2401
|
Iuchi K, Ema M, Suzuki M, Yokoyama C, Hisatomi H. Oxidized unsaturated fatty acids induce apoptotic cell death in cultured cells. Mol Med Rep 2019; 19:2767-2773. [PMID: 30720142 PMCID: PMC6423586 DOI: 10.3892/mmr.2019.9940] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Polyunsaturated fatty acids are oxidized by non-enzymatic or enzymatic reactions. The oxidized products are multifunctional. In this study, we investigated how oxidized fatty acids inhibit cell proliferation in cultured cells. We used polyunsaturated and saturated fatty acids, docosahexaenoic acid (DHA; 22:6), eicosapentaenoic acid (EPA; 20:5), linoleic acid (LA; 18:2), and palmitic acid (16:0). Oxidized fatty acids were produced by autoxidation of fatty acids for 2 days in the presence of a gas mixture (20% O2 and 80% N2). We found that oxidized polyunsaturated fatty acids (OxDHA, OxEPA and OxLA) inhibited cell proliferation much more effectively compared with un-oxidized fatty acids (DHA, EPA and LA, respectively) in THP-1 (a human monocytic leukemia cell line) and DLD-1 (a human colorectal cancer cell line) cells. In particular, OxDHA markedly inhibited cell proliferation. DHA has the largest number of double bonds and is most susceptible to oxidation among the fatty acids. OxDHA has the largest number of highly active oxidized products. Therefore, the oxidative levels of fatty acids are associated with the anti-proliferative activity. Moreover, caspase-3/7 was activated in the cells treated with OxDHA, but not in those treated with DHA. A pan-caspase inhibitor (zVAD-fmk) reduced the cell death induced by OxDHA. These results indicated that oxidized products from polyunsaturated fatty acids induced apoptosis in cultured cells. Collectively, the switch between cell survival and cell death may be regulated by the activity and/or number of oxidized products from polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180‑8633, Japan
| | - Mika Ema
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180‑8633, Japan
| | - Moe Suzuki
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180‑8633, Japan
| | - Chikako Yokoyama
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992‑8510, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180‑8633, Japan
| |
Collapse
|
2402
|
Liu T, Jiang L, Tavana O, Gu W. The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11. Cancer Res 2019; 79:1913-1924. [PMID: 30709928 DOI: 10.1158/0008-5472.can-18-3037] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Although cell-cycle arrest, senescence, and apoptosis are established mechanisms of tumor suppression, accumulating evidence reveals that ferroptosis, an iron-dependent, nonapoptotic form of cell death, represents a new regulatory pathway in suppressing tumor development. Ferroptosis is triggered by lipid peroxidation and is tightly regulated by SLC7A11, a key component of the cystine-glutamate antiporter. Although many studies demonstrate the importance of transcriptional regulation of SLC7A11 in ferroptotic responses, it remains largely unknown how the stability of SLC7A11 is controlled in human cancers. In this study, we utilized biochemial purification to identify the ubiquitin hydrolase OTUB1 as a key factor in modulating SLC7A11 stability. OTUB1 directly interacted with and stabilized SLC7A11; conversely, OTUB1 knockdown diminished SLC7A11 levels in cancer cells. OTUB1 was overexpressed in human cancers, and inactivation of OTUB1 destabilized SLC7A11 and led to growth suppression of tumor xenografts in mice, which was associated with reduced activation of ferroptosis. Notably, overexpression of the cancer stem cell marker CD44 enhanced the stability of SLC7A11 by promoting the interaction between SLC7A11 and OTUB1; depletion of CD44 partially abrogated this interaction. CD44 expression suppressed ferroptosis in cancer cells in an OTUB1-dependent manner. Together, these results show that OTUB1 plays an essential role in controlling the stability of SLC7A11 and the CD44-mediated effects on ferroptosis in human cancers. SIGNIFICANCE: This study identifies OTUB1 as a key regulator of ferroptosis and implicates it as a potential target in cancer therapy.See related commentary by Gan, p. 1749.
Collapse
Affiliation(s)
- Tong Liu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York.,College of Physicians & Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Le Jiang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York.,College of Physicians & Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Omid Tavana
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York.,College of Physicians & Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, New York. .,College of Physicians & Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| |
Collapse
|
2403
|
Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, Fan W, Zhu Q, Wang Y, Tong X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med 2019; 131:356-369. [PMID: 30557609 DOI: 10.1016/j.freeradbiomed.2018.12.011] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
Dihydroartemisinin (DHA) has been shown to be capable of inhibiting cancer growth, whereas it remains largely elusive that the underlying molecular mechanism of DHA induced acute myeloid leukemia (AML) cell death. In the present study, we examined the effects of DHA on the proliferation and ferroptosis of AML cells as well as to elucidate the underlying molecular mechanisms. We found that DHA strongly inhibited the viability of AML cell lines and arrest cell cycle at G0/G1 phase. Further studies found that DHA effectively induced AML cells ferroptosis, which was iron-dependent and accompanied by mitochondrial dysfunction. Mechanistically, DHA induced autophagy by regulating the activity of AMPK/mTOR/p70S6k signaling pathway, which accelerated the degradation of ferritin, increased the labile iron pool, promoted the accumulation of cellular ROS and eventually led to ferroptotic cell death. Over expression of ISCU (Iron-sulfur cluster assembly enzyme, a mitochondrial protein) significantly attenuated DHA induced ferroptosis by regulating iron metabolism, rescuing the mitochondrial function and increasing the level of GSH. Meanwhile, FTH reconstituted AML cells also exhibited the reduced lipid peroxides content and restored the DHA-induced ferroptosis. In summary, these results provide experimental evidences on the detailed mechanism of DHA-induced ferroptosis and reveal that DHA might represent a promising therapeutic agent to preferentially target AML cells.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Animals
- Antimalarials/pharmacology
- Antineoplastic Agents/pharmacology
- Apoferritins/genetics
- Apoferritins/metabolism
- Artemisinins/pharmacology
- Autophagy/drug effects
- Autophagy/genetics
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Gene Expression Regulation, Leukemic
- HL-60 Cells
- Humans
- Iron-Sulfur Proteins/genetics
- Iron-Sulfur Proteins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Nude
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Proteolysis
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- THP-1 Cells
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jing Du
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Tongtong Wang
- Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yanchun Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yi Zhou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xin Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xingxing Yu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xueying Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Yihan An
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yi Wu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Haematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Weidong Sun
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Weimin Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qiaojuan Zhu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ying Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Xiangmin Tong
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2404
|
Bao W, Liu X, Lv Y, Lu GH, Li F, Zhang F, Liu B, Li D, Wei W, Li Y. Nanolongan with Multiple On-Demand Conversions for Ferroptosis-Apoptosis Combined Anticancer Therapy. ACS NANO 2019; 13:260-273. [PMID: 30616348 DOI: 10.1021/acsnano.8b05602] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a type of programmed cell death, ferroptosis is distinct from apoptosis. The combination of the two thus provides a promising modality with which to significantly improve anticancer treatment efficacy. To fully utilize this combination, we herein designed a nanolongan delivery system, which possessed a typical structure of one core (up-conversion nanoparticles, UCNP) in one gel particle (Fe3+ cross-linked oxidized starch) with multiple on-demand conversions. The charge conversion of the nanolongan surface in a slightly acidic microenvironment enhanced circulation time for utilizing the enhanced permeability and retention effect, enabled efficient uptake by tumor cells, and induced subsequently lysosomal escape. As the core component, the UCNP with light conversion from near-infrared light to ultraviolet light circumvented the impediment of limited penetration depth and enabled the reduction of Fe3+ to Fe2+. Accordingly, gel networks of nanolongan could be deconstructed due to this valence conversion, leading to the rapid release of Fe2+ and doxorubicin (Dox). In this case, the Fenton reaction between Fe2+ and intracellular H2O2 generated potent reactive oxygen species for ferroptosis, while the co-released Dox penetrated into nucleus and induced apoptosis in a synergistic way. As a result, superior anticancer therapeutic effects were achieved with little systemic toxicity, indicating that our nanolongan could serve as a safe and high-performance platform for ferroptosis-apoptosis combined anticancer therapy.
Collapse
Affiliation(s)
- Weier Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering , China Agricultural University , 100083 Beijing , China
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
- College of Life Science and Technology , Beijing University of Chemical Technology , 100029 Beijing , China
| | - Xianwu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering , China Agricultural University , 100083 Beijing , China
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
- College of Life Science and Technology , Beijing University of Chemical Technology , 100029 Beijing , China
| | - Yanlin Lv
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
| | - Gui-Hong Lu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
| | - Fan Zhang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
| | - Bin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering , China Agricultural University , 100083 Beijing , China
| | - Dan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering , China Agricultural University , 100083 Beijing , China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing , China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering , China Agricultural University , 100083 Beijing , China
| |
Collapse
|
2405
|
Wan J, Ren H, Wang J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol 2019; 4:93-95. [PMID: 31338218 PMCID: PMC6613877 DOI: 10.1136/svn-2018-000205] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity. However, we have few options for ICH therapy and limited knowledge about post-ICH neuronal death and related mechanisms. In the aftermath of ICH, iron overload within the perihaematomal region can induce lethal reactive oxygen species (ROS) production and lipid peroxidation, which contribute to secondary brain injury. Indeed, iron chelation therapy has shown efficacy in preclinical ICH studies. Recently, an iron-dependent form of non-apoptotic cell death known as ferroptosis was identified. It is characterised by an accumulation of iron-induced lipid ROS, which leads to intracellular oxidative stress. The ROS cause damage to nucleic acids, proteins and lipid membranes, and eventually cell death. Recently, we and others discovered that ferroptosis does occur after haemorrhagic stroke in vitro and in vivo and contributes to neuronal death. Inhibition of ferroptosis is beneficial in several in vivo and in vitro ICH conditions. This minireview summarises current research on iron toxicity, lipid peroxidation and ferroptosis in the pathomechanisms of ICH, the underlying molecular mechanisms of ferroptosis and the potential for combined therapeutic strategies. Understanding the role of ferroptosis after ICH will provide a vital foundation for cell death-based ICH treatment and prevention.
Collapse
Affiliation(s)
- Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2406
|
Mi Y, Gao X, Xu H, Cui Y, Zhang Y, Gou X. The Emerging Roles of Ferroptosis in Huntington's Disease. Neuromolecular Med 2019; 21:110-119. [PMID: 30600476 DOI: 10.1007/s12017-018-8518-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurodegenerative disorder, which is caused by an abnormal CAG repeat in the huntingtin gene. Despite its well-defined genetic origin, the molecular mechanisms of neuronal death are unclear yet, thus there are no effective strategies to block or postpone the process of HD. Ferroptosis, a recently identified iron-dependent cell death, attracts considerable attention due to its putative involvement in neurodegenerative diseases. Accumulative data suggest that ferroptosis is very likely to participate in HD, and inhibition of the molecules and signaling pathways involved in ferroptosis can significantly eliminate the symptoms and pathology of HD. This review first describes evidence for the close relevance of ferroptosis and HD in patients and mouse models, then summarizes advances for the mechanisms of ferroptosis involved in HD, finally outlines some therapeutic strategies targeted ferroptosis. Comprehensive understanding of the emerging roles of ferroptosis in the occurrence of HD will help us to explore effective therapies for slowing the progression of this disease.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuanyuan Cui
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
2407
|
Singla P, Bhardwaj RD, Kaur S, Kaur J. Antioxidant potential of barley genotypes inoculated with five different pathotypes of Puccinia striiformis f. sp. hordei. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:145-157. [PMID: 30804637 PMCID: PMC6352528 DOI: 10.1007/s12298-018-0614-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 05/10/2023]
Abstract
The stripe rust caused by the fungal pathogen, Puccinia striiformis f. sp. hordei in barley (Hordeum vulgare L.) is a global problem that threatens the production of barley. The present study examined the disease reaction, free radical scavenging potential, non-enzymatic antioxidants like total phenols, o-dihydroxy phenols, flavonoids along with total chlorophyll, chlorophyll a, chlorophyll b and total carotenoids of the four barley genotypes viz. Jyoti (susceptible), RD2900, RD2901 and RD2552 (resistant) infected with five different pathotypes (M, G, 57, Q and 24) of P. striiformis f. sp. hordei. The disease reaction showing RD2901 in the category of immune to very resistant genotype followed by RD2552 in immune to resistant and RD2900 as moderately resistant and Jyoti as susceptible, which was well correlated with biochemical studies. RD2901 possessed higher antioxidant potential in terms of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) scavenging activity, ferric reducing antioxidant power, reducing power and nitric oxide scavenging activity under control conditions and were maintained sufficiently high on inoculation with different pathotypes (M, G, 57, Q and 24) of P. striiformis f. sp. hordei. Further, these free radical scavenging activities showed the positive correlation with total phenols, o-dihydroxy phenols, flavonoids which in turn might be contributing in tolerance behaviour of this genotype. However, Jyoti with sensitive behaviour towards M, G, and 24 pathotypes depicted minimum DPPH activity and reducing power under control conditions.
Collapse
Affiliation(s)
- Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Rachana D. Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Simarjit Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
2408
|
Scalcon V, Tonolo F, Folda A, Bindoli A, Rigobello MP. Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress. Metallomics 2019; 11:1241-1251. [DOI: 10.1039/c9mt00090a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Grx2 coordinates an iron–sulfur cluster, forming inactive dimers. In mitochondria, Grx2 monomerization, after oxidative stress, determines iron release triggering apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Federica Tonolo
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Folda
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Bindoli
- Istituto di Neuroscienze (CNR)
- Sezione di Padova
- c/o Dipartimento di Scienze Biomediche
- 35131 Padova
- Italy
| | - Maria Pia Rigobello
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
2409
|
Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109:1085-1099. [DOI: 10.1016/j.biopha.2018.10.130] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
|
2410
|
A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int J Mol Sci 2018; 20:ijms20010039. [PMID: 30583467 PMCID: PMC6337503 DOI: 10.3390/ijms20010039] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
Collapse
|
2411
|
Pentimalli F, Grelli S, Di Daniele N, Melino G, Amelio I. Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes Immun 2018; 20:539-554. [PMID: 30563970 PMCID: PMC6451632 DOI: 10.1038/s41435-018-0052-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Alterations in the molecular mechanisms of cell death are a common feature of cancer. These alterations enable malignant cells to survive intrinsic death signalling leading to accumulation of genetic aberrations and helping them to cope with adverse conditions. Regulated cell death has historically been exclusively associated with classical apoptosis; however, increasing evidence indicates that several alternative mechanisms orchestrate multiple death pathways, such as ferroptosis, entosis, necroptosis and immunogenic cell death, each with distinct underlying molecular mechanisms. Although pharmacological targeting of cell death pathways has been the subject of intensive efforts in recent decades with a dominant focus on targeting apoptosis, the identification of these novel death pathways has opened additional venues for intervention in cancer cells and the immune system. In this mini-review, we cover some recent progress on major recently emerged cell death modalities, emphasizing their potential clinical and therapeutic implications. We also discuss the interplay between cell death and immune response, highlighting the potential of the combination of traditional anticancer therapy and immunocheckpoint blockade. While attempting to stimulate discussion and draw attention to the possible clinical impact of these more recently emerged cell death modalities, we also cover the major progress achieved in translating strategies for manipulation of apoptotic pathways into the clinic, focusing on the attempts to target the anti-apoptotic protein BCL-2 and the tumour suppressor p53.
Collapse
Affiliation(s)
- Francesca Pentimalli
- Centro Ricerche Oncologiche Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale, Naples, Italy
| | - Sandro Grelli
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Nicola Di Daniele
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| |
Collapse
|
2412
|
Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, Kang R, Wang X, Tang D, Dai E. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 2018; 508:997-1003. [PMID: 30545638 DOI: 10.1016/j.bbrc.2018.12.039] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.
Collapse
Affiliation(s)
- Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Lingjun Meng
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Leng Han
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Yuanyuan Jia
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Yanan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Huan Gao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
2413
|
Ramanujan VK. Rapid Assessment of Mitochondrial Complex I Activity and Metabolic Phenotyping of Breast Cancer Cells by NAD(p)H Cytometry. Cytometry A 2018; 95:101-109. [PMID: 30536579 DOI: 10.1002/cyto.a.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/11/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022]
Abstract
Cancer cells are known to display a variety of metabolic reprogramming strategies to fulfill their own growth and proliferative agenda. With the advent of high resolution imaging strategies, metabolomics techniques, and so forth, there is an increasing appreciation of critical role that tumor cell metabolism plays in the overall breast cancer (BC) growth. In this report, we demonstrate a sensitive, flow-cytometry-based assay for rapidly assessing the metabolic phenotypes in isolated suspensions of breast cancer cells. By measuring the temporal variation of NAD(p)H signals in unlabeled, living cancer cells, and by measuring mitochondrial membrane potential {Δψm } in fluorescently labeled cells, we demonstrate that these signals can reliably distinguish the metabolic phenotype of human breast cancer cells and can track the cellular sensitivity to drug candidates. We further show the utility of this metabolic ratio {Δψm /NAD(p)H} in monitoring mitochondrial functional improvement as well as metabolic heterogeneity in primary murine tumor cells isolated from tumor biopsies. Together, these results demonstrate a novel possibility for rapid metabolic functional screening applications as well as a metabolic phenotyping tool for determining drug sensitivity in living cancer cells. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- V Krishnan Ramanujan
- Metabolic Photonics Laboratory, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, California, 90048
| |
Collapse
|
2414
|
Hu CL, Nydes M, Shanley KL, Morales Pantoja IE, Howard TA, Bizzozero OA. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem 2018; 148:426-439. [PMID: 30289974 DOI: 10.1111/jnc.14604] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Glutathione peroxidase 4 (GPx4) is the only enzyme capable of reducing toxic lipid hydroperoxides in biological membranes to the corresponding alcohols using glutathione as the electron donor. GPx4 is the major inhibitor of ferroptosis, a non-apoptotic and iron-dependent programmed cell death pathway, which has been shown to occur in various neurological disorders with severe oxidative stress. In this study, we investigate whether GPx4 expression is altered in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). The results clearly show that mRNA expression for all three GPx4 isoforms (cytoplasmic, mitochondrial and nuclear) decline in multiple sclerosis gray matter and in the spinal cord of MOG35-55 peptide-induced EAE. The amount of GPx4 protein is also reduced in EAE, albeit not in all cells. Neuronal GPx4 immunostaining, mostly cytoplasmic, is lower in EAE spinal cords than in control spinal cords, while oligodendrocyte GPx4 immunostaining, mainly nuclear, is unaltered. Neither control nor EAE astrocytes and microglia cells show GPx4 labeling. In addition to GPx4, two other negative modulators of ferroptosis (γ-glutamylcysteine ligase and cysteine/glutamate antiporter), which are critical to maintain physiological levels of glutathione, are diminished in EAE. The decrease in the ability to eliminate hydroperoxides was also evidenced by the accumulation of lipid peroxidation products and the reduction in the proportion of the docosahexaenoic acid in non-myelin lipids. These findings, along with presence of abnormal neuronal mitochondria morphology, which includes an irregular matrix, disrupted outer membrane and reduced/absent cristae, are consistent with the occurrence of ferroptotic damage in inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Che-Lin Hu
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mara Nydes
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kara L Shanley
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Itzy E Morales Pantoja
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Tamara A Howard
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| | - Oscar A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
2415
|
Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 2018; 129:454-462. [PMID: 30339884 DOI: 10.1016/j.freeradbiomed.2018.10.426] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/15/2018] [Accepted: 10/13/2018] [Indexed: 01/01/2023]
Abstract
Glutathione peroxidase 4 (GPX4) is a regulator of ferroptosis (iron-dependent, non-apoptotic cell death); its inhibition can render therapy-resistant cancer cells susceptible to ferroptosis. However, some cancer cells develop mechanisms protective against ferroptosis; understanding these mechanisms could help overcome chemoresistance. In this study, we investigated the molecular mechanisms underlying resistance to ferroptosis induced by GPX4 inhibition in head and neck cancer (HNC). The effects of two GPX4 inhibitors, (1S, 3R)-RSL3 and ML-162, and of trigonelline were tested in HNC cell lines, including cisplatin-resistant (HN3R) and acquired RSL3-resistant (HN3-rslR) cells. The effects of the inhibitors and trigonelline, as well as of inhibition of the p62, Keap1, or Nrf2 genes, were assessed by cell viability, cell death, lipid ROS production, and protein expression, and in mouse tumor xenograft models. Treatment with RSL3 or ML-162 induced the ferroptosis of HNC cells to varying degrees. RSL3 or ML-162 treatment increased the expression of p62 and Nrf2 in chemoresistant HN3R and HN3-rslR cells, inactivated Keap1, and increased expression of the phospho-PERK-ATF4-SESN2 pathway. Transcriptional activation of Nrf2 was associated with resistance to ferroptosis. Overexpression of Nrf2 by inhibiting Keap1 or Nrf2 gene transfection rendered chemosensitive HN3 cells resistant to RSL3. However, Nrf2 inhibition or p62 silencing sensitized HN3R cells to RSL3. Trigonelline sensitized chemoresistant HNC cells to RSL3 treatment in a mouse model transplanted with HN3R. Thus, activation of the Nrf2-ARE pathway contributed to the resistance of HNC cells to GPX4 inhibition, and inhibition of this pathway reversed the resistance to ferroptosis in HNC.
Collapse
Affiliation(s)
- Daiha Shin
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2416
|
A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin Cancer Biol 2018; 53:125-138. [DOI: 10.1016/j.semcancer.2018.07.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
|
2417
|
In vitro antitumour activity of two ferrocenyl metallodendrimers in a colon cancer cell line. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2418
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
2419
|
Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wölfl S, Lindemann RK, Reiling JH. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 2018; 1:210. [PMID: 30511023 PMCID: PMC6262011 DOI: 10.1038/s42003-018-0212-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic activities of several Golgi-dispersing compounds including AMF-26/M-COPA, brefeldin A and golgicide A have previously been shown to induce autophagy or apoptosis. Here, we demonstrate that these Golgi disruptors also trigger ferroptosis, a non-apoptotic form of cell death characterized by iron-dependent oxidative degradation of lipids. Inhibitors of ferroptosis not only counteract cell death, but they also protect from Golgi dispersal and inhibition of protein secretion in response to several Golgi stress agents. Furthermore, the application of sublethal doses of ferroptosis-inducers such as erastin and sorafenib, low cystine growth conditions, or genetic knockdown of SLC7A11 and GPX4 all similarly protect cells from Golgi stress and lead to modulation of ACSL4, SLC7A5, SLC7A11 or GPX4 levels. Collectively, this study suggests a previously unrecognized function of the Golgi apparatus, which involves cellular redox control and prevents ferroptotic cell death. Hamed Alborzinia et al. show that Golgi-dispersing compounds trigger iron-dependent oxidative degradation of lipids, inducing a non-apoptotic cell death called ferroptosis. This study provides insight into the role of Golgi apparatus for preventing ferroptotic cell death through its cellular redox control.
Collapse
Affiliation(s)
- Hamed Alborzinia
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany.,4Present Address: Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - Francesca R Dejure
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Mathieu Gendarme
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Jannick Theobald
- 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Stefan Wölfl
- 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ralph K Lindemann
- 3Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany.,5Present Address: Institute for Applied Cancer Science and Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
2420
|
Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 2018; 109:2043-2053. [PMID: 30551460 DOI: 10.1016/j.biopha.2018.11.030] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a progression of chronic liver disease, which lacks effective therapies in the world. Attractively, more and more evidences show that natural products are safe and effective in the prevention and treatment of hepatic fibrosis. Artesunate, a water-soluble hemisuccinate derivative of artemisinin, exerts various pharmacological activities such as anti-inflammatory, anti-tumor and immunomodulating abilities. However, the effects of artesunate on hepatic fibrosis are little-known. Here our study was performed to investigate the effect of artesunate on carbon tetrachloride (CCl4)-induced mouse liver fibrosis and elucidate whether artesunate could alleviate liver fibrosis by regulating ferritinophagy- mediated ferroptosis in hepatic stellate cells (HSCs). Firstly, our results demonstrated that artesunate treatment could induce activated HSC ferroptosis in fibrotic livers. Moreover, primary HSCs isolated from different animal groups were cultured to detect biomarkers of ferroptosis including iron, lipid peroxidation, glutathione (GSH) and prostaglandin endoperoxide synthase 2 (ptgs2) levels. The results revealed that artesunate remarkably promoted ferroptosis of activated HSCs. Furthermore, consistent with the experimental results in vivo, the data in vitro still indicated that artesunate treatment markedly induced ferroptosis in activated HSCs, which mainly embodied as declined cell vitality, increased cell death rate, accumulated iron, elevated lipid peroxides and reduced antioxidant capacity. Conversely, inhibition of ferroptosis by deferoxamine (DFO) completely abolished artesunate-induced anti-fibrosis effect. Surprisingly, artesunate also evidently triggered ferritinophagy accompanied by up-regulation of LC3 (microtubule-associated protein light chain 3), Atg3, Atg5, Atg6/beclin1, Atg12 (autophagy related genes) and down-regulation of p62, FTH1 (ferritin heavy chain), NCOA4 (nuclear receptor co-activator 4) in activated HSCs. Nevertheless, depletion of ferritinophagy by specific inhibitor lysosomal lumen alkalizer-chloroquine (CQ) inhibited artesunate-induced ferroptosis and anti-fibrosis function. These results suggested that ferritinophagy-mediated HSC ferroptosis was responsible for artesunate-induced anti-fibrosis efficacy, which provided new clues for further pharmacological study of artesunate.
Collapse
|
2421
|
van Dam LS, Rabelink TJ, van Kooten C, Teng YKO. Clinical Implications of Excessive Neutrophil Extracellular Trap Formation in Renal Autoimmune Diseases. Kidney Int Rep 2018; 4:196-211. [PMID: 30775617 PMCID: PMC6365354 DOI: 10.1016/j.ekir.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular DNA structures covered with antimicrobial peptides, danger molecules, and autoantigens that can be released by neutrophils. NETs are an important first-line defense mechanism against bacterial, viral, fungal, and parasitic infections, but they can also play a role in autoimmune diseases. NETs are immunogenic and toxic structures that are recognized by the autoantibodies of patients with antineutrophil cytoplasmic antibodies−associated vasculitis (AAV) (i.e., against myeloperoxidase or proteinase-3) and systemic lupus erythematosus (SLE) (i.e., against double-stranded DNA, histones, or nucleosomes). There is cumulating preclinical and clinical evidence that both excessive formation and impaired degradation of NETs are involved in the pathophysiology of AAV and SLE. These autoimmune diseases give rise to 2 clinically and pathologically distinct forms of glomerulonephritis (GN), respectively, crescentic pauci-immune GN and immune complex−mediated GN. Therefore, it is relevant to understand the different roles NET formation can play in the pathophysiology of these most prevalent renal autoimmune diseases. This review summarizes the current concepts on the role of NET formation in the pathophysiology of AAV and SLE, and provides a translational perspective on the clinical implications of NETs, such as potential therapeutic approaches that target NET formation in these renal autoimmune diseases.
Collapse
Affiliation(s)
- Laura S van Dam
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y K Onno Teng
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
2422
|
Kober KM, Olshen A, Conley YP, Schumacher M, Topp K, Smoot B, Mazor M, Chesney M, Hammer M, Paul SM, Levine JD, Miaskowski C. Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain 2018; 14:1744806918816462. [PMID: 30426838 PMCID: PMC6293373 DOI: 10.1177/1744806918816462] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Paclitaxel is one of the most commonly used drugs to treat breast cancer. Its
major dose-limiting toxicity is paclitaxel-induced peripheral neuropathy
(PIPN). PIPN persists into survivorship and has a negative impact on
patient’s mood, functional status, and quality of life. No interventions are
available to treat PIPN. A critical barrier to the development of
efficacious interventions is the lack of understanding of the mechanisms
that underlie PIPN. Mitochondrial dysfunction has been evaluated in
preclinical studies as a hypothesized mechanism for PIPN, but clinical data
to support this hypothesis are limited. The purpose of this pilot study was
to evaluate for differential gene expression and perturbed pathways between
breast cancer survivors with and without PIPN. Methods Gene expression in peripheral blood was assayed using RNA-seq. Differentially
expressed genes (DEG) and pathways associated with mitochondrial dysfunction
were identified between survivors who received paclitaxel and did (n = 25)
and did not (n = 25) develop PIPN. Results Breast cancer survivors with PIPN were significantly older; more likely to be
unemployed; reported lower alcohol use; had a higher body mass index and
poorer functional status; and had a higher number of lower extremity sites
with loss of light touch, cold, and pain sensations and higher vibration
thresholds. No between-group differences were found in the cumulative dose
of paclitaxel received or in the percentage of patients who had a dose
reduction or delay due to PIPN. Five DEGs and nine perturbed pathways were
associated with mitochondrial dysfunction related to oxidative stress, iron
homeostasis, mitochondrial fission, apoptosis, and autophagy. Conclusions This study is the first to provide molecular evidence that a number of
mitochondrial dysfunction mechanisms identified in preclinical models of
various types of neuropathic pain including chemotherapy-induced peripheral
neuropathy are found in breast cancer survivors with persistent PIPN and
suggest genes for validation and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvettte P Conley
- 3 School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schumacher
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly Topp
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Betty Smoot
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Mazor
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Chesney
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marilyn Hammer
- 4 Department of Nursing, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Miaskowski
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2423
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol 2018; 56:4880-4893. [PMID: 30406908 DOI: 10.1007/s12035-018-1403-3] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells, ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic stroke, Alzheimer's disease, and Parkinson's disease. This review summarizes current research on ferroptosis, its underlying mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide valuable information regarding treatment and prevention of these devastating diseases.
Collapse
Affiliation(s)
- Abigail Weiland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Captical Medical University, Beijing, 100069, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2424
|
Zhang W, Gai C, Ding D, Wang F, Li W. Targeted p53 on Small-Molecules-Induced Ferroptosis in Cancers. Front Oncol 2018; 8:507. [PMID: 30450337 PMCID: PMC6224449 DOI: 10.3389/fonc.2018.00507] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a type of programmed cell death characterized by the accumulation of lipid reactive oxygen species (L-ROS) driven by the oxidative degeneration of lipids in an iron-dependent manner. The mechanism by which lipid oxidative degradation drives ROS-ferroptosis involves metabolic dysfunctions that result in impaired intracellular metabolic processes and ROS production. Recent studies have found that p53 acts as a positive regulator of ferroptosis by promoting ROS production. p53 directly regulates the metabolic versatility of cells by favoring mitochondrial respiration, leading to ROS-mediated ferroptosis. In mild stress, p53 protects cell survival via eliminating ROS; additionally, in human colorectal cancer, p53 antagonizes ferroptosis by formation of the DPP4–p53 complex. In short, the mechanisms of p53-mediated ROS production underlying cellular response are poorly understood. In the context of recent research results, the indistinct roles of p53 on ROS-mediated ferroptosis are scrutinized to understand the mechanism underlying p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Weifen Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, China
| | - Chengcheng Gai
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Dejun Ding
- Department of Pharmacology, Weifang Medical University, Weifang, China
| | - Fang Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, China
| |
Collapse
|
2425
|
Feng X, Zhou J, Li J, Hou X, Li L, Chen Y, Fu S, Zhou L, Li C, Lei Y. Tubeimoside I induces accumulation of impaired autophagolysosome against cervical cancer cells by both initiating autophagy and inhibiting lysosomal function. Cell Death Dis 2018; 9:1117. [PMID: 30389907 PMCID: PMC6214972 DOI: 10.1038/s41419-018-1151-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023]
Abstract
Cervical cancer is one of the most aggressive human cancers with poor prognosis due to constant chemoresistance and repeated relapse. Tubeimoside I (TBM) has been identified as a potent antitumor agent that inhibits cancer cell proliferation by triggering apoptosis and inducing cell cycle arrest. Nevertheless, the detailed mechanism remains unclear and needs to be further elucidated, especially in cervical cancer. In this study, we found that TBM could induce proliferation inhibition and cell death in cervical cancer cells both in vitro and in vivo. Further results demonstrated that treatment with TBM could induce autophagosome accumulation, which was important to TBM against cervical cancer cells. Mechanism studies showed that TBM increased autophagosome by two pathways: First, TBM could initiate autophagy by activating AMPK that would lead to stabilization of the Beclin1-Vps34 complex via dissociating Bcl-2 from Beclin1; Second, TBM could impair lysosomal cathepsin activity and block autophagic flux, leading to accumulation of impaired autophagolysosomes. In line with this, inhibition of autophagy initiation attenuated TBM-induced cell death, whereas autophagic flux inhibition could exacerbated the cytotoxic activity of TBM in cervical cancer cells. Strikingly, as a novel lethal impaired autophagolysosome inducer, TBM might enhance the therapeutic effects of chemotherapeutic drugs towards cervical cancer, such as cisplatin and paclitaxel. Together, our study provides new insights into the molecular mechanisms of TBM in the antitumor therapy, and establishes potential applications of TBM for cervical cancer treatment in clinic.
Collapse
Affiliation(s)
- Xuping Feng
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jingyi Li
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610083, P.R. China
| | - Xueyan Hou
- School of pharmacy, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Longhao Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P.R. China.,Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yongmin Chen
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Hainan, 570102, P.R. China
| | - Shuyue Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|
2426
|
Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal 2018; 2:NS20180060. [PMID: 32714592 PMCID: PMC7373238 DOI: 10.1042/ns20180060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and consequently, ATP production abnormalities. Based on the involvement of such processes in FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) production as a key component of the mechanism. With further study, a variety of other events appear to be involved, including abnormalities of mitochondrially related metabolism and dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on free radical damage, but also on control of metabolic abnormalities and correction of mitochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers possibilities for treatment of this disorder.
Collapse
|
2427
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
2428
|
Santana-Codina N, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel) 2018; 11:E114. [PMID: 30360520 PMCID: PMC6316710 DOI: 10.3390/ph11040114] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin ("ferritinophagy"), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| |
Collapse
|
2429
|
Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040113. [PMID: 30360386 PMCID: PMC6315991 DOI: 10.3390/ph11040113] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Maintenance of iron homeostasis is critical to cellular health as both its excess and insufficiency are detrimental. Likewise, lipids, which are essential components of cellular membranes and signaling mediators, must also be tightly regulated to hinder disease progression. Recent research, using a myriad of model organisms, as well as data from clinical studies, has revealed links between these two metabolic pathways, but the mechanisms behind these interactions and the role these have in the progression of human diseases remains unclear. In this review, we summarize literature describing cross-talk between iron and lipid pathways, including alterations in cholesterol, sphingolipid, and lipid droplet metabolism in response to changes in iron levels. We discuss human diseases correlating with both iron and lipid alterations, including neurodegenerative disorders, and the available evidence regarding the potential mechanisms underlying how iron may promote disease pathogenesis. Finally, we review research regarding iron reduction techniques and their therapeutic potential in treating patients with these debilitating conditions. We propose that iron-mediated alterations in lipid metabolic pathways are involved in the progression of these diseases, but further research is direly needed to elucidate the mechanisms involved.
Collapse
|
2430
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
2431
|
Wang L, Zhang Z, Li M, Wang F, Jia Y, Zhang F, Shao J, Chen A, Zheng S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life 2018; 71:45-56. [PMID: 30321484 DOI: 10.1002/iub.1895] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Ferroptosis is recently reported as a new mode of regulated cell death. Its essential characteristics are disturbed redox homeostasis, overloaded iron, and increased lipid peroxidation. However, the role of ferroptosis in liver fibrosis remains poorly understood. In this study, we attempted to investigate the effect of artemether (ART) on ferroptosis in hepatic fibrosis and to further clarify the possible mechanisms. Our data showed that ART treatment markedly attenuated liver injury and reduced fibrotic scar formation in the mouse model of liver fibrosis. Moreover, experiments in vitro also confirmed that ART treatment significantly decreased expression of hepatic stellate cell (HSC) activation markers. Interestingly, HSCs treated by ART presented morphological features of ferroptosis. Furthermore, ART remarkably triggered ferroptosis by promoting the accumulation of iron and lipid peroxides, whereas inhibition of ferroptosis by specific inhibitor ferrostatin-1 (Fer-1) completely abolished ART-induced antifibrosis effect. More importantly, our discovery determined that tumor suppressor P53 was an upstream molecule in the facilitation of ART-induced HSC ferroptosis. Conversely, knockdown of P53 by siRNA evidently blocked ART-induced HSC ferroptosis in turn exacerbated liver fibrosis. Overall, our findings revealed that P53-dependent induction of ferroptosis is necessary for ART to ameliorate CCl4 -induced hepatic fibrosis and inhibit HSC activation. © 2018 IUBMB Life, 71(1):45-56, 2019.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmeng Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2432
|
Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, Han J, Wu Q. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 2018; 28:1171-1185. [PMID: 30287942 PMCID: PMC6274649 DOI: 10.1038/s41422-018-0090-y] [Citation(s) in RCA: 453] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Iron has been shown to trigger oxidative stress by elevating reactive oxygen species (ROS) and to participate in different modes of cell death, such as ferroptosis, apoptosis and necroptosis. However, whether iron-elevated ROS is also linked to pyroptosis has not been reported. Here, we demonstrate that iron-activated ROS can induce pyroptosis via a Tom20-Bax-caspase-GSDME pathway. In melanoma cells, iron enhanced ROS signaling initiated by CCCP, causing the oxidation and oligomerization of the mitochondrial outer membrane protein Tom20. Bax is recruited to mitochondria by oxidized Tom20, which facilitates cytochrome c release to cytosol to activate caspase-3, eventually triggering pyroptotic death by inducing GSDME cleavage. Therefore, ROS acts as a causative factor and Tom20 senses ROS signaling for iron-driven pyroptotic death of melanoma cells. Since iron activates ROS for GSDME-dependent pyroptosis induction and melanoma cells specifically express a high level of GSDME, iron may be a potential candidate for melanoma therapy. Based on the functional mechanism of iron shown above, we further demonstrate that iron supplementation at a dosage used in iron-deficient patients is sufficient to maximize the anti-tumor effect of clinical ROS-inducing drugs to inhibit xenograft tumor growth and metastasis of melanoma cells through GSDME-dependent pyroptosis. Moreover, no obvious side effects are observed in the normal tissues and organs of mice during the combined treatment of clinical drugs and iron. This study not only identifies iron as a sensitizer amplifying ROS signaling to drive pyroptosis, but also implicates a novel iron-based intervention strategy for melanoma therapy.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jia-Yuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xian-Shuo Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuan-Li Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kang Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ru-Yue Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
2433
|
Wang S, Luo J, Zhang Z, Dong D, Shen Y, Fang Y, Hu L, Liu M, Dai C, Peng S, Fang Z, Shang P. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy. Am J Cancer Res 2018; 8:1933-1946. [PMID: 30416846 PMCID: PMC6220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023] Open
Abstract
Ferroptosis is an iron depend cell death which caused by lipid peroxidation. Abnormal iron metabolism and high intracellular iron content are the characteristics of most cancer cells. Iron is a promoter of cell growth and proliferation. However, iron also could take part in Fenton reaction to produce reactive oxygen species (ROS). The intercellular ROS could induce lipid peroxidation, which is necessary for ferroptosis. Iron metabolism mainly includes three parts: iron uptake, storage and efflux. Therefore, iron metabolism-related genes could regulate intercellular iron content and status, which can be involved ferroptosis. In recent years, the application of nanoparticles in cancer therapy research has become more and more extensive. The iron-based nanoparticles (iron-based NPs) can release ferrous (Fe2+) or ferric (Fe3+) in acidic lysosomes and inducing ferroptosis. Magnetic field is widely used in the targeted concentration of iron-based NPs related disease therapy. Furthermore, multiple studies showed that magnetic fields can inhibit cancer cell proliferation by promoting intracellular ROS production. Herein, we focus on the relationship of between ferroptosis and iron metabolism in cancer cells, the application of nanoparticles and magnetic field in inducing ferroptosis of cancer cells, and trying to provide new ideas for cancer treatment research.
Collapse
Affiliation(s)
- Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| | - Jie Luo
- School of Life Sciences, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| | - Zhihao Zhang
- School of Life Sciences, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| | - Ying Shen
- School of Life Sciences, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| | - Yanwen Fang
- Zhejiang Heye Health Technology Co., Ltd.Anji, China
| | - Lijiang Hu
- Zhejiang Heye Health Technology Co., Ltd.Anji, China
| | - Mengyu Liu
- Zhejiang Heye Health Technology Co., Ltd.Anji, China
| | - Chengfu Dai
- Department of Spine Surgery, Shenzhen People’s HospitalShenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People’s HospitalShenzhen, China
| | - Zhicai Fang
- Zhejiang Heye Health Technology Co., Ltd.Anji, China
| | - Peng Shang
- Institute for Research & Development in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| |
Collapse
|
2434
|
A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 2018; 9:1005. [PMID: 30258181 PMCID: PMC6158189 DOI: 10.1038/s41419-018-1063-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cystathionine β-synthase (CBS) is responsible for the first enzymatic reaction in the transsulfuration pathway of sulfur amino acids. The molecular function and mechanism of CBS as well as that of transsulfuration pathway remain ill-defined in cell proliferation and death. In the present study, we designed, synthesized and obtained a bioactive inhibitor CH004 for human CBS, which functions in vitro and in vivo. CH004 inhibits CBS activity, elevated the cellular homocysteine and suppressed the production of hydrogen sulfide in a dose-dependent manner in cells or in vivo. Chemical or genetic inhibition of CBS demonstrates that endogenous CBS is closely coupled with cell proliferation and cell cycle. Moreover, CH004 substantially retarded in vivo tumor growth in a xenograft mice model of liver cancer. Importantly, inhibition of CBS triggers ferroptosis in hepatocellular carcinoma. Overall, the study provides several clues for studying the interplays amongst transsulfuration pathway, ferroptosis and liver cancer.
Collapse
|
2435
|
Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J Gastrointest Oncol 2018; 10:244-259. [PMID: 30254720 PMCID: PMC6147765 DOI: 10.4251/wjgo.v10.i9.244] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis (CRC) imposes a major health burden in developing countries. It is the third major cause of cancer deaths. Despite several treatment strategies, novel drugs are warranted to reduce the severity of this disease. Adenomatous polyps in the colon are the major culprits in CRC and found in 45% of cancers, especially in patients 60 years of age. Inflammatory polyps are currently gaining attention in CRC, and a growing body of evidence denotes the role of inflammation in CRC. Several experimental models are being employed to investigate CRC in animals, which include the APCmin/+ mouse model, Azoxymethane, Dimethyl hydrazine, and a combination of Dextran sodium sulphate and dimethyl hydrazine. During CRC progression, several signal transduction pathways are activated. Among the major signal transduction pathways are p53, Transforming growth factor beta, Wnt/β-catenin, Delta Notch, Hippo signalling, nuclear factor erythroid 2-related factor 2 and Kelch-like ECH-associated protein 1 pathways. These signalling pathways collaborate with cell death mechanisms, which include apoptosis, necroptosis and autophagy, to determine cell fate. Extensive research has been carried out in our laboratory to investigate these signal transduction and cell death mechanistic pathways in CRC. This review summarizes CRC pathogenesis and the related cell death and signal transduction pathways.
Collapse
Affiliation(s)
- Ashok kumar Pandurangan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Thomas Divya
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Kalaivani Kumar
- School of Life sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Vadivel Dineshbabu
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Bakthavatchalam Velavan
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Ganapasam Sudhandiran
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|
2436
|
Wang D, Xie N, Gao W, Kang R, Tang D. The ferroptosis inducer erastin promotes proliferation and differentiation in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 2018; 503:1689-1695. [PMID: 30049441 PMCID: PMC6179365 DOI: 10.1016/j.bbrc.2018.07.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/18/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) contain multipotent progenitor cell populations and possess the potential to differentiate into various types of immune cells under both physiological and pathological conditions. Ferroptosis is a type of oxidative stress-associated cell death that is mainly mediated by lipid peroxidation. However, the function of ferroptosis in cell differentiation remains unknown. Here, we showed that the ferroptosis inducer erastin did not cause cell death in human PBMCs. In contrast, erastin-induced lipid peroxidation promoted human PBMC proliferation and differentiation into B cells and natural killer cells through inhibition of bone morphogenetic protein family expression. These findings uncover a new immune modulation function of erastin in promoting PBMC proliferation and differentiation.
Collapse
Affiliation(s)
- Ding Wang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, PR China.
| | - Nan Xie
- Department of Oral Pathology, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China
| | - Wanli Gao
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, PR China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, PR China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
2437
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
2438
|
BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018; 20:1181-1192. [PMID: 30202049 PMCID: PMC6170713 DOI: 10.1038/s41556-018-0178-0] [Citation(s) in RCA: 686] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
The roles and regulatory mechanisms of ferroptosis, a non-apoptotic form of cell death, in cancer remain unclear. The tumor suppressor BRCA1-associated protein 1 (BAP1) encodes a nuclear de-ubiquitinating (DUB) enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin. Here integrated transcriptomic, epigenomic, and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter SLC7A11 as a key BAP1 target gene in human cancers. Functional studies reveal that BAP1 decreases H2Aub occupancy on the SLC7A11 promoter and represses SLC7A11 expression in a DUB-dependent manner and that BAP1 inhibits cystine uptake through repressing SLC7A11 expression, leading to elevated lipid peroxidation and ferroptosis. Furthermore, we show that BAP1 inhibits tumor development partly through SLC7A11 and ferroptosis and that cancer-associated BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis. Together, our results uncover a previously unappreciated epigenetic mechanism coupling ferroptosis to tumor suppression.
Collapse
|
2439
|
Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, Dai E. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 2018; 503:1550-1556. [DOI: 10.1016/j.bbrc.2018.07.078] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
|
2440
|
Dai J, Dan W, Schneider U, Wang J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur J Med Chem 2018; 157:622-656. [DOI: 10.1016/j.ejmech.2018.08.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 01/21/2023]
|
2441
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2442
|
Lee YS, Lee DH, Jeong SY, Park SH, Oh SC, Park YS, Yu J, Choudry HA, Bartlett DL, Lee YJ. Ferroptosis-inducing agents enhance TRAIL-induced apoptosis through upregulation of death receptor 5. J Cell Biochem 2018; 120:928-939. [PMID: 30160785 DOI: 10.1002/jcb.27456] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023]
Abstract
Ferroptosis is considered genetically and biochemically distinct from other forms of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death. When human colon cancer HCT116, CX-1, and LS174T cells were treated with ferroptotic agents such as sorafenib (SRF), erastin, and artesunate, data from immunoblot assay showed that ferroptotic agents induced endoplasmic reticulum (ER) stress and the ER stress response-mediated expression of death receptor 5 (DR5), but not death receptor 4. An increase in the level of DR5, which is activated by binding to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiates apoptosis, was probably responsible for synergistic apoptosis when cells were treated with ferroptotic agent in combination with TRAIL. This collateral effect was suppressed in C/EBP (CCAAT-enhancer-binding protein)-homologous protein (CHOP)-deficient mouse embryonic fibroblasts or DR5 knockdown HCT116 cells, but not in p53-deficient HCT116 cells. The results from in vitro studies suggest the involvement of the p53-independent CHOP/DR5 axis in the synergistic apoptosis during the combinatorial treatment of ferroptotic agent and TRAIL. The synergistic apoptosis and regression of tumor growth were also observed in xenograft tumors when SRF and TRAIL were administered to tumor-bearing mice.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea.,Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Jeong
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Yong Seok Park
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2443
|
Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res 2018; 181:316-324. [PMID: 30171859 DOI: 10.1016/j.exer.2018.08.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 01/04/2023]
Abstract
The dysfunction and cell death of retinal pigment epithelial (RPE) cells are hallmarks of late-stage dry (atrophic) age-related macular degeneration (AMD), for which no effective therapy has yet been developed. Previous studies have indicated that iron accumulation is a source of excess free radical production in RPE, and age-dependent iron accumulation in RPE is accelerated in patients with dry AMD. Although the pathogenic role of oxidative stress in RPE in the development of dry AMD is widely accepted, the mechanisms of oxidative stress-induced RPE cell death remain elusive. Here, we show that ferroptotic cell death, a mode of regulated necrosis mediated by iron and lipid peroxidation, is implicated in oxidative stress-induced RPE cell death in vitro. In ARPE-19 cells we observed that the ferroptosis inhibitors ferrostatin-1 and deferoxamine (DFO) rescued tert-butyl hydroperoxide (tBH)-induced RPE cell death more effectively than inhibitors of apoptosis or necroptosis. tBH-induced RPE cell death was accompanied by the three characteristics of ferroptotic cell death: lipid peroxidation, glutathione depletion, and ferrous iron accumulation, which were all significantly attenuated by ferrostatin-1 and DFO. Exogenous iron overload enhanced tBH-induced RPE cell death, but this effect was also attenuated by ferrostatin-1 and DFO. Furthermore, mRNA levels of numerous genes known to regulate iron metabolism were observed to be influenced by oxidative stress. Taken together, our observations suggest that multiple modes of cell death are involved in oxidative stress-induced RPE cell death, with ferroptosis playing a particularly important role.
Collapse
|
2444
|
Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 2018; 14:2083-2103. [PMID: 30081711 DOI: 10.1080/15548627.2018.1503146] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently recognized form of regulated cell death that is characterized by lipid peroxidation. However, the molecular mechanisms regulating ferroptosis are largely unknown. In this study, we report that the RNA-binding protein ELAVL1/HuR plays a crucial role in regulating ferroptosis in liver fibrosis. Upon exposure to ferroptosis-inducing compounds, ELAVL1 protein expression was remarkably increased through the inhibition of the ubiquitin-proteasome pathway. ELAVL1 siRNA led to ferroptosis resistance, whereas ELAVL1 plasmid contributed to classical ferroptotic events. Interestingly, upregulated ELAVL1 expression also appeared to increase autophagosome generation and macroautophagic/autophagic flux, which was the underlying mechanism for ELAVL1-enhanced ferroptosis. Autophagy depletion completely impaired ELAVL1-mediated ferroptotic events, whereas autophagy induction showed a synergistic effect with ELAVL1. Importantly, ELAVL1 promoted autophagy activation via binding to the AU-rich elements within the F3 of the 3'-untranslated region of BECN1/Beclin1 mRNA. The internal deletion of the F3 region abrogated the ELAVL1-mediated BECN1 mRNA stability, and, in turn, prevented ELAVL1-enhanced ferroptosis. In mice, treatment with sorafenib alleviated murine liver fibrosis by inducing hepatic stellate cell (HSC) ferroptosis. HSC-specific knockdown of ELAVL1 impaired sorafenib-induced HSC ferroptosis in murine liver fibrosis. Noteworthy, we retrospectively analyzed the effect of sorafenib on HSC ferroptosis in advanced fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, ELAVL1 upregulation, ferritinophagy activation, and ferroptosis induction occurred in primary human HSCs from the collected human liver tissue. Overall, these results reveal novel molecular mechanisms and signaling pathways of ferroptosis, and also identify ELAVL1-autophagy-dependent ferroptosis as a potential target for the treatment of liver fibrosis. Abbreviations: ACTA2/alpha-SMA: actin, alpha 2, smooth muscle, aorta; ACTB/beta-actin: actin beta; ARE: AU-rich element; ATG: autophagy related; BDL: bile duct ligation; BECN1: beclin 1; BSO: buthionine sulfoximine; COL1A1: collagen type I alpha 1 chain; ELAVL1/HuR: ELAV like RNA binding protein 1; FDA: fluorescein diacetate; FTH1: ferritin heavy chain 1; GOT1/AST: glutamic-oxaloacetic transaminase 1; GPT/ALT: glutamic-pyruvic transaminase; GPX4: glutathione peroxidase 4; GSH: glutathione; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; LCM: laser capture microdissection; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MDA: malondialdehydep; NCOA4: nuclear receptor coactivator 4; PTGS2: prostaglandin-endoperoxide synthase 2; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TBIL: total bilirubin; TEM: transmission electron microscopy; TGFB1: trasforming growth factor beta 1; UTR: untranslated region; VA-Lip-ELAVL1-siRNA: vitamin A-coupled liposomes carrying ELAVL1-siRNA.
Collapse
Affiliation(s)
- Zili Zhang
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Zhen Yao
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Ling Wang
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Hai Ding
- b Department of Pathogenic biology and Immunology, Medical School , Southeast University , Nanjing , China
| | - Jiangjuan Shao
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,c Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing , China.,d Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Anping Chen
- e Department of Pathology, School of Medicine , Saint Louis University , St Louis , MO , USA
| | - Feng Zhang
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,c Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing , China.,d Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Shizhong Zheng
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,c Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing , China.,d Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
2445
|
Wei G, Sun J, Hou Z, Luan W, Wang S, Cui S, Cheng M, Liu Y. Novel antitumor compound optimized from natural saponin Albiziabioside A induced caspase-dependent apoptosis and ferroptosis as a p53 activator through the mitochondrial pathway. Eur J Med Chem 2018; 157:759-772. [PMID: 30142612 DOI: 10.1016/j.ejmech.2018.08.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
It is highly desirable to activation p53 function with small-molecule compounds for colon cancer therapy. Triterpene saponin has been characterized with the favorable selectivity and safety profiles. However, the application of triterpene saponin as cancer chemotherapy drugs was hampered primarily by moderate anticancer potency and the lack the mechanism of action. In this study, we synthesized a series of Albiziabioside A derivatives and evaluated the antitumor activity both in vitro and in vivo. Compounds D13 possessed strong inhibitory activity against HCT116 cells with IC50 values of 5.19 μM. More importantly, compound D13 had a favorable selectivity and was efficacious against MDR cancer cells. Moreover, compound D13 could induce apoptosis and ferroptosis through the mitochondrial pathway as a p53 activator. In addition, compound D13 significantly suppressed tumorigenesis without inducing toxicity in normal organs in vivo. Collectively, this study provides a clinically relevant argument for considering triterpene saponin derivatives D13 as potential cancer therapeutic candidates with enhanced activity, acceptable safety and novel mechanisms of action. To the best of our knowledge, this compound is the first drug candidate which can induce apoptosis and ferroptosis as a p53 activator.
Collapse
Affiliation(s)
- Gaofei Wei
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiahong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weijing Luan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuai Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shanshan Cui
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2446
|
Diagnosis of cardiac surgery-associated acute kidney injury from functional to damage biomarkers. Curr Opin Anaesthesiol 2018; 30:66-75. [PMID: 27906719 DOI: 10.1097/aco.0000000000000419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) occurs in up to 30% after cardiac surgery and is associated with adverse outcome. Currently, cardiac surgery-associated acute kidney injury (CSA-AKI) is diagnosed by Kidney Disease: Improving Global Outcomes criteria based on creatinine and urine output. To detect and treat AKI earlier, various biomarkers have been evaluated. This review addresses the current position of the two damage biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and [TIMP-2] [IGFBP7] in clinical practice. RECENT FINDINGS We present an updated review on the use of blood and urinary NGAL in CSA-AKI. NGAL is a good predictor, and performs better in children than adults. There is a large variation in predictive ability, possibly caused by diversity of AKI definitions used, different time of measurement of NGAL, and lack of specificity of NGAL assays.Similarly, there are conflicting data on the predictive ability of urinary [TIMP-2] [IGFBP7] for CSA-AKI.Recently, both for NGAL and for urinary [TIMP-2] [IGFBP7], a set of actions, based on pretest assessment of risk for CSA-AKI and biomarker test results, was developed. These scores should be evaluated in prospective trials. SUMMARY NGAL and urinary [TIMP-2] [IGFBP7], in combination with pretest assessment, are promising tools for early detection and treatment in CSA-AKI.
Collapse
|
2447
|
Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional Ways to Live and Die: Cell Death and Survival in Development, Homeostasis, and Disease. Annu Rev Cell Dev Biol 2018; 34:311-332. [PMID: 30089222 DOI: 10.1146/annurev-cellbio-100616-060748] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Balancing cell death and survival is essential for normal development and homeostasis and for preventing diseases, especially cancer. Conventional cell death pathways include apoptosis, a form of programmed cell death controlled by a well-defined biochemical pathway, and necrosis, the lysis of acutely injured cells. New types of regulated cell death include necroptosis, pyroptosis, ferroptosis, phagoptosis, and entosis. Autophagy can promote survival or can cause death. Newly described processes of anastasis and resuscitation show that, remarkably, cells can recover from the brink of apoptosis or necroptosis. Important new work shows that epithelia achieve homeostasis by extruding excess cells, which then die by anoikis due to loss of survival signals. This mechanically regulated process both maintains barrier function as cells die and matches rates of proliferation and death. In this review, we describe these unconventional ways in which cells have evolved to die or survive, as well as the contributions that these processes make to homeostasis and cancer.
Collapse
Affiliation(s)
- Swapna A Gudipaty
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Christopher M Conner
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA;
| | - Jody Rosenblatt
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
2448
|
Buccarelli M, Marconi M, Pacioni S, De Pascalis I, D'Alessandris QG, Martini M, Ascione B, Malorni W, Larocca LM, Pallini R, Ricci-Vitiani L, Matarrese P. Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis. Cell Death Dis 2018; 9:841. [PMID: 30082680 PMCID: PMC6079099 DOI: 10.1038/s41419-018-0864-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/12/2023]
Abstract
The role of autophagy in cancer onset and progression appears still controversial. On one hand, autophagy allows cancer cell to survive in unfavorable environmental conditions, on the other hand, once internal energy resources are exhausted, it leads to cell death. In addition, autophagy interpheres with cell cycle progression, de facto exerting a cytostatic activity. Hence, it represents an important target for anticancer therapy. For example, temozolomide (TMZ), of use for glioblastoma (GBM) treatment, appears as capable of inducing autophagy partially inhibiting cancer cell proliferation. However, GBM, a very aggressive brain tumor with poor prognosis even after surgery and radio-chemotherapy, invariably recurs and leads to patient death. Since cancer stem cells have been hypothesized to play a role in refractory/relapsing cancers, in the present work we investigated if autophagy could represent a constitutive cytoprotection mechanism for glioblastoma stem-like cells (GSCs) and if the modulation of autophagic process could affect GBM growth and survival. Thus, in the present study we first evaluated the relevance of autophagy in GBM tumor specimens, then its occurrence in GSCs and, finally, if modulation of autophagy could influence GSC response to TMZ. Our results suggested that, in vitro, the impairing autophagic process with quinacrine, a compound able to cross the blood-brain barrier, increased GSC susceptibility to TMZ. Death of GSCs was apparently due to the iron dependent form of programmed cell death characterized by the accumulation of lipid peroxides called ferroptosis. These results underscore the relevance of the modulation of autophagy in the GSC survival and death and suggest that triggering of ferroptosis in GSCs could represent a novel and important target for the management of glioblastoma.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Ivana De Pascalis
- Institute of Neurosurgery, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | | | - Maurizio Martini
- Institute of Pathology, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Maria Larocca
- Institute of Pathology, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2449
|
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, Lotze MT, Zeh HJ, Kang R, Tang D. AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System X c- Activity. Curr Biol 2018; 28:2388-2399.e5. [PMID: 30057310 PMCID: PMC6081251 DOI: 10.1016/j.cub.2018.05.094] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Ferroptosis is a form of regulated cell death triggered by lipid peroxidation after inhibition of the cystine/glutamate antiporter system Xc-. However, key regulators of system Xc- activity in ferroptosis remain undefined. Here, we show that BECN1 plays a hitherto unsuspected role in promoting ferroptosis through directly blocking system Xc- activity via binding to its core component, SLC7A11 (solute carrier family 7 member 11). Knockdown of BECN1 by shRNA inhibits ferroptosis induced by system Xc- inhibitors (e.g., erastin, sulfasalazine, and sorafenib), but not other ferroptosis inducers including RSL3, FIN56, and buthionine sulfoximine. Mechanistically, AMP-activated protein kinase (AMPK)-mediated phosphorylation of BECN1 at Ser90/93/96 is required for BECN1-SLC7A11 complex formation and lipid peroxidation. Inhibition of PRKAA/AMPKα by siRNA or compound C diminishes erastin-induced BECN1 phosphorylation at S93/96, BECN1-SLC7A11 complex formation, and subsequent ferroptosis. Accordingly, a BECN1 phosphorylation-defective mutant (S90,93,96A) reverses BECN1-induced lipid peroxidation and ferroptosis. Importantly, genetic and pharmacological activation of the BECN1 pathway by overexpression of the protein in tumor cells or by administration of the BECN1 activator peptide Tat-beclin 1, respectively, increases ferroptotic cancer cell death (but not apoptosis and necroptosis) in vitro and in vivo in subcutaneous and orthotopic tumor mouse models. Collectively, our work reveals that BECN1 plays a novel role in lipid peroxidation that could be exploited to improve anticancer therapy by the induction of ferroptosis.
Collapse
Affiliation(s)
- Xinxin Song
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Pan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qirong Wen
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Jiao Liu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Yangchun Xie
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Jinbao Liu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2450
|
Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, Wang L, Piao M, Chi G, Luo Y, Ge P. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett 2018; 428:21-33. [DOI: 10.1016/j.canlet.2018.04.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
|