusion of the beta-actin 3'UTR plus flanking region.
Collapse
Affiliation(s)
- H Qin
- Cell Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | |
Collapse
|
2258
|
Söderqvist H, Imreh G, Kihlmark M, Linnman C, Ringertz N, Hallberg E. Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein--localization of a targeting domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:808-13. [PMID: 9461306 DOI: 10.1111/j.1432-1033.1997.00808.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 121-kDa pore membrane protein (POM121) is a bitopic integral membrane protein specifically located in the pore membrane domain of the nuclear envelope with its short N-terminal tail exposed on the luminal side and its major C-terminal portion adjoining the nuclear pore complex. In order to locate a signal for targeting of POM121 to the nuclear pores, we overexpressed selected regions of POM121 alone or fused to the green fluorescent protein (GFP) in transiently transfected COS-1 cells or in a stably transfected neuroblastoma cell line. Microscopic analysis of the GFP fluorescence or immunostaining was used to determine the intracellular distribution of the overexpressed proteins. The endofluorescent GFP tag had no effect on the distribution of POM121, since the chimerical POM121-GFP fusion protein was correctly targeted to the nuclear pores of both COS-1 cells and neuroblastoma cells. Based on the differentiated intracellular sorting of the POM121 variants, we conclude that the first 128 amino acids of POM121 contains signals for targeting to the continuous endoplasmic reticulum/nuclear envelope membrane system but not specifically to the nuclear pores and that a specific nuclear pore targeting signal is located between amino acids 129 and 618 in the endoplasmically exposed portion of POM121.
Collapse
Affiliation(s)
- H Söderqvist
- Department of Biochemistry, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
2259
|
Abstract
Many marine organisms are luminescent. The proteins that produce the light include a primary light producer (aequorin or luciferase) and often a secondary photoprotein that red shifts the light for better penetration in the ocean. Green fluorescent protein is one such secondary protein. It is remarkable in that it autocatalyzes the formation of its own fluorophore and thus can be expressed in a variety of organisms in its fluorescent form. The recent determination of its 3D structure and other physical characterizations are revealing its molecular mechanism of action.
Collapse
Affiliation(s)
- G N Phillips
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA.
| |
Collapse
|
2260
|
Monnat J, Hacker U, Geissler H, Rauchenberger R, Neuhaus EM, Maniak M, Soldati T. Dictyostelium discoideum protein disulfide isomerase, an endoplasmic reticulum resident enzyme lacking a KDEL-type retrieval signal. FEBS Lett 1997; 418:357-62. [PMID: 9428745 DOI: 10.1016/s0014-5793(97)01415-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The primary activity of protein disulfide isomerase (PDI), a multifunctional resident of the endoplasmic reticulum (ER), is the isomerization of disulfide bridges during protein folding. We isolated a cDNA encoding Dictyostelium discoideum PDI (Dd-PDI). Phylogenetic analyses and basic biochemical properties indicate that it belongs to a subfamily called P5, many members of which differ from the classical PDIs in many respects. They lack an intervening inactive thioredoxin module, a C-terminal acidic domain involved in Ca2+ binding and a KDEL-type retrieval signal. Despite the absence of this motif, the ER is the steady-state location of Dd-PDI, suggesting the existence of an alternative retention mechanism for P5-related enzymes.
Collapse
Affiliation(s)
- J Monnat
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
2261
|
Coppin E, Debuchy R, Arnaise S, Picard M. Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 1997; 61:411-28. [PMID: 9409146 PMCID: PMC232618 DOI: 10.1128/mmbr.61.4.411-428.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The progress made in the molecular characterization of the mating types in several filamentous ascomycetes has allowed us to better understand their role in sexual development and has brought to light interesting biological problems. The mating types of Neurospora crassa, Podospora anserina, and Cochliobolus heterostrophus consist of unrelated and unique sequences containing one or several genes with multiple functions, related to sexuality or not, such as vegetative incompatibility in N. crassa. The presence of putative DNA binding domains in the proteins encoded by the mating-type (mat) genes suggests that they may be transcriptional factors. The mat genes play a role in cell-cell recognition at fertilization, probably by activating the genes responsible for the hormonal signal whose occurrence was previously demonstrated by physiological experiments. They also control recognition between nuclei at a later stage, when reproductive nuclei of each mating type which have divided in the common cytoplasm pair within the ascogenous hyphae. How self is distinguished from nonself at the nuclear level is not known. The finding that homothallic species, able to mate in the absence of a partner, contain both mating types in the same haploid genome has raised more issues than it has resolved. The instability of the mating type, in particular in Sclerotinia trifolorium and Botrytinia fuckeliana, is also unexplained. This diversity of mating systems, still more apparent if the yeasts and the basidiomycetes are taken into account, clearly shows that no single species can serve as a universal mating-type model.
Collapse
Affiliation(s)
- E Coppin
- Institut de Génétique et Microbiologie, CNRS-URA 2225, Université Paris-Sud, Orsay, France.
| | | | | | | |
Collapse
|
2262
|
Lamm GM, Steinlein P, Cotten M, Christofori G. A rapid, quantitative and inexpensive method for detecting apoptosis by flow cytometry in transiently transfected cells. Nucleic Acids Res 1997; 25:4855-7. [PMID: 9365268 PMCID: PMC147110 DOI: 10.1093/nar/25.23.4855] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We describe a rapid and quantitative flow cytometric method for determining the apoptotic or anti-apoptotic potential of a gene in various cell types. A plasmid carrying green fluorescent protein (GFP) is co-transfected with an expression vector encoding the gene of interest. Subsequently cells are stained with propidium iodide and, utilising flow cytometry, transfected, GFP-expressing single cells are detected and apoptotic cells in this population are identified by their DNA content of <2 N. The method detects apoptosis as reliably as established methods using in situ nick-end labelling but is faster, easier and less expensive.
Collapse
Affiliation(s)
- G M Lamm
- Research Institute of Molecular Pathology (I. M. P.), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
2263
|
Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Biophys Biochem Cytol 1997; 139:1281-92. [PMID: 9382873 PMCID: PMC2140220 DOI: 10.1083/jcb.139.5.1281] [Citation(s) in RCA: 1437] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bax, a member of the Bcl-2 protein family, accelerates apoptosis by an unknown mechanism. Bax has been recently reported to be an integral membrane protein associated with organelles or bound to organelles by Bcl-2 or a soluble protein found in the cytosol. To explore Bcl-2 family member localization in living cells, the green fluorescent protein (GFP) was fused to the NH2 termini of Bax, Bcl-2, and Bcl-XL. Confocal microscopy performed on living Cos-7 kidney epithelial cells and L929 fibroblasts revealed that GFP-Bcl-2 and GFP-Bcl-XL had a punctate distribution and colocalized with a mitochondrial marker, whereas GFP-Bax was found diffusely throughout the cytosol. Photobleaching analysis confirmed that GFP-Bax is a soluble protein, in contrast to organelle-bound GFP-Bcl-2. The diffuse localization of GFP-Bax did not change with coexpression of high levels of Bcl-2 or Bcl-XL. However, upon induction of apoptosis, GFP-Bax moved intracellularly to a punctate distribution that partially colocalized with mitochondria. Once initiated, this Bax movement was complete within 30 min, before cellular shrinkage or nuclear condensation. Removal of a COOH-terminal hydrophobic domain from GFP-Bax inhibited redistribution during apoptosis and inhibited the death-promoting activity of both Bax and GFP-Bax. These results demonstrate that in cells undergoing apoptosis, an early, dramatic change occurs in the intracellular localization of Bax, and this redistribution of soluble Bax to organelles appears important for Bax to promote cell death.
Collapse
Affiliation(s)
- K G Wolter
- Biochemistry Section, Surgical Neurology Branch, Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
2264
|
Raskin DM, de Boer PA. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 1997; 91:685-94. [PMID: 9393861 DOI: 10.1016/s0092-8674(00)80455-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
E. coli cell division is mediated by the FtsZ ring and associated factors. Selection of the correct division site requires the combined action of an inhibitor of FtsZ ring formation (MinCD) and of a topological specificity factor that somehow prevents MinCD action at the middle of the cell (MinE). Here we show that a biologically active MinE-Gfp fusion accumulates in an annular structure near the middle of young cells. Formation of the MinE ring required MinD but was independent of MinC and continued in nondividing cells in which FtsZ function was inhibited. The results indicate that the MinE ring represents a novel cell structure, which allows FtsZ ring formation at midcell by suppressing MinCD activity at this site.
Collapse
Affiliation(s)
- D M Raskin
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
2265
|
Kudo N, Khochbin S, Nishi K, Kitano K, Yanagida M, Yoshida M, Horinouchi S. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J Biol Chem 1997; 272:29742-51. [PMID: 9368044 DOI: 10.1074/jbc.272.47.29742] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Crm1 of Schizosaccharomyces pombe, a nuclear protein essential for proliferation and chromosome region maintenance, is a possible target of leptomycin B, an antifungal and antitumor antibiotic with cell cycle-arresting activity. cDNA encoding a human homolog of Crm1 was cloned. Human CRM1 (hCRM1) consisted of 1071 amino acids, of which the sequence showed 52% homology with S. pombe Crm1. hCRM1 weakly complemented the cold-sensitive mutation of S. pombe crm1-809, as did S. pombe crm1+. Overproduction of hCRM1 under the control of a series of nmt1 promoters suppressed cell proliferation in wild-type S. pombe in an expression level-dependent manner. A similar inhibitory effect was also observed for crm1+. Cells overproducing either hCRM1 or S. pombe Crm1 were distinctly larger than uninduced cells and contained compacted and fragmented nuclei. Furthermore, calcofluor staining demonstrated that most of these cells formed two septa per cell and accumulated a large amount of chitin or its related polysaccharides around the septa. Closely similar phenotypes between hCRM1- and S. pombe Crm1-induced cells indicate that the cloned cDNA encodes a functional homolog of S. pombe crm1+. Northern blot analyses with RNAs isolated from synchronized mammalian cells showed that the expression of mammalian CRM1 was initiated in late G1 and reached a peak at G2/M, although its protein level unchanged during the cell cycle. Transient expression of hCRM1 fused to the green fluorescent protein (GFP) in NIH3T3 cells showed that hCRM1 was localized preferentially in the nuclear envelope and was also detectable in the nucleoplasm and the cytoplasm. A crm1 mutation of S. pombe caused nuclear import of a GFP fusion protein containing a nuclear export signal but no change in the distribution of a GFP fusion protein containing a nuclear localization signal. All of these data suggest that CRM1 is a novel cell-cycle regulated gene that is essential for the nuclear export signal-dependent nuclear export of proteins.
Collapse
Affiliation(s)
- N Kudo
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo 113
| | | | | | | | | | | | | |
Collapse
|
2266
|
Li X, Zhang G, Ngo N, Zhao X, Kain SR, Huang CC. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J Biol Chem 1997; 272:28545-9. [PMID: 9353317 DOI: 10.1074/jbc.272.45.28545] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria is a widely used marker for gene expression and protein localization studies. Dissection of the structure of the protein would be expected to shed light on its potential applications to other fields such as the detection of protease activity. Using deletion analysis, we have defined the minimal domain in GFP required for fluorescence to amino acids 7-229. This domain starts at the middle of the first small alpha helix at the N terminus of GFP and ends immediately following the last beta sheet. Studies of the amino acids at both termini of the minimal domain revealed that positions 6 and 7 at the N terminus are Glu-specific. Change of the Glu residues to other amino acids results in reduction of GFP fluorescence. Position 229 at the C terminus of GFP, however, is nonspecific: the Ile can be replaced with other amino acids with no measurable loss of fluorescence. A total of only 15 terminal amino acids can be deleted from GFP without disrupting fluorescence, consistent with findings of a previous study of GFP crystal structure (Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., Remington, S. J. (1996) Science 273, 1392-1395 and Yang, F., Moss, L. G., and Phillips, G. N., Jr. (1996) Nat. Biotechnol. 14, 1246-1251) that a tightly packed structure exists in the protein. We also generated internal deletions within the loop regions of GFP according to its crystal structure and found that all such deletions eliminated GFP fluorescence.
Collapse
Affiliation(s)
- X Li
- CLONTECH Laboratories, Inc., 1020 East Meadow Circle, Palo Alto, CA 94303, USA.
| | | | | | | | | | | |
Collapse
|
2267
|
High-Titer Retroviral Vectors Containing the Enhanced Green Fluorescent Protein Gene for Efficient Expression in Hematopoietic Cells. Blood 1997. [DOI: 10.1182/blood.v90.9.3316] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRetroviral vectors constitute the most efficient system to deliver and integrate foreign genes into mammalian cells. We have developed a producer cell line that yields high titers of amphotropic retroviral vectors carrying the enhanced green fluorescent protein (EGFP) gene, a codon humanized, red-shifted variant of the green fluorescent protein (GFP) gene, which can be used as a selectable marker. We have used a hybrid vector that has been shown to efficiently drive gene expression in hematopoietic cells. Virtually all murine and human cell lines and primary human hematopoietic cells tested were transduced with varying efficiency after incubation with vector-containing supernatants. Human CD34+ cells obtained from cord blood or aphereses products were transduced using a protocol that involves daily addition of vector-containing supernatants for 6 consecutive days. At day 6, up to 16% of the cells expressed EGFP, as assessed by flow cytometry. Sorted EGFP-expressing cells were able to produce fluorescent hematopoietic colonies. EGFP's main advantages are its fast flow cytometry determination and the possibility of cell sorting and simultaneous evaluation of the transduction efficiency along with other phenotypic markers.
Collapse
|
2268
|
Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 1997; 73:2782-90. [PMID: 9370472 PMCID: PMC1181180 DOI: 10.1016/s0006-3495(97)78307-3] [Citation(s) in RCA: 637] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated properties relevant to quantitative imaging in living cells of five green fluorescent protein (GFP) variants that have been used extensively or are potentially useful. We measured the extinction coefficients, quantum yields, pH effects, photobleaching effects, and temperature-dependent chromophore formation of wtGFP, alphaGFP (F99S/M153T/V163A), S65T, EGFP (F64L/S65T), and a blue-shifted variant, EBFP (F64L/S65T/Y66H/Y145F). Absorbance and fluorescence spectroscopy showed little difference between the extinction coefficients and quantum yields of wtGFP and alphaGFP. In contrast, S65T and EGFP extinction coefficients made them both approximately 6-fold brighter than wtGFP when excited at 488 nm, and EBFP absorbed more strongly than the wtGFP when excited in the near-UV wavelength region, although it had a much lower quantum efficiency. When excited at 488 nm, the GFPs were all more resistant to photobleaching than fluorescein. However, the wtGFP and alphaGFP photobleaching patterns showed initial increases in fluorescence emission caused by photoconversion of the protein chromophore. The wtGFP fluorescence decreased more quickly when excited at 395 nm than 488 nm, but it was still more photostable than the EBFP when excited at this wavelength. The wtGFP and alphaGFP were quite stable over a broad pH range, but fluorescence of the other variants decreased rapidly below pH 7. When expressed in bacteria, chromophore formation in wtGFP and S65T was found to be less efficient at 37 degrees C than at 28 degrees C, but the other three variants showed little differences between 37 degrees C and 28 degrees C. In conclusion, no single GFP variant is ideal for every application, but each one offers advantages and disadvantages for quantitative imaging in living cells.
Collapse
Affiliation(s)
- G H Patterson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
2269
|
Burke NV, Han W, Li D, Takimoto K, Watkins SC, Levitan ES. Neuronal peptide release is limited by secretory granule mobility. Neuron 1997; 19:1095-102. [PMID: 9390522 DOI: 10.1016/s0896-6273(00)80400-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuropeptides are slowly released from a limited pool of secretory granules. To visualize this process, GFP-tagged preproatrial natriuretic factor (ANF) was expressed in nerve growth factor-treated PC12 cells. Biochemical and microfluorimetric experiments demonstrate that proANF-EGFP is packaged in granules that accumulate at neurite endings and is released in a Ca2+-dependent manner by secretagogs. Confocal microscopy shows that secretion is associated with depletion of granules distributed throughout the terminal. Fluorescence recovery after photobleaching and time-lapse particle tracking reveal that only a subpopulation of cytoplasmic secretory granules, similar in size to the releasable pool, can move quickly enough (D = 6 x 10(-11) cm2/s) to support release. Therefore, sustained secretory responses are limited by the number of mobile granules and their slow rate of diffusion.
Collapse
Affiliation(s)
- N V Burke
- Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
2270
|
|
2271
|
Ma X, Sun Q, Wang R, Singh G, Jonietz EL, Margolin W. Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 1997; 179:6788-97. [PMID: 9352931 PMCID: PMC179610 DOI: 10.1128/jb.179.21.6788-6797.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
FtsZ and FtsA are essential for cell division in Escherichia coli and colocalize to the septal ring. One approach to determine what regions of FtsA and FtsZ are important for their interaction is to identify in vivo interactions between FtsA and FtsZ from different species. As a first step, the ftsA genes of Rhizobium meliloti and Agrobacterium tumefaciens were isolated and characterized. In addition, an FtsZ homolog that shared the unusual C-terminal extension of R. meliloti FtsZ1 was found in A. tumefaciens. In order to visualize their localization in cells, we tagged these proteins with green fluorescent protein (GFP). When R. meliloti FtsZ1-GFP or A. tumefaciens FtsZ-GFP was expressed at low levels in E. coli, they specifically localized only to the E. coli FtsZ ring, possibly by coassembly. When A. tumefaciens FtsA-GFP or R. meliloti FtsA-GFP was expressed in E. coli, they failed to localize detectably to the E. coli FtsZ ring. However, when R. meliloti FtsZ1 was coexpressed with them, fluorescence localized to a band at the midcell division site, strongly suggesting that FtsA from either A. tumefaciens or R. meliloti can bind directly to its cognate FtsZ. As expected, GFP-tagged FtsZ1 and FtsA from either R. meliloti or A. tumefaciens localized to the division site in A. tumefaciens cells. Therefore, the 61 amino acid changes between A. tumefaciens FtsA and R. meliloti FtsA do not prevent their direct interaction with FtsZ1 from either species, suggesting that those residues are not essential for protein-protein contacts. Moreover, the failure of the two non-E. coli FtsA derivatives to interact strongly with E. coli FtsZ in this in vivo system unless their cognate FtsZ was also present suggests that FtsA-FtsZ interactions have coevolved and that the residues which differ between the E. coli proteins and those of the two other species may be important for specific interactions.
Collapse
Affiliation(s)
- X Ma
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
2272
|
Bloemberg GV, O'Toole GA, Lugtenberg BJ, Kolter R. Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 1997; 63:4543-51. [PMID: 9361441 PMCID: PMC168774 DOI: 10.1128/aem.63.11.4543-4551.1997] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development of sensitive methods for observing individual bacterial cells in a population in experimental models and natural environments, such as in biofilms or on plant roots, is of great importance for studying these systems. We report the construction of plasmids which constitutively express a bright mutant of the green fluorescent protein of the jellyfish Aequorea victoria and are stably maintained in Pseudomonas spp. We demonstrate the utility of these plasmids to detect individual cells in two experimental laboratory systems: (i) the examination of a mixed bacterial population of Pseudomonas aeruginosa and Burkholderia cepacia attached to an abiotic surface and (ii) the association of Pseudomonas fluorescens WCS365 with tomato seedling roots. We also show that two plasmids, pSMC2 and pGB5, are particularly useful, because they are stable in the absence of antibiotic selection, they place an undetectable metabolic burden on cells that carry the plasmids, and cells carrying these constructs continue to fluoresce even after 7 days in culture without the addition of fresh nutrients. The construction of improved Escherichia coli-Pseudomonas shuttle vectors which carry multiple drug resistance markers also is described.
Collapse
Affiliation(s)
- G V Bloemberg
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
2273
|
Enhanced Green Fluorescent Protein as Selectable Marker of Retroviral-Mediated Gene Transfer in Immature Hematopoietic Bone Marrow Cells. Blood 1997. [DOI: 10.1182/blood.v90.9.3304] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe further improvement of gene transfer into hematopoietic stem cells and their direct progeny will be greatly facilitated by markers that allow rapid detection and efficient selection of successfully transduced cells. For this purpose, a retroviral vector was designed and tested encoding a recombinant version of the Aequorea victoria green fluorescent protein that is enhanced for high-level expression in mammalian cells (EGFP). Murine cell lines (NIH 3T3, Rat2) and bone marrow cells transduced with this retroviral vector demonstrated a stable green fluorescence signal readily detectable by flow cytometry. Functional analysis of the retrovirally transduced bone marrow cells showed EGFP expression in in vitro clonogenic progenitors (GM-CFU), day 13 colony-forming unit-spleen (CFU-S), and in peripheral blood cells and marrow repopulating cells of transplanted mice. In conjunction with fluorescence-activated cell sorting (FACS) techniques EGFP expression could be used as a marker to select for greater than 95% pure populations of transduced cells and to phenotypically define the transduced cells using antibodies directed against specific cell-surface antigens. Detrimental effects of EGFP expression were not observed: fluorescence intensity appeared to be stable and hematopoietic cell growth was not impaired. The data show the feasibility of using EGFP as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in hematopoietic cells, to select for the genetically modified cells, and to track these cells and their progeny both in vitro and in vivo.
Collapse
|
2274
|
Poppenborg L, Friehs K, Flaschel E. The green fluorescent protein is a versatile reporter for bioprocess monitoring. J Biotechnol 1997; 58:79-88. [PMID: 9383982 DOI: 10.1016/s0168-1656(97)00134-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The green fluorescent protein (GFP) of Aequorea victoria has become a convenient and versatile tool as a reporter protein in molecular cell biology and developmental biology. Here, it is shown that GFP may advantageously be used as a reporter system for bioprocess monitoring as well. Examples are given for monitoring fermentation as well as downstream processes for protein recovery. Thus, separation processes based on the application of affinity-fusion tags may be optimized in terms of the operational conditions by using GFP as a model target protein owing to facile screening by simple visual inspection. This item is discussed together with the presentation of a novel fusion tag with strong affinity for metal-chelate ligands: hisactophilin, a histidine-rich protein of Dictyostelium discoideum. This tag is of particular interest for affinity separation processes requiring multiple sites of interaction like aqueous and reverse micellar two-phase extraction as well as precipitation.
Collapse
Affiliation(s)
- L Poppenborg
- Universität Bielefeld, Technische Fakultät, Bielefeld, Germany
| | | | | |
Collapse
|
2275
|
Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, Lin S. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 1997; 124:4105-11. [PMID: 9374406 DOI: 10.1242/dev.124.20.4105] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, DNA constructs containing the putative zebrafish promoter sequences of GATA-1, an erythroid-specific transcription factor, and the green fluorescent protein reporter gene, were microinjected into single-cell zebrafish embryos. Erythroid-specific activity of the GATA-1 promoter was observed in living embryos during early development. Fluorescent circulating blood cells were detected in microinjected embryos 24 hours after fertilization and were still present in 2-month-old fish. Germline transgenic fish obtained from the injected founders continued to express green fluorescent protein in erythroid cells in the F1 and F2 generations. The green fluorescent protein expression patterns in transgenic fish were consistent with the pattern of GATA-1 mRNA expression detected by RNA in situ hybridization. These transgenic fish have allowed us to isolate, by fluorescence-activated cell sorting, the earliest erythroid progenitor cells from developing embryos for in vitro studies. By generating transgenic fish using constructs containing other zebrafish promoters and green fluorescent protein reporter gene, it should be possible to visualize the origin and migration of any lineage-specific progenitor cells in a living embryo.
Collapse
Affiliation(s)
- Q Long
- Institute of Molecular Medicine and Genetics & Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | | | |
Collapse
|
2276
|
Johnson AW. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol 1997; 17:6122-30. [PMID: 9315672 PMCID: PMC232462 DOI: 10.1128/mcb.17.10.6122] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
XRN1 encodes an abundant cytoplasmic exoribonuclease, Xrn1p, responsible for mRNA turnover in yeast. A screen for bypass suppressors of the inviability of xrn1 ski2 double mutants identified dominant alleles of RAT1, encoding an exoribonuclease homologous with Xrn1p. These RAT1 alleles restored XRN1-like functions, including cytoplasmic RNA turnover, wild-type sensitivity to the microtubule-destabilizing drug benomyl, and sporulation. The mutations were localized to a region of the RAT1 gene encoding a putative bipartite nuclear localization sequence (NLS). Fusions to green fluorescent protein were used to demonstrate that wild-type Rat1p is localized to the nucleus and that the mutant alleles result in mislocalization of Rat1p to the cytoplasm. Conversely, targeting Xrn1p to the nucleus by the addition of the simian virus 40 large-T-antigen NLS resulted in complementation of the temperature sensitivity of a rat1-1 strain. These results indicate that Xrn1p and Rat1p are functionally interchangeable exoribonucleases that function in and are restricted to the cytoplasm and nucleus, respectively. It is likely that the higher eukaryotic homologs of these proteins will function similarly in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- A W Johnson
- Department of Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712-1095, USA.
| |
Collapse
|
2277
|
Misteli T, Spector DL. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol 1997; 15:961-4. [PMID: 9335045 DOI: 10.1038/nbt1097-961] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent emergence of an autofluorescent protein, the green fluorescent protein (GFP), has opened the door for the convenient use of intact living cells and organisms as experimental systems in fields ranging from cell biology to biomedicine. We present an overview of some of the major applications of GFP, namely its use in protein tagging and in monitoring gene expression as well as its potential in a variety of biological screens.
Collapse
Affiliation(s)
- T Misteli
- Cold Spring Harbor Laboratory, NY 11724, USA.
| | | |
Collapse
|
2278
|
Roos DS, Sullivan WJ, Striepen B, Bohne W, Donald RG. Tagging genes and trapping promoters in Toxoplasma gondii by insertional mutagenesis. Methods 1997; 13:112-22. [PMID: 9405195 DOI: 10.1006/meth.1997.0504] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasmid vectors that incorporate sequence elements from the dehydrofolate reductase-thymidylate synthase (DHFR-TS) locus of Toxoplasma gondii integrate into the parasite genome with remarkably high frequency (>1% of transfected parasites). These vectors may-but need not-include mutant DHFR-TS alleles that confer pyrimethamine resistance to transgenic parasites. Large genomic constructs integrate at the endogenous locus by homologous recombination, but cDNA-derived sequences lacking long stretches of contiguous genomic DNA (due to intron excision) typically integrate into chromosomal DNA by nonhomologous recombination. Nonhomologous integration occurs effectively at random; and coupled with the high frequency of transformation, this allows a large fraction of the parasite genome to be tagged in a single electroporation cuvette. Genomic tagging permits insertional mutagenesis studies conceptually analogous to transposon mutagenesis in bacteria, yeast, Drosophila, etc. In theory (and, thus far, in practice), this allows identification of any gene whose inactivation is not lethal to the haploid tachyzoite form of T. gondii and for which a suitable selection or screen is available. Transformation vectors can be engineered to facilitate rescue of the tagged locus and to include a variety of reporters or selectable markers. Genetic strategies are also possible, using reporters whose function can be assayed by metabolic, visual, or immunological screens to "trap" genes that are activated (or inactivated) under various conditions of interest.
Collapse
Affiliation(s)
- D S Roos
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, Pennsylvania, 19104-6018, USA.
| | | | | | | | | |
Collapse
|
2279
|
Abstract
In the few years since its gene was first cloned, the Aequorea victoria green fluorescent protein (GFP) has become a powerful tool in cell biology, functioning as a marker for gene expression, protein localization and protein dynamics in living cells. GFP variants with improved fluorescence intensity and altered spectral characteristics have been identified, but additional GFP variants are still desirable for multiple labeling experiments, protein interaction studies and improved visibility in some organisms. In particular, long-wavelength (red) fluorescence has remained elusive. Here we describe a red-emitting, green-absorbing fluorescent state of GFP that is generated by photoactivation with blue light. GFP can be switched to its red-emitting state easily with a laser or fluorescence microscope lamp under conditions of low oxygen concentration. This previously unnoticed ability enables regional, non-invasive marking of proteins in vivo. In particular, we report here the use of GFP photoactivation to make the first direct measurements of protein diffusion in the cytoplasm of living bacteria.
Collapse
Affiliation(s)
- M B Elowitz
- Department of Physics, Princeton University, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
2280
|
|
2281
|
Haddad A, Turkewitz AP. Analysis of exocytosis mutants indicates close coupling between regulated secretion and transcription activation in Tetrahymena. Proc Natl Acad Sci U S A 1997; 94:10675-80. [PMID: 9380694 PMCID: PMC23444 DOI: 10.1073/pnas.94.20.10675] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stimulation of regulated secretory cells promotes protein release via the fusion of cytoplasmic storage vesicles with the plasma membrane. In Tetrahymena thermophila, brief exposure to secretagogue results in synchronous fusion of the entire set of docked dense-core granules with the plasma membrane. We show that stimulation is followed by rapid new dense-core granule synthesis involving gene induction. Two genes encoding granule matrix proteins, GRL1 and GRL4, are shown to undergo induction following stimulation, resulting in approximately 10-fold message accumulation within 1 h. The mechanism of induction involves transcriptional regulation, and the upstream region of GRL1 functions in vivo as an inducible promoter in a heterologous reporter construct using the gene encoding green fluorescent protein. Taking advantage of the characterized exocytosis (exo-) mutants available in this system, we asked whether the signals for regranulation were generated directly by the initial stimulation, or whether downstream events were required for transcription activation. Three mutants, with defects at three distinct stages in the regulated secretory pathway, failed to show induction of GRL1 and GRL4 after exposure to secretagogue. These results argue that regranulation depends upon signals generated by the final steps in exocytosis.
Collapse
Affiliation(s)
- A Haddad
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
2282
|
Abstract
A selection strategy was devised to identify bacterial genes preferentially expressed when a bacterium associates with its host cell. Fourteen Salmonella typhimurium genes, which were under the control of at least four independent regulatory circuits, were identified to be selectively induced in host macrophages. Four genes encode virulence factors, including a component of a type III secretory apparatus. This selection methodology should be generally applicable to the identification of genes from pathogenic organisms that are induced upon association with host cells or tissues.
Collapse
Affiliation(s)
- R H Valdivia
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
2283
|
Randers-Eichhorn L, Albano CR, Sipior J, Bentley WE, Rao G. On-line green fluorescent protein sensor with LED excitation. Biotechnol Bioeng 1997; 55:921-6. [DOI: 10.1002/(sici)1097-0290(19970920)55:6<921::aid-bit9>3.0.co;2-i] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2284
|
Scales SJ, Pepperkok R, Kreis TE. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 1997; 90:1137-48. [PMID: 9323141 DOI: 10.1016/s0092-8674(00)80379-7] [Citation(s) in RCA: 405] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exocytic transport from the endoplasmic reticulum (ER) to the Golgi complex has been visualized in living cells using a chimera of the temperature-sensitive glycoprotein of vesicular stomatitis virus and green fluorescent protein (ts-G-GFP[ct]). Upon shifting to permissive temperature, ts-G-GFP(ct) concentrates into COPII-positive structures close to the ER, which then build up to form an intermediate compartment or transport complex, containing ERGIC-53 and the KDEL receptor, where COPII is replaced by COPI. These structures appear heterogenous and move in a microtubule-dependent manner toward the Golgi complex. Our results suggest a sequential mode of COPII and COPI action and indicate that the transport complexes are ER-to-Golgi transport intermediates from which COPI may be involved in recycling material to the ER.
Collapse
Affiliation(s)
- S J Scales
- Department of Cell Biology, University of Geneva Sciences III, Switzerland
| | | | | |
Collapse
|
2285
|
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17:5598-611. [PMID: 9271435 PMCID: PMC232408 DOI: 10.1128/mcb.17.9.5598] [Citation(s) in RCA: 529] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Raf family of protein kinases display differences in their abilities to promote the entry of quiescent NIH 3T3 cells into the S phase of the cell cycle. Although conditional activation of deltaA-Raf:ER promoted cell cycle progression, activation of deltaRaf-1:ER and deltaB-Raf:ER elicited a G1 arrest that was not overcome by exogenously added growth factors. Activation of all three deltaRaf:ER kinases led to elevated expression of cyclin D1 and cyclin E and reduced expression of p27Kip1. However, activation of deltaB-Raf:ER and deltaRaf-1:ER induced the expression of p21Cip1, whereas activation of deltaA-Raf:ER did not. A catalytically potentiated form of deltaA-Raf:ER, generated by point mutation, strongly induced p21Cip1 expression and elicited cell cycle arrest similarly to deltaB-Raf:ER and deltaRaf-1:ER. These data suggested that the strength and duration of signaling by Raf kinases might influence the biological outcome of activation of this pathway. By titration of deltaB-Raf:ER activity we demonstrated that low levels of Raf activity led to activation of cyclin D1-cdk4 and cyclin E-cdk2 complexes and to cell cycle progression whereas higher Raf activity elicited cell cycle arrest correlating with p21Cip1 induction and inhibition of cyclin-cdk activity. Using green fluorescent protein-tagged forms of deltaRaf-1:ER in primary mouse embryo fibroblasts (MEFs) we demonstrated that p21Cip1 was induced by Raf in a p53-independent manner, leading to cell cycle arrest. By contrast, activation of Raf in p21Cip1(-/-) MEFs led to a robust mitogenic response that was similar to that observed in response to platelet-derived growth factor. These data indicate that, depending on the level of kinase activity, Raf can elicit either cell cycle progression or cell cycle arrest in mouse fibroblasts. The ability of Raf to elicit cell cycle arrest is strongly associated with its ability to induce the expression of the cyclin-dependent kinase inhibitor p21Cip1 in a manner that bears analogy to alpha-factor arrest in Saccharomyces cerevisiae. These data are consistent with a role for Raf kinases in both proliferation and differentiation of mammalian cells.
Collapse
Affiliation(s)
- D Woods
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
2286
|
Tagge E, Harris B, Burbage C, Hall P, Vesely J, Willingham M, Frankel A. Synthesis of green fluorescent protein-ricin and monitoring of its intracellular trafficking. Bioconjug Chem 1997; 8:743-50. [PMID: 9327140 DOI: 10.1021/bc9700749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We performed genetic engineering to fuse enhanced green fluorescent protein (EGFP) to the N terminus of RTA, expressed the fusion protein in Escherichia coli, purified and reassociated EGFP-RTA with plant RTB, and purified EGFP-ricin by size exclusion HPLC. The fusion heterodimer was able to bind galactosides, intoxicate cells, and show strong fluorescence. Mammalian cells incubated with EGFP-ricin showed strong cell surface fluorescence at 4 degrees C and, on incubation at 37 degrees C, distributed initially to endosomes and then to Golgi vesicles. Variable sensitivity of mammalian cells to ricin and ricin fusion proteins may be due in part to different patterns of intracellular routing. Cells were incubated with ricin or EGFP-ricin, and inhibition of protein synthesis was measured. Human hepatocellular carcinoma Hep3B cells were 10-fold more sensitive to ricin and 85-fold more sensitive to EGFP-ricin than human epidermoid carcinoma KB cells. Epifluorescence microscopy of cells incubated with EGFP-ricin showed greater localization of the fluorescence signal in the Golgi compartments in Hep3B cells than in KB cells. These data support a model requiring a Golgi-dependent step in cell intoxication by ricin. The work further identifies the usefulness of green fluorescent protein fusions in the study of retrograde transport of internalized peptides.
Collapse
Affiliation(s)
- E Tagge
- Department of Surgery, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | | | |
Collapse
|
2287
|
Abstract
We highlight recent advances in flow cytometry that have potential applications in the pharmaceutical sciences, particularly in pharmacodynamics and drug delivery. These advances are discussed in the context of the preclinical development of anticancer agents, immunosuppressants and immunomodulators, and oligonucleotides and gene therapy.
Collapse
Affiliation(s)
- M Ramanathan
- Department of Pharmaceutics, State University of New York at Buffalo 14260-1200, USA.
| |
Collapse
|
2288
|
Hill CM, Deng H, Unutmaz D, Kewalramani VN, Bastiani L, Gorny MK, Zolla-Pazner S, Littman DR. Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J Virol 1997; 71:6296-304. [PMID: 9261346 PMCID: PMC191902 DOI: 10.1128/jvi.71.9.6296-6304.1997] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry.
Collapse
Affiliation(s)
- C M Hill
- Skirball Institute of BioMolecular Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
2289
|
Suarez A, Güttler A, Strätz M, Staendner LH, Timmis KN, Guzmán CA. Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 1997; 196:69-74. [PMID: 9322742 DOI: 10.1016/s0378-1119(97)00197-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The green fluorescent protein (GFP) gene, gfp, was used to develop versatile reporter systems for genetic analysis in, and monitoring of bacteria. This reporter system is available on a plasmid and on a mini-transposon located in a suicide delivery plasmid for generation of chromosomal fusions. To achieve sensitivity levels necessary for use in monocopy applications and for detection of single cells, the 3'-end of gfp was replaced by that of a modified gfp gene characterized by a 45-fold stronger fluorescence signal than that exhibited by the natural GFP. This modified gfp gene was also equipped with the strong translation signals of the atpE gene. Transfer of the mini-transposon into two different Pseudomonas spp. and Alcaligenes eutrophus produced random chromosomal fusions, some 5% of which exhibited fluorescence detectable by eye. Individual GFP+ cells were readily observed by fluorescence microscopy.
Collapse
Affiliation(s)
- A Suarez
- Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
2290
|
Kandel ES, Chang BD, Schott B, Shtil AA, Gudkov AV, Roninson IB. Applications of green fluorescent protein as a marker of retroviral vectors. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:325-40. [PMID: 9546076 DOI: 10.1007/bf02674280] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Green Fluorescent Protein (GFP) of Aequorea victoria is used as a vital fluorescent tag for the detection and isolation of genetically modified cells. Several modified variants of GFP were tested as marker genes in retroviral vectors containing different backbones and promoter combinations. Constructs allowing for reliable detection of GFP fluorescence and the expression of a cotransduced gene from a strong promoter were identified. Cells harboring such constructs are detectable by flow cytometry, fluorescence microscopy and multi-well fluorescence reading. GFP expression in transduced cells is stable both in vitro and in vivo, and long-term dynamics of GFP-positive fractions in a mixed population can be used to monitor the biological effects of a cotransduced gene. Selection of cells with the highest GFP fluorescence enriches for multiply infected cells. The use of different GFP variants allows one to monitor simultaneously two cell populations transduced with vectors carrying GFPs that differ in their fluorescence intensity or spectral properties and to identify doubly transduced cells. In addition, transcription of an inducible promoter positioned in the opposite orientation to GFP can be monitored by the inhibition of GFP fluorescence. Thus, GFP provides a useful marker for gene transfer by retroviral vectors and extends the range of applications for retroviral transduction.
Collapse
Affiliation(s)
- E S Kandel
- Department of Molecular Genetics, University of Illinois at Chicago 60607-7170, USA
| | | | | | | | | | | |
Collapse
|
2291
|
Klein Gunnewiek JM, van Aarssen Y, van der Kemp A, Nelissen R, Pruijn GJ, van Venrooij WJ. Nuclear accumulation of the U1 snRNP-specific protein C is due to diffusion and retention in the nucleus. Exp Cell Res 1997; 235:265-73. [PMID: 9281376 DOI: 10.1006/excr.1997.3663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The U1 small nuclear ribonucleoprotein particle (snRNP) has an important function in the early formation of the spliceosome, the multicomponent complex in which pre-mRNA splicing takes place. The nuclear localization signals of two of the three U1 snRNP-specific proteins, U1-70K and U1A, have been mapped. Both proteins are transported actively to the nucleus. Here we show by microinjection of Xenopus laevis oocytes that the third U1 snRNP-specific protein, U1C, passively enters the nucleus. Furthermore, we show that in both X. laevis oocytes and cultured HeLa cells mutant U1C proteins that are not able to bind to the U1 snRNP do not accumulate in the nucleus, indicating that nuclear accumulation of U1C is due to incorporation of the protein into the U1 snRNP.
Collapse
Affiliation(s)
- J M Klein Gunnewiek
- Department of Biochemistry, University of Nijmegen, Nijmegen, 6500 HB, The Netherlands
| | | | | | | | | | | |
Collapse
|
2292
|
Vaidya T, Bakhiet M, Hill KL, Olsson T, Kristensson K, Donelson JE. The gene for a T lymphocyte triggering factor from African trypanosomes. J Exp Med 1997; 186:433-8. [PMID: 9236195 PMCID: PMC2199003 DOI: 10.1084/jem.186.3.433] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An early and essential event in the protective immune response against most viruses and protozoa is the production of interferon-gamma (IFN-gamma). In contrast, during infection with African trypanosomes, protozoan parasites that cause human sleeping sickness, the increased levels of IFN-gamma do not correlate with a protective response. We showed previously that African trypanosomes express a protein called T lymphocyte triggering factor (TLTF), which triggers CD8(+) T lymphocytes to proliferate and to secrete IFN-gamma. Here, we isolate the gene for TLTF and demonstrate that the recombinant version of TLTF specifically induces CD8(+), but not CD4(+), T cells to secrete IFN-gamma. Studies with TLTF fused to the green fluorescent protein show that TLTF is localized to small vesicles that are found primarily at or near the flagellar pocket, the site of secretion in trypanosomes. TLTF is likely to be only the first example of a class of proteins that we designate as trypanokines, i.e., factors secreted by trypanosomes that modulate the cytokine network of the host immune system for the benefit of the parasite.
Collapse
Affiliation(s)
- T Vaidya
- Department of Biochemistry, University of Iowa, and the Howard Hughes Medical Institute, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
2293
|
Affiliation(s)
- J D VanWye
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
2294
|
Siegele DA, Hu JC. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 1997; 94:8168-72. [PMID: 9223333 PMCID: PMC21575 DOI: 10.1073/pnas.94.15.8168] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gene expression from plasmids containing the araBAD promoter can be regulated by the concentration of arabinose in the growth medium. Guzman et al. [Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. (1995) J. Bacteriol. 177, 4121-4130] showed that expression of a cloned gene could be modulated over several orders of magnitude in cultures grown in the presence of subsaturating concentrations of arabinose. We constructed plasmids expressing a fast-folding mutant Aequorea victoria green fluorescent protein from the araBAD promoter to examine the distribution of expressed gene products in individual cells at intermediate induction levels. Microscopic examination of cells grown at low arabinose concentrations shows mixtures of brightly fluorescent and dark cells, suggesting that intermediate expression levels in cultures reflect a population average of induced and uninduced cells. The kinetics of green fluorescent protein induction suggest that this reflects an "autocatalytic" induction mechanism due to accumulation of the inducer by active transport. This mechanism, which is analogous to the induction of the lac operon at subsaturating inducer concentrations in lacY+ cells, was described 40 years ago by Novick and Weiner [Novick, A. & Weiner, M. (1957) Proc. Natl. Acad. Sci. USA 43, 553-566].
Collapse
Affiliation(s)
- D A Siegele
- Department of Biology, Institute for Biosciences and Technology, Texas A & M University, College Station, TX 77843, USA.
| | | |
Collapse
|
2295
|
Eguchi H, Ikuta T, Tachibana T, Yoneda Y, Kawajiri K. A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J Biol Chem 1997; 272:17640-7. [PMID: 9211913 DOI: 10.1074/jbc.272.28.17640] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) is a component of the transcription factors, aryl hydrocarbon receptor (AhR) and hypoxia-inducible factor 1, which transactivate their target genes, such as CYP1A1 and erythropoietin, in response to xenobiotic aromatic hydrocarbons and to low O2 concentration, respectively. Since ARNT was isolated as a factor required for the nuclear translocation of AhR from the cytoplasm in response to xenobiotics, the subcellular localization of ARNT has been of great interest. In this investigation, we analyzed the subcellular distribution of ARNT using transient expression of a fusion gene with beta-galactosidase and microinjection of recombinant proteins containing various fragments of ARNT in the linker region of glutathione S-transferase/green fluorescent protein. We found a clear nuclear localization of ARNT in the absence of exogenous ligands to AhR, and identified the nuclear localization signal (NLS) of amino acid residues 39-61. The characterized NLS consists of 23 amino acids, and can be classified as a novel variant of the bipartite type on the basis of having two separate regions responsible for efficient nuclear translocation activity, but considerable deviation of the sequence from the consensus of the classical bipartite type NLSs. Like the well characterized NLS of the SV40 T-antigen, this variant bipartite type of ARNT NLS was also mediated by the two components of nuclear pore targeting complex, PTAC58 and PTAC97, to target to the nuclear rim in an in vitro nuclear transport assay.
Collapse
Affiliation(s)
- H Eguchi
- Department of Biochemistry, Saitama Cancer Center Research Institute, 818 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362, Japan
| | | | | | | | | |
Collapse
|
2296
|
|
2297
|
Jöns A, Mettenleiter TC. Green fluorescent protein expressed by recombinant pseudorabies virus as an in vivo marker for viral replication. J Virol Methods 1997; 66:283-92. [PMID: 9255739 DOI: 10.1016/s0166-0934(97)00065-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We isolated and characterized a pseudorabies virus (PrV) mutant expressing an engineered green fluorescent protein (GFP) optimized for expression in human cells. The GFP DNA was inserted in the non-essential glycoprotein G (gG) gene of the attenuated PrV strain Bartha. The coding sequence was cloned in frame behind the first seven codons of the gG gene under control of the strong gG promotor. On excitation with blue light, live cells infected with the recombinant PrV B80eGFP exhibited bright fluorescence when examined microscopically using filters for FITC fluorescence. In fixed samples detection sensitivity was increased by immunofluorescence using an anti-GFP antibody. Specifically labelled PrV mutants have been used successfully as transsynaptic circuit tracers for definition of central command neurons in the brain (Jansen et al., 1995. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644-646). Availability of this recombinant allows the study of even more complex interactions using differentially labelled PrV mutants, and provides a means to monitor viral replication and spread without destruction of the cell.
Collapse
Affiliation(s)
- A Jöns
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Insel Riems, Germany
| | | |
Collapse
|
2298
|
Abstract
Evolutionary biotechnology applies the principles of molecular evolution to biotechnology, leading to novel techniques for the creation of biomolecules with a great variety of functions for technical and medical purposes. Several basic principles for the application of evolutionary strategies can be derived from a comprehensive theory of molecular evolution. Prerequisites for evolutionary biotechnology are summarized with respect to the different classes of biomolecules and a few, selected applications are described in detail. Concepts for the technical implementation of evolutionary strategies are presented which allow automatized, high throughput processes.
Collapse
Affiliation(s)
- A Koltermann
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Biochemische Kinetik, Göttingen, Germany
| | | |
Collapse
|
2299
|
Shima DT, Haldar K, Pepperkok R, Watson R, Warren G. Partitioning of the Golgi apparatus during mitosis in living HeLa cells. J Cell Biol 1997; 137:1211-28. [PMID: 9182657 PMCID: PMC2132532 DOI: 10.1083/jcb.137.6.1211] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Golgi apparatus of HeLa cells was fluorescently tagged with a green fluorescent protein (GFP), localized by attachment to the NH2-terminal retention signal of N-acetylglucosaminyltransferase I (NAGT I). The location was confirmed by immunogold and immunofluorescence microscopy using a variety of Golgi markers. The behavior of the fluorescent Golgi marker was observed in fixed and living mitotic cells using confocal microscopy. By metaphase, cells contained a constant number of Golgi fragments dispersed throughout the cytoplasm. Conventional and cryoimmunoelectron microscopy showed that the NAGT I-GFP chimera (NAGFP)-positive fragments were tubulo-vesicular mitotic Golgi clusters. Mitotic conversion of Golgi stacks into mitotic clusters had surprisingly little effect on the polarity of Golgi membrane markers at the level of fluorescence microscopy. In living cells, there was little self-directed movement of the clusters in the period from metaphase to early telophase. In late telophase, the Golgi ribbon began to be reformed by a dynamic process of congregation and tubulation of the newly inherited Golgi fragments. The accuracy of partitioning the NAGFP-tagged Golgi was found to exceed that expected for a stochastic partitioning process. The results provide direct evidence for mitotic clusters as the unit of partitioning and suggest that precise regulation of the number, position, and compartmentation of mitotic membranes is a critical feature for the ordered inheritance of the Golgi apparatus.
Collapse
Affiliation(s)
- D T Shima
- Cell Biology Laboratory, Imperial Cancer Research Fund, London WC2A, 3PX, UK
| | | | | | | | | |
Collapse
|
2300
|
Meng A, Tang H, Ong BA, Farrell MJ, Lin S. Promoter analysis in living zebrafish embryos identifies a cis-acting motif required for neuronal expression of GATA-2. Proc Natl Acad Sci U S A 1997; 94:6267-72. [PMID: 9177206 PMCID: PMC21038 DOI: 10.1073/pnas.94.12.6267] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/1997] [Accepted: 04/10/1997] [Indexed: 02/04/2023] Open
Abstract
We have used zebrafish embryos to dissect the promoter activity of a gene with a complex expression pattern during embryogenesis. GATA-2 is a transcription factor required for hematopoiesis and is dynamically expressed in hematopoietic tissues and in the central nervous system. Using constructs containing zebrafish GATA-2 genomic flanking sequences and the green fluorescent protein (GFP) reporter gene, we demonstrate that distinct regulatory domains are required for hematopoietic, enveloping layer (EVL), and neuronal expression of GATA-2. During gastrulation, GFP expression is confined to the ventral ectoderm and lateral mesoderm and is lacking in the dorsal shield. Cells derived from the regions expressing GFP give rise to hematopoietic progenitors, EVL cells, and neurons. Deletion analysis of the 7.3-kb GATA-2 promoter region revealed that a 1.1-kb DNA sequence is critical for expression of GATA-2 in neurons. Fine mapping revealed that a 31-bp region is required for neuron enhancer activity, and mutagenesis showed that the DNA motif CCCTCCT is essential for GATA-2 promoter activity in the central nervous system of zebrafish. Our use of zebrafish embryos can be exploited as a whole animal system for the dissection of any developmentally regulated vertebrate promoter.
Collapse
Affiliation(s)
- A Meng
- Institute of Molecular Medicine and Genetics, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|