201
|
Bashari N, Safaei Lari M, Darvishi A, Daroudi R. Cost-utility analysis of Pembrolizumab compared to other alternative immunotherapy and chemotherapy treatments for patients with advanced melanoma in Iran. Expert Rev Pharmacoecon Outcomes Res 2024; 24:273-284. [PMID: 37750606 DOI: 10.1080/14737167.2023.2263164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVES Immunotherapy drugs like Pembrolizumab have shown significant improvements in treatment outcomes of advanced melanoma. This study aimed to evaluate the cost-utility of Pembrolizumab compared to other immunotherapy and chemotherapy drugs in the first-line treatment of advanced melanoma in Iran. METHODS A partitioned-survival model, based on data from a recent randomized phase 3 study (KEYNOTE-006) and recent meta-analysis, was used to divide Overall survival (OS) time into Progression-free survival (PFS) and post-progression survival for Pembrolizumab, Nivolumab, Ipilimumab, Dacarbazine, Temozolomide, Carboplatin, and Paclitaxel combination. Quality Life Years (QALY) and Incremental Cost-Effectiveness Ratio (ICER) were considered as the final outcome. RESULTS The ICER of Ipilimumab, Nivolumab, Nivolumab & Ipilimumab, and Pembrolizumab compared to Temozolomide was calculated as $40,365.53, $19,591.13, $24,578, and $47,324.2 per QALY, respectively. Scenario analysis demonstrated if the price of one vial of Nivolumab 100 is $90.51, each vial of Pembrolizumab is $119.20, and each vial of Ipilimumab is $101.54, they will be cost-effective in Iran. CONCLUSION None of the immunotherapy drugs studied were found to be cost-effective when considering the cost-effectiveness threshold of $3,532. Therefore, a cost reduction of more than 90% in the prices of immunotherapy drugs would be necessary for them to be considered cost-effective in Iran.
Collapse
Affiliation(s)
- Negin Bashari
- National Center for Health Insurance Research, Tehran, Iran
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safaei Lari
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Darvishi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rajabali Daroudi
- National Center for Health Insurance Research, Tehran, Iran
- Department of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
202
|
Liu F, Zhang X, Lu M, Liu C, Zhang X, Chu Q, Chen Y, Zhang P. The association of genomic alterations with PD-L1 expression in Chinese patients with EGFR/ALK wild-type lung adenocarcinoma and potential predictive value of Hippo pathway mutations to immunotherapy. Cancer Med 2024; 13:e7038. [PMID: 38396367 PMCID: PMC10891359 DOI: 10.1002/cam4.7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The study focuses on PD-L1 expression as an essential biomarker for gauging the response of EGFR/ALK wild-type NSCLC patients to FDA-approved immune checkpoint inhibitors (ICIs). It aims to explore clinical, molecular, and immune microenvironment characteristics associated with PD-L1 expression in EGFR/ALK wild-type lung adenocarcinoma patients eligible for ICI therapy. METHODS In this retrospective study, tumor samples from 359 Chinese EGFR/ALK wild-type lung adenocarcinoma patients underwent comprehensive evaluations for PD-L1 expression and NGS-targeted sequencing. The investigation encompassed the analysis and comparison of clinical traits, gene mutations, pathways, and immune signatures between two groups categorized by PD-L1 status: negative (TPS < 1%) and positive (TPS ≥ 1%). Additionally, the study explored the link between genomic changes and outcomes following immunotherapy. RESULTS High tumor mutational burden correlated significantly with PD-L1 positivity in patients with EGFR/ALK wild-type lung adenocarcinoma. Gene alterations, including TP53, KRAS, and others, were more pronounced in the PD-L1 positive group. Pathway analysis highlighted higher frequencies of alterations in pathways like RTK/RAS, p53, and Hippo in PD-L1-positive patients. The Hippo pathway's relevance was confirmed in separate immunotherapy cohorts, associated with better outcomes. In terms of immune cell infiltration, Hippo mutants exhibited higher levels of CD68+ PD-L1+ macrophages, CD8+ T cells, and CD8+ PD-1- T cells. CONCLUSIONS This study offers insights into genomic features of Chinese EGFR/ALK wild-type lung adenocarcinoma patients based on PD-L1 expression. Notably, Hippo pathway alterations were linked to improved immunotherapy outcomes. These findings suggest connections between the Hippo pathway and PD-L1 expression, warranting further clinical and functional investigations. The research advances our understanding of PD-L1 expression's genomic context and immunotherapy response in EGFR/ALK wild-type lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Liu
- Genecast Biotechnology Co., LtdWuxiJiangsuChina
| | | | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
203
|
Li Y, Hao Z, Ma Y, Setiwalidi K, Zhang Y, Zhao Y, Fu X, Liang X, Ruan Z, Tian T, Yao Y. Alectinib continuation beyond progression in ALK-positive non-small cell lung cancer with alectinib-refractory. Transl Lung Cancer Res 2024; 13:152-162. [PMID: 38405000 PMCID: PMC10891411 DOI: 10.21037/tlcr-23-798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Background Alectinib, a next-generation anaplastic lymphoma kinase tyrosine kinase inhibitor (ALK-TKI), has demonstrated noteworthy efficacy in the treatment of non-small cell lung cancer (NSCLC). Unfortunately, 53.3% of untreated patients receiving first-line treatment with alectinib developed resistance to alectinib. However, despite the widespread use of alectinib, studies on the efficacy and safety of continuing alectinib with other necessary therapies after progression of alectinib and possible population of benefit are still limited. Methods This retrospective cohort study included fifteen patients with ALK-positive NSCLC from nine institutions in China who experienced disease progression after first- or second-line treatment and continued to receive alectinib treatment between 2019 and 2022. This study aimed to evaluate the median progression-free survival (mPFS), objective response rate (ORR), median overall survival (mOS), and adverse events (AEs) of continuing alectinib combined with other therapies after the emergence of drug resistance. Results Among fifteen patients eligible for this study, all patients started continuing treatment with alectinib after oligoprogression or central nervous system (CNS) progression. The mPFS for the whole cohort receiving continuing alectinib with other necessary therapies was 8 months [95% confidence interval (CI): 4 to not applicable (NA)], with an ORR of 46.7%. The mOS was not reached. During continuing alectinib treatment, only one patient experienced grade 2 elevation of aspartate aminotransferase (AST) and serum glutamic-oxaloacetic transaminase (SGOT). Conclusions The continuation of alectinib treatment combined with other necessary therapies demonstrates favorable response and safety in patients with ALK-positive NSCLC who experienced oligoprogression or CNS progression following alectinib in first- or second-line therapy. Instead of immediately switching to another ALK-TKI, continuing alectinib combined with other necessary therapies may offer greater survival benefits to the patients.
Collapse
Affiliation(s)
- Yimeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhanpeng Hao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyan Ma
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaidiriye Setiwalidi
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingming Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujia Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
204
|
Dong W, Yin Y, Yang S, Liu B, Chen X, Wang L, Su Y, Jiang Y, Shi D, Sun D, Qin J. Impact of chronic obstructive pulmonary disease on the efficacy and safety of neoadjuvant immune checkpoint inhibitors combined with chemotherapy for resectable non-small cell lung cancer: a retrospective cohort study. BMC Cancer 2024; 24:153. [PMID: 38291354 PMCID: PMC10829328 DOI: 10.1186/s12885-024-11902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Neoadjuvant immune checkpoint inhibitors(ICIs) combined with chemotherapy can improve non-small cell lung cancer(NSCLC) patients' pathological responses and show promising improvements in survival. Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory disease, and its associated abnormal inflammatory response affects not only the immunotherapy efficacy but also immune-related adverse events. It remains unclear whether NSCLC patients with COPD can benefit from neoadjuvant ICIs combined with chemotherapy. METHODS A retrospective observational clinical study was conducted on 105 consecutive NSCLC patients receiving neoadjuvant ICIs combined with chemotherapy at the Department of Thoracic Surgery of Tianjin Chest Hospital between April 2020 and April 2023. RESULTS A total of 74 NSCLC patients were included in the study, including 30 patients with COPD and 44 patients without COPD. The percentage of patients with a pathological complete response (PCR) was higher in the COPD group than in the non-COPD group (43.3% vs. 20.5%, P = 0.042). Multivariate logistic regression analysis of factors associated with PCR showed that the adjusted odds ratio (OR) was statistically significant for presence of COPD (OR = 3.020, 95%CI: 1.042-8.757; P = 0.042). Major pathological response (66.7% vs. 50%, P = 0.155), R0 resection rate (96.7% vs.93.2%, P = 0.642), N2 lymph node downstaging(92.3% vs. 66.7%, P = 0.182) and objective response rate (70% vs. 63.6%, P = 0.57) were not significantly different between the groups. Progression-free survival(PFS) was not reached in the COPD group and 17 months (95%CI: 12.1-21.9) in the non-COPD group, with statistically significance (χ2 = 6.247, P = 0.012). Multivariate Cox's regression analysis showed that the adjusted hazard ratio (HRadj) was statistically significant for presence of COPD (HRadj = 0.321, 95%CI: 0.111-0.930; P = 0.036). The grade 3 and grade 4 adverse events in the COPD group were leukopenia (3.3%, 6.7%), neutropenia (3.3%, 6.7%), fatigue (6.7%, 0%), gastrointestinal reactions (3.3%, 0%), and hypothyroidism (3.3%, 0%). In the non-COPD group, the corresponding adverse events were leukopenia (6.8%, 6.8%), neutropenia (3.3%, 6.8%), fatigue (2.3%, 0%), gastrointestinal reactions (2.3%, 0%), and hypothyroidism (2.3%, 0%), respectively. CONCLUSIONS The present study indicates that the presence of COPD may improve PCR, prolong PFS, and have an acceptable safety profile in NSCLC patients receiving neoadjuvant ICIs combined with chemotherapy.
Collapse
Affiliation(s)
- Weigang Dong
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Yan Yin
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Shengnan Yang
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Bin Liu
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Xi Chen
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Lina Wang
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Yue Su
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Yan Jiang
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Dongsheng Shi
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China
| | - Daqiang Sun
- Department of Thoracic Surgery, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China.
| | - Jianwen Qin
- Department of Respiratory and Critica Care Medicine, Tianjin Chest Hospital, Affiliated Chest Hospital of Tianjin University, Tianjin, China.
| |
Collapse
|
205
|
Mariniello DF, D’Agnano V, Cennamo D, Conte S, Quarcio G, Notizia L, Pagliaro R, Schiattarella A, Salvi R, Bianco A, Perrotta F. Comorbidities in COPD: Current and Future Treatment Challenges. J Clin Med 2024; 13:743. [PMID: 38337438 PMCID: PMC10856710 DOI: 10.3390/jcm13030743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung condition, primarily characterized by the presence of a limited airflow, due to abnormalities of the airways and/or alveoli, that often coexists with other chronic diseases such as lung cancer, cardiovascular diseases, and metabolic disorders. Comorbidities are known to pose a challenge in the assessment and effective management of COPD and are also acknowledged to have an important health and economic burden. Local and systemic inflammation have been proposed as having a potential role in explaining the association between COPD and these comorbidities. Considering that the number of patients with COPD is expected to rise, understanding the mechanisms linking COPD with its comorbidities may help to identify new targets for therapeutic purposes based on multi-dimensional assessments.
Collapse
Affiliation(s)
- Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Donatella Cennamo
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Luca Notizia
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Rosario Salvi
- U.O.C. Chirurgia Toracica, Azienda Ospedaliera “S.G. Moscati”, 83100 Avellino, Italy;
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy; (D.F.M.); (V.D.); (D.C.); (S.C.); (G.Q.); (L.N.); (R.P.); (A.S.); (A.B.)
| |
Collapse
|
206
|
Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the Potential of ALK-Targeted Therapies in Non-Small Cell Lung Cancer: Comprehensive Insights and Future Directions. Biomedicines 2024; 12:297. [PMID: 38397899 PMCID: PMC10887432 DOI: 10.3390/biomedicines12020297] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objective: This review comprehensively explores the intricate landscape of anaplastic lymphoma kinase (ALK), focusing specifically on its pivotal role in non-small cell lung cancer (NSCLC). Tracing ALK's discovery, from its fusion with nucleolar phosphoprotein (NPM)-1 in anaplastic large cell non-Hodgkin's lymphoma (ALCL) in 1994, the review elucidates the subsequent impact of ALK gene alterations in various malignancies, including inflammatory myofibroblastoma and NSCLC. Approximately 3-5% of NSCLC patients exhibit complex ALK rearrangements, leading to the approval of six ALK-tyrosine kinase inhibitors (TKIs) by 2022, revolutionizing the treatment landscape for advanced metastatic ALK + NSCLC. Notably, second-generation TKIs such as alectinib, ceritinib, and brigatinib have emerged to address resistance issues initially associated with the pioneer ALK-TKI, crizotinib. Methods: To ensure comprehensiveness, we extensively reviewed clinical trials on ALK inhibitors for NSCLC by 2023. Additionally, we systematically searched PubMed, prioritizing studies where the terms "ALK" AND "non-small cell lung cancer" AND/OR "NSCLC" featured prominently in the titles. This approach aimed to encompass a spectrum of relevant research studies, ensuring our review incorporates the latest and most pertinent information on innovative and alternative therapeutics for ALK + NSCLC. Key Content and Findings: Beyond exploring the intricate details of ALK structure and signaling, the review explores the convergence of ALK-targeted therapy and immunotherapy, investigating the potential of immune checkpoint inhibitors in ALK-altered NSCLC tumors. Despite encouraging preclinical data, challenges observed in trials assessing combinations such as nivolumab-crizotinib, mainly due to severe hepatic toxicity, emphasize the necessity for cautious exploration of these novel approaches. Additionally, the review explores innovative directions such as ALK molecular diagnostics, ALK vaccines, and biosensors, shedding light on their promising potential within ALK-driven cancers. Conclusions: This comprehensive analysis covers molecular mechanisms, therapeutic strategies, and immune interactions associated with ALK-rearranged NSCLC. As a pivotal resource, the review guides future research and therapeutic interventions in ALK-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
| | - Ghazaal Roozitalab
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Fatemeh Golandam
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Department of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948974, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Parham Jabbarzadeh Kaboli
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 407, Taiwan
| |
Collapse
|
207
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
208
|
Zhou Y, Zhang M, Dai L, Yan Z, Wang H, Yang H, Jin X, Wang Q. Long-term survival in a patient with multiple metastatic gastric cancer treated with PTX plus emvolimab and disitamab vedotin: case report and treatment experience: A case report. Medicine (Baltimore) 2024; 103:e36927. [PMID: 38241572 PMCID: PMC10798726 DOI: 10.1097/md.0000000000036927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
RATIONALE Most Chinese patients with locally advanced gastric cancer at diagnosis have an overall 5-year survival rate of <50%. Surgical resection alone is not suitable for patients with locally advanced gastric cancer. Currently, comprehensive treatment is the focus of locally advanced gastric cancer. PATIENTS CONCERNS The patient, a 56-year-old female, was admitted to the hospital because of "4 + months of double hydronephrosis found during a physical examination." Who was admitted for computer tomography and gastroscopy examinations, and take pathological tissue specimens during endoscopic examination. DIAGNOSES Computed tomography assessment indicated ulcerative gastric cancer with an abdominal implant, bladder, and bone metastases. An endoscopic examination revealed that the ulcer of the gastric angle was huge, and through relevant auxiliary examinations, the diagnosis of this disease is gastric cancer complicated with multiple metastases to bladder, rectum, lumbar spine, and peritoneum. Clinically diagnosed as cT4bN3M1. INTERVENTIONS The patient is currently undergoing first, second, and third line neoadjuvant therapy, combined with immunotherapy, targeted therapy, neoadjuvant intraperitoneal systemic chemotherapy, nutritional support, and other treatment plans. OUTCOMES After 15 cycles of treatment, the progression-free survival had reached 15 months. The patient had an NRS2002 score of 1, an ECOG score of I, a quality of life score of 55, albumin of 35.27 g/L, and a decrease in abdominal and pelvic fluid accumulation and exudation compared to before. LESSONS We demonstrated high survival of almost 3 years in a patient with gastric cancer that was complicated by bone, peritoneal, rectal, and bladder metastases. The combination of immunotherapy, targeted therapy, and neoadjuvant intraperitoneal systemic chemotherapy, along with the maintenance of nutritional status and CTCs could be a valuable modality for the subsequent treatment and observation of similar patients.
Collapse
Affiliation(s)
- Yongjin Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Meifeng Zhang
- Department of Outpatient Clinic, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Li Dai
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Haibin Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hongxin Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiangren Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
209
|
Li S, Xue J, Jiang K, Chen Y, Zhu L, Liu R. TERT promoter methylation is associated with high expression of TERT and poor prognosis in papillary thyroid cancer. Front Oncol 2024; 14:1325345. [PMID: 38313800 PMCID: PMC10834694 DOI: 10.3389/fonc.2024.1325345] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
The telomerase reverse transcriptase (TERT) is overexpressed and associated with poor prognosis in papillary thyroid cancer (PTC), the most common subtype of thyroid cancer. The overexpression of TERT in PTC was partially attributed to transcriptional activation by two hotspot mutations in the core promoter region of this gene. As one of the major epigenetic mechanisms of gene expression regulation, DNA methylation has been proved to regulate several tumor-related genes in PTC. However, the association of TERT promoter DNA methylation with TERT expression and PTC progression is still unclear. By treating PTC cell lines with demethylating agent decitabine, we found that the TERT promoter methylation and the genes' expression were remarkably decreased. Consistently, PTC patients with TERT hypermethylation had significantly higher TERT expression than patients with TERT hypomethylation. Moreover, TERT hypermethylated patients showed significant higher rates of poor clinical outcomes than patients with TERT hypomethylation. Results from the cox regression analysis showed that the hazard ratios (HRs) of TERT hypermethylation for overall survival, disease-specific survival, disease-free interval (DFI) and progression-free interval (PFI) were 4.81 (95% CI, 1.61-14.41), 8.28 (95% CI, 2.14-32.13), 3.56 (95% CI, 1.24-10.17) and 3.32 (95% CI, 1.64-6.71), respectively. The HRs for DFI and PFI remained significant after adjustment for clinical risk factors. These data suggest that promoter DNA methylation upregulates TERT expression and associates with poor clinical outcomes of PTC, thus holds the potential to be a valuable prognostic marker for PTC risk stratification.
Collapse
Affiliation(s)
- Shiyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
210
|
Li Z, Ying Y, Zeng X, Liu J, Xie Y, Deng Z, Hu Z, Yang J. DNMT1/DNMT3a-mediated promoter hypermethylation and transcription activation of ICAM5 augments thyroid carcinoma progression. Funct Integr Genomics 2024; 24:12. [PMID: 38228798 DOI: 10.1007/s10142-024-01293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zanbin Li
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zefu Deng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhiqiang Hu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junjie Yang
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
211
|
Rees GH, Peralta F. Telemedicine in Peru: origin, implementation, pandemic escalation, and prospects in the new normal. OXFORD OPEN DIGITAL HEALTH 2024; 2:oqae002. [PMID: 40230963 PMCID: PMC11932397 DOI: 10.1093/oodh/oqae002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 04/16/2025]
Abstract
For many countries telemedicine was speedily adopted as a result of the COVID-19 pandemic, though for some countries telemedicine may have been implemented in a context of limited regulations or few plans or strategies to scale quickly. This article recounts how telemedicine was developed in Peru as a measure to support the country's Universal Health Coverage and service access to rural and locations with low workforce numbers and its deployment. From a range of data, we find that Peru's development of telehealth began before the pandemic, which by 2020 was sufficient to be able to foster a rapid and wider deployment and while the telemedicine service volumes quickly grew from the pandemic onset, these numbers then begin to reduce suggesting that telemedicine was considered more as a pandemic emergency measure rather than a change to the mix of health provision. From these data we offer two lessons, (i) that Peru's preparedness in terms of telemedicine policy and regulation were helpful to rapidly expand telemedicine at a time of necessity and (ii) that due to this investment and with a better understanding, Peru now has a short-run window of opportunity for the Peruvian Government to continue its regulatory development and investment to further deploy telemedicine services as a UHC improvement measure and to better align the health system to the country's health needs.
Collapse
Affiliation(s)
- Gareth H Rees
- Department of Marketing and Administration, ESAN University, Alonso de Molina 1652, Monterrico Chico, Lima 33, Peru
| | - Felipe Peralta
- Department of Preventive Medicine and Public Health, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru
| |
Collapse
|
212
|
Mani R, Martin CG, Balu KE, Wang Q, Rychahou P, Izumi T, Evers BM, Suzuki Y. A Novel Protozoa Parasite-Derived Protein Adjuvant Is Effective in Immunization with Cancer Cells to Activate the Cancer-Specific Protective Immunity and Inhibit the Cancer Growth in a Murine Model of Colorectal Cancer. Cells 2024; 13:111. [PMID: 38247803 PMCID: PMC10814441 DOI: 10.3390/cells13020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer-specific CD8+ cytotoxic T cells play important roles in preventing cancer growth, and IFN-γ, in addition to IL-12 and type I interferon, is critical for activating CD8+ cytotoxic T cells. We recently identified the capability of the amino-terminus region of dense granule protein 6 (GRA6Nt) of Toxoplasma gondii, an intracellular protozoan parasite, to activate IFN-γ production of microglia, a tissue-resident macrophage population. Therefore, in the present study, we examined whether recombinant GRA6Nt protein (rGRA6Nt) functions as an effective adjuvant to potently activate cancer-specific protective immunity using a murine model of MC38 colorectal cancer (CRC). When mice were immunized with non-replicable (either treated with mitomycin C or irradiated by X-ray) MC38 CRC cells in combination with rGRA6Nt adjuvant and received a challenge implantation of replication-capable MC38 tumor cells, those mice markedly inhibited the growth of the implanted tumors in association with a two-fold increase in CD8+ T cell density within the tumors. In addition, CD8+ T cells of the immunized mice secreted significantly increased amounts of granzyme B, a key mediator of the cytotoxic activity of CD8+ T cells, and IFN-γ in response to MC38 CRC cells in vitro when compared to the T cells from unimmunized mice. Notably, the protective effects of the immunization were specific to MC38 CRC cells, as the immunized mice did not exhibit a significantly inhibited growth of EL4 lymphoma tumors. These results indicate that rGRA6Nt is a novel and effective protein adjuvant when used in immunizations with non-replicable cancer cells to potently activate the protective immunity specifically against the cancer cells employed in the immunization.
Collapse
Affiliation(s)
- Rajesh Mani
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Chloe G. Martin
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Kanal E. Balu
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Qingding Wang
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Tadahide Izumi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
213
|
Amin A, Khazir ZU, Ji A, Bhat BA, Murtaza D, Hurrah AA, Bhat IA, Parveen S, Nisar S, Sharma PK. Anti-lung Cancer Activity of Synthesized Substituted 1,4-Benzothiazines: An Insight from Molecular Docking and Experimental Studies. Anticancer Agents Med Chem 2024; 24:358-371. [PMID: 37957911 DOI: 10.2174/0118715206276737231103114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Thiazine, a 6-membered distinctive heterocyclic motif with sulfur and nitrogen atoms, is one of the heterocyclic compounds that functions as a core scaffold in a number of medicinally significant molecules. Small thiazine-based compounds may operate simultaneously on numerous therapeutic targets and by employing a variety of methods to halt the development, proliferation, and vasculature of cancer cells. We have, herein, reported a series of substituted 1,4 benzothiazines as potential anticancer agents for the treatment of lung cancer. METHODS In order to synthesize 2,3-disubstituted-1,4 benzothiazines in good yield, a facile green approach for the oxidative cycloaddition of 2-amino benzenethiol and 1,3-dicarbonyls employing a catalytic amount of ceric ammonium nitrate has been devised. All the molecules have been characterized by spectral analysis and tested for anticancer activity against the A-549 lung cancer cell line using various functional assays. Further in silico screening of compound 3c against six crucial inflammatory molecular targets, such as Il1-α (PDB ID: 5UC6), Il1- β (PDB ID: 6Y8I), Il6 (PDB ID: 1P9M), vimentin (PDB ID: 3TRT), COX-2 (PDB ID: 5KIR), Il8 (PDB ID: 5D14), and TNF-α (PDB ID: 2AZ5), was done using AutoDock tool. RESULTS Among the synthesized compounds, propyl 3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazine-2- carboxylate (3c) was found to be most active based on cell viability assays using A-549 lung cancer cell line and was found to effectively downregulate various pro-inflammatory genes, like Il1-α, Il1-β, Il6, vimentin, COX-2, Il8, and TNF-α in vitro. The ability of the molecule to effectively suppress the proliferation and migration of lung cancer cells in vitro has been further demonstrated by the colony formation unit assay and wound healing assay. Molecular docking analysis showed the maximal binding affinity (- 7.54 kcal/mol) to be exhibited by compound 3c against IL8. CONCLUSION A green unconventional route for the synthesis of 2,3-disubstituted-1,4 benzothiazines has been developed. All the molecules were screened for their activity against lung cancer and the data suggested that the presence of an additional unbranched alkyl group attached to the thiazine ring increased their activity. Also, in vitro and in silico modeling confirmed the anti-cancer efficiency of compound 3c, encouraging the exploration of such small molecules against cancer.
Collapse
Affiliation(s)
- Andleeb Amin
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Zubaid-Ul- Khazir
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
- Department of Chemistry, National Institute of Technology, Hazratbal, Srinagar, J&K, 190006, India
| | - Arfa Ji
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, J&K, 190006, India
| | - Dar Murtaza
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Aaqib A Hurrah
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Imtiyaz A Bhat
- Department of Endocrinology, Sher-e-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, 190011, India
| | - Shaheena Parveen
- Department of Gastroenterology, Sher-e-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, 190011, India
| | - Syed Nisar
- Department of Medical Oncology, Sher-e-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, 190011, India
| | - Praveen Kumar Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
214
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
215
|
Evers A, Krah S, Demir D, Gaa R, Elter D, Schroeter C, Zielonka S, Rasche N, Dotterweich J, Knuehl C, Doerner A. Engineering hydrophobicity and manufacturability for optimized biparatopic antibody-drug conjugates targeting c-MET. MAbs 2024; 16:2302386. [PMID: 38214660 PMCID: PMC10793681 DOI: 10.1080/19420862.2024.2302386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Optimal combinations of paratopes assembled into a biparatopic antibody have the capacity to mediate high-grade target cross-linking on cell membranes, leading to degradation of the target, as well as antibody and payload delivery in the case of an antibody-drug conjugate (ADC). In the work presented here, molecular docking suggested a suitable paratope combination targeting c-MET, but hydrophobic patches in essential binding regions of one moiety necessitated engineering. In addition to rational design of HCDR2 and HCDR3 mutations, site-specific spiking libraries were generated and screened in yeast and mammalian surface display approaches. Comparative analyses revealed similar positions amendable for hydrophobicity reduction, with a broad combinatorial diversity obtained from library outputs. Optimized variants showed high stability, strongly reduced hydrophobicity, retained affinities supporting the desired functionality and enhanced producibility. The resulting biparatopic anti-c-MET ADCs were comparably active on c-MET expressing tumor cell lines as REGN5093 exatecan DAR6 ADC. Structural molecular modeling of paratope combinations for preferential inter-target binding combined with protein engineering for manufacturability yielded deep insights into the capabilities of rational and library approaches. The methodologies of in silico hydrophobicity identification and sequence optimization could serve as a blueprint for rapid development of optimal biparatopic ADCs targeting further tumor-associated antigens in the future.
Collapse
Affiliation(s)
- Andreas Evers
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Deniz Demir
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ramona Gaa
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Elter
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Stefan Zielonka
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Nicolas Rasche
- ADC and Targeted Therapeutics, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Christine Knuehl
- Research Unit Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Achim Doerner
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
216
|
Paul T, Palaniyandi K, Gnanasampanthapandian D. Therapeutic Approaches to Increase the Survival Rate of Cancer Patients in the Younger and Older Population. Curr Aging Sci 2024; 17:16-30. [PMID: 38062658 DOI: 10.2174/0118746098241507231127114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/25/2023] [Accepted: 09/22/2023] [Indexed: 05/18/2024]
Abstract
Various developments have been observed in the treatment of cancer patients, such as higher survival rates and better treatment outcomes. However, expecting similar outcomes in older patients remains a challenge. The main reason for this conclusion is the exclusion of older people from clinical trials for cancer drugs, as well as other factors, such as comorbidity, side effects, age-related frailties and their willingness to undergo multiple treatments. However, the discovery of new techniques and drug combinations has led to a significant improvement in the survival of the elderly population after the onset of the disease. On the other hand, cancer treatments have not become more complex for the younger population when compared to the older population, as the younger population tends to respond well to treatment trials and their physiological conditions are stable in response to treatments. In summary, this review correlates recent cancer treatment strategies and the corresponding responses and survival outcomes of older and younger patients.
Collapse
Affiliation(s)
- Tharrun Paul
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, India
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, India
| |
Collapse
|
217
|
Peng S, Zhang H, Song G, Zhu J, Zhang S, Liu C, Gao F, Yang H, Zhu W. Construct dysregulated miRNA-mRNA interaction networks to conjecture possible pathogenesis for Stomach adenocarcinomas. Cancer Biomark 2024; 39:197-210. [PMID: 38108345 PMCID: PMC11091561 DOI: 10.3233/cbm-230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Post-transcriptional regulation of mRNA induced by microRNA is known crucial in tumor occurrence, progression, and metastasis. This study aims at identifying significant miRNA-mRNA axes for stomach adenocarcinomas (STAD). METHOD RNA expression profiles were collected from The Cancer Genome Atlas (TCGA) and GEO database for screening differently expressed RNAs and miRNAs (DE-miRNAs/DE-mRNAs). Functional enrichment analysis was conducted with Hiplot and DAVID-mirPath. Connectivity MAP was applied in compounds prediction. MiRNA-mRNA axes were forecasted by TarBase and MiRTarBase. Real-time reverse transcription polymerase chain reaction (RT-qPCR) of stomach specimen verified these miRNA-mRNA pairs. Diagnosis efficacy of miRNA-mRNA interactions was measured by Receiver operation characteristic curve and Decision Curve Analysis. Clinical and survival analysis were also carried out. CIBERSORT and ESTIMATE was employed for immune microenvironment measurement. RESULT Totally 228 DE-mRNAs (105 upregulated and 123 downregulated) and 38 DE-miRNAs (22 upregulated and 16 downregulated) were considered significant. TarBase and MiRTarBase identified 18 miRNA-mRNA pairs, 12 of which were verified in RT-qPCR. The network of miR-301a-3p/ELL2 and miR-1-3p/ANXA2 were established and verified in external validation. The model containing all 4 signatures showed better diagnosis ability. Via interacting with M0 macrophage and resting mast cell, these miRNA-mRNA axes may influence tumor microenvironment. CONCLUSION This study established a miRNA-mRNA network via bioinformatic analysis and experiment validation for STAD.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoxin Song
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfeng Zhu
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Gao
- Department of Osteology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hang Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
218
|
Cao MY, Zhang ZD, Hou XR, Wang XP. The Potential Role of Non-coding RNAs in Regulating Ferroptosis in Cancer: Mechanisms and Application Prospects. Anticancer Agents Med Chem 2024; 24:1182-1196. [PMID: 39021186 DOI: 10.2174/0118715206322163240710112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Ming-Yuan Cao
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| | - Zhen-Dong Zhang
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| | - Xin-Rui Hou
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| | - Xiao-Ping Wang
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, P.R. China
| |
Collapse
|
219
|
Qutob RA, Almehaidib IA, Alzahrani SS, Alabdulkarim SM, Abuhemid HA, Alassaf RA, Alaryni A, Alghamdi A, Alsolamy E, Bukhari A, Alotay AA, Alhajery MA, Alanazi A, Faqihi FA, Almaimani MK. Knowledge, Attitudes, and Practice Patterns of Lung Cancer Screening Among Physicians in Saudi Arabia. Cureus 2024; 16:e51842. [PMID: 38327913 PMCID: PMC10848281 DOI: 10.7759/cureus.51842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Lung cancer remains the primary cause of death connected to cancer on a worldwide scale. Obtaining a deep understanding of the knowledge, attitudes, and behavior patterns of doctors is essential for developing successful strategies to improve lung cancer screening. This study aims to identify the attitudes, beliefs, referral practices, and knowledge of lung cancer screening among physicians in Saudi Arabia. METHODS An online survey was conducted from July to December 2023 to investigate the attitudes, beliefs, referral practices, and knowledge of lung cancer screening, and adherence to lung cancer screening recommendations among physicians in Saudi Arabia. Internal medicine, family medicine, and pulmonology physicians of all levels (consultants, senior registrars, and residents) who are currently practicing medicine in Saudi Arabia formed the study population. This study employed a previously developed questionnaire. Binary logistic regression analysis was employed to identify factors that indicate a better degree of knowledge and a positive attitude toward lung cancer screening. RESULTS This study involved a total of 96 physicians. The study participants demonstrated a significant degree of understanding regarding lung cancer screening, with an average knowledge score of 5.8 (SD: 1.7) out of 8, equivalent to 72.5% of the highest possible score. The accuracy rate for knowledge items varied from 44.8% to 91.7%. The study participants had a moderately favorable attitude toward lung cancer screening, as shown by a mean attitude score of 14.4 (SD: 3.7) out of a maximum possible score of 30, which corresponds to 48.0% of the highest achievable score. Around 36.5% of the survey participants reported engaging in the practice of discussing the results of lung cancer screening with patients. The primary obstacles frequently cited were challenges in patient scheduling, insufficient time to discuss lung cancer screening during clinic appointments, and patient refusal, constituting 59.4%, 53.1%, and 53.1% of the identified barriers, respectively. Physicians in Saudi Arabia, particularly those employed in private hospitals, demonstrated a higher level of knowledge of lung cancer screening compared to others (p < 0.05). In contrast, individuals with 11-15 years of experience were shown to have a 78.0% lower likelihood of being educated about lung cancer screening compared to their counterparts (p < 0.05). CONCLUSION The study's results indicate that there is a need for the development of specialized educational initiatives aimed at Saudi Arabian physicians, particularly those with 11 to 15 years of experience who exhibit a limited understanding of lung cancer screening. Utilizing programs that provide continuing medical education would aid in their education. There is a need to facilitate communication between physicians and patients. It is critical to address the identified issues, such as streamlining the appointment scheduling process and ensuring patients have sufficient time during clinic visits. Furthermore, it is critical for the success of nationwide screening initiatives to foster collaboration between the public and private healthcare sectors.
Collapse
Affiliation(s)
- Rayan A Qutob
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Ibrahim Ali Almehaidib
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Sarah Saad Alzahrani
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Sara Mohammed Alabdulkarim
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Haifa Abdulrahman Abuhemid
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Reema Abdulrahman Alassaf
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdullah Alaryni
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdullah Alghamdi
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Eysa Alsolamy
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdullah Bukhari
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdulwahed Abdulaziz Alotay
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Mohammad A Alhajery
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdulrahman Alanazi
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Fahad Ali Faqihi
- Department of Internal Medicine and Adult Critical Care Medicine, Dr. Sulaiman Al Habib Medical Group Holding Company, Riyadh, SAU
| | | |
Collapse
|
220
|
Akram F, Tanveer R, Andleeb S, Shah FI, Ahmad T, Shehzadi S, Akhtar AM, Syed G. Deciphering the Epigenetic Symphony of Cancer: Insights and Epigenetic Therapies Implications. Technol Cancer Res Treat 2024; 23:15330338241250317. [PMID: 38780251 PMCID: PMC11119348 DOI: 10.1177/15330338241250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rida Tanveer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fatima Iftikhar Shah
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyab Ahmad
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Somia Shehzadi
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | | | - Ghania Syed
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
221
|
Bhandari NR, Gilligan AM, Myers J, Ale-Ali A, Smolen L. Integrated budget impact model to estimate the impact of introducing selpercatinib as a tumor-agnostic treatment option for patients with RET-altered solid tumors in the US. J Med Econ 2024; 27:348-358. [PMID: 38334069 DOI: 10.1080/13696998.2024.2317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To estimate the potential budget impact on US third party payers (commercial or Medicare) associated with addition of selpercatinib as a tumor-agnostic treatment for patients with Rearranged during Transfection (RET)-altered solid tumors. METHODS An integrated budget impact model (iBIM) with 3-year (Y) time horizon was developed for 19 RET-altered tumors. It is referred to as an integrated model because it is a single model that integrated results across multiple tumor types (as opposed to tumor-specific models developed traditionally). The model estimated eligible patient populations and included tumor-specific comparator treatments for each tumor type. Estimated annual total costs (2022USD, $) included costs of drug, administration, supportive care, and toxicity. For a one-million-member plan, the number of patients with RET-altered tumors eligible for treatment, incremental total costs, and incremental per-member per-month (PMPM) costs associated with introduction of selpercatinib treatment were estimated. Uncertainty associated with model parameters was assessed using various sensitivity analyses. RESULTS Commercial perspective estimated 11.68 patients/million with RET-altered tumors as treatment-eligible annually, of which 7.59 (Y1), 8.17 (Y2), and 8.76 (Y3) patients would be selpercatinib-treated (based on forecasted market share). The associated incremental total and PMPM costs (commercial) were estimated to be: $873,099 and $0.073 (Y1), $2,160,525 and $0.180 (Y2), and $2,561,281 and $0.213 (Y3), respectively. The Medicare perspective estimated 55.82 patients/million with RET-altered tumors as treatment-eligible annually, of which 36.29 (Y1), 39.08 (Y2), and 41.87 (Y3) patients would be selpercatinib-treated. The associated incremental total and PMPM costs (Medicare) were estimated to be: $4,447,832 and $0.371 (Y1), $11,076,422 and $0.923 (Y2), and $12,637,458 and $1.053 (Y3), respectively. One-way sensitivity analyses across both perspectives identified drug costs, selpercatinib market share, incidence of RET, and treatment duration as significant drivers of incremental costs. CONCLUSIONS Three-year incremental PMPM cost estimates suggest a modest impact on payer-budgets associated with introduction of tumor-agnostic selpercatinib treatment.
Collapse
Affiliation(s)
| | | | - Julie Myers
- Medical Decision Modeling Inc, Indianapolis, IN, USA
| | | | - Lee Smolen
- Medical Decision Modeling Inc, Indianapolis, IN, USA
| |
Collapse
|
222
|
Verma A, Sharma T, Awasthi A. CRISPR and Gene Editing: A Game-changer in Drug Development. Curr Pharm Des 2024; 30:1133-1135. [PMID: 38584552 DOI: 10.2174/0113816128298080240328053845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
CRISPR and gene editing technologies have emerged as transformative tools in medicine, offering unprecedented precision in targeting genetic disorders and revolutionizing drug development. This review explores the multifaceted impact of CRISPR across various medical domains, from hereditary diseases to infectious diseases and cancer. The potential of CRISPR in personalized medicine, therapeutic innovation, and pandemic prevention is highlighted, along with its role in reshaping traditional drug development processes. However, alongside its promise, ethical considerations loom large, particularly regarding germline editing and equitable access to treatments. The commercialization of CRISPR poses further challenges, raising questions about affordability and healthcare equity. Collaboration among scientists, policymakers, and the public is emphasized to navigate the ethical and societal implications of CRISPR responsibly. As the field advances, it is essential to ensure that the benefits of CRISPR are realized while addressing potential risks and maintaining a commitment to the well-being of future generations.
Collapse
Affiliation(s)
- Abhishek Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Tarun Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
223
|
Huang S, Zhao Y, Lai W, Tan J, Zheng X, Zha X, Li Y, Chen S. Higher PD-1/Tim-3 expression on IFN-γ+ T cells is associated with poor prognosis in patients with acute myeloid leukemia. Cancer Biol Ther 2023; 24:2278229. [PMID: 37962843 PMCID: PMC10903599 DOI: 10.1080/15384047.2023.2278229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
With the success of immune checkpoint inhibitors (ICI), such as anti- programmed death-1 (PD-1) antibody for solid tumors and lymphoma immunotherapy, a number of clinical trials with ICIs have been attempted for acute myeloid leukemia (AML) immunotherapy; however, limited clinical efficacy has been reported. This may be due to the heterogeneity of immune microenvironments and various degrees of T cell exhaustion in patients and may be involved in the IFN-γ pathway. In this study, we first characterized the percentage of PD-1+ and T cell immunoglobulin mucin-domain-containing-3 (Tim-3) +IFN-γ+ T cells in peripheral blood (PB) in AML compared with healthy individuals (HIs) by flow cytometry and further discussed the possibility of the reversal of T cell exhaustion to restore the secretion capacity of cytokines in T cells in AML based on blockade of PD-1 or Tim-3 (anti-PD-1 and anti-Tim-3 antibody) in vitro using a cytokine protein chip. A significantly increased percentage of PD-1+, Tim-3+, and PD-1+Tim-3+ IFN-γ+ T cells was observed in PB from patients with AML in comparison with HIs. Moreover, higher PD-1+IFN-γ+CD3+/CD8+ T cell levels were associated with poor overall survival in AML patients. Regarding leukemia cells, the percentage of Tim-3 in CD117+CD34+ AML cells was positively correlated with PD-1 in IFN-γ+CD4+ T cells. Furthermore, blocking PD-1 and Tim-3 may involve multiple cytokines and helper T cell subsets, mainly Th1 and Treg cells. Blockade of PD-1 or Tim-3 tends to restore cytokine secretion to a certain extent, a synergistic effect shown by the co-blockade of PD-1 and Tim-3. However, we also demonstrated the heterogeneity of secretory cytokines in ICI-treated T cells in AML patients.
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yujie Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Wenpu Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zheng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
224
|
Loeffler E, Ancel J, Dalstein V, Deslée G, Polette M, Nawrocki-Raby B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life (Basel) 2023; 14:64. [PMID: 38255679 PMCID: PMC10820545 DOI: 10.3390/life14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.
Collapse
Affiliation(s)
- Emma Loeffler
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| | - Julien Ancel
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Myriam Polette
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Béatrice Nawrocki-Raby
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| |
Collapse
|
225
|
Deng C, Chen Z, Bai J, Fu F, Wang S, Li Y, Zhang Y, Chen H. Clinical characteristics and progression of pre-/minimally invasive lung adenocarcinoma harboring ALK or RET rearrangements: a retrospective cohort study. Transl Lung Cancer Res 2023; 12:2440-2447. [PMID: 38205201 PMCID: PMC10775003 DOI: 10.21037/tlcr-23-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Background Patients harboring anaplastic lymphoma kinase (ALK) or rearranged during transfection (RET) rearrangements are usually diagnosed at a relatively late stage with nodal and distant metastasis, and rapid progression course of ALK/RET fusion-positive lung cancer were well-known. However, clinical characteristics and course of pre-/minimally invasive lung adenocarcinoma harboring ALK or RET fusions are poorly described. Identifying patients with gene fusions at early stage may offer surgical options that could cure those patients. Methods We retrospectively included patients with surgically resected pre-/minimally invasive lung adenocarcinomas harboring epidermal growth factor receptor (EGFR) mutations or ALK/RET rearrangements, and further compared the patient clinical characteristics, nodule natural course, and survival outcomes. Radiological characteristics including ground-glass component, cystic airspace, pleural attachment, etc. were specially assessed for this study. EGFR (exons 18-22) was detected by Sanger sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the ALK/RET rearrangements. Lung cancer-specific survival (LCSS), relapse-free survival (RFS), and overall survival (OS) were all evaluated. Results Of 238 patients with pre-/minimally invasive lung adenocarcinomas, 226 patients had EGFR mutations, 7 patients had ALK fusions, and 5 patients had RET fusions. Average age at surgery was 45.3 years for ALK/RET-positive group and 52.6 years for EGFR-positive group (P=0.049). Radiologically, among the 12 patients with ALK/RET fusions, the majority of lesions (10/12) manifested as mixed ground-glass opacities (mGGOs), which was significantly more prevalent when compared with patients with EGFR mutations (83.4% vs. 24.3%, P<0.001). Moreover, a substantial proportion of cystic airspace was found in ALK/RET-positive group but not in EGFR-positive group (66.7% vs. 14.2%, P<0.001). Among four patients with ALK/RET fusions undergoing surveillance over 1 year before surgery, two of them developed rapid radiologic progression. The 5-year LCSS and RFS were 100%, 100% for ALK/RET-positive group, and 100%, 100% for EGFR-positive group, respectively. Conclusions ALK/RET-positive pre-/minimally invasive lung adenocarcinomas were mostly characterized as mGGOs with cystic airspace developing rapid nodule progression, and no recurrence occurred during long-term follow-up after resection. This provides insights into proper curative surgery timing in the management of patients with gene fusions. However, these findings must be treated with caution and validated in future multi-center studies with larger sample size.
Collapse
Affiliation(s)
- Chaoqiang Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zongwei Chen
- Department of Thoracic Surgery, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jinsong Bai
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengping Wang
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
226
|
Torres-Martínez S, Calabuig-Fariñas S, Gallach S, Mosqueda M, Munera-Maravilla E, Sirera R, Navarro L, Blasco A, Camps C, Jantus-Lewintre E. Circulating Immune Proteins: Improving the Diagnosis and Clinical Outcome in Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:17587. [PMID: 38139416 PMCID: PMC10743468 DOI: 10.3390/ijms242417587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Immunotherapy has been proven a viable treatment option for non-small cell lung cancer (NSCLC) treatment in patients. However, some patients still do not benefit. Finding new predictive biomarkers for immunocheckpoint inhibitor (ICI) response will improve treatment management in the clinical routine. In this regard, liquid biopsy is a useful and noninvasive alternative to surgical biopsies. In the present study, we evaluated the potential diagnostic, prognostic, and predictive value of seven different soluble mediators involved in immunoregulation. Fifty-two plasma samples from advanced NSCLC treated in first-line with pembrolizumab at baseline (PRE) and at first response assessment (FR) were analyzed. In terms of diagnostic value, our results revealed that sFGL1, sGAL-3, and sGAL-1 allowed for optimal diagnostic efficacy for cancer patients. Additionally, the combination of sFGL1 and sGAL-3 significantly improved diagnostic accuracy. Regarding the predictive value to assess patients' immune response, sCD276 levels at PRE were significantly higher in patients without tumor response (p = 0.035). Moreover, we observed that high levels of sMICB at PRE were associated with absence of clinical benefit (pembrolizumab treatment less than 6 months) (p = 0.049), and high levels of sMICB and sGAL-3 at FR are also related to a lack of clinical benefit (p = 0.027 and p = 0.03, respectively). Finally, in relation to prognosis significance, at PRE and FR, sMICB levels above the 75th percentile are related to poor progression-free survival (PFS) (p = 0.013 and p = 0.023, respectively) and overall survival (OS) (p = 0.001 and p = 0.011, respectively). An increase in sGAL3 levels at FR was associated with worse PFS (p = 0.037). Interestingly, high sGAL-3 at PRE was independently associated with PFS and OS with a hazard ratio (HR) of 2.45 (95% CI 1.14-5.25; p = 0.021) and 4.915 (95% CI 1.89-12.73; p = 0.001). In conclusion, plasma levels of sFGL1, sGAL-3, and sGAL-1 could serve as diagnostic indicators and sMICB, sCD276, and sGAL3 were linked to outcomes, suggesting their potential in assessing NSCLC under pembrolizumab treatment. Our results highlight the value of employing soluble immune biomarkers in advanced lung cancer patients treated with pembrolizumab at first-line.
Collapse
Affiliation(s)
- Susana Torres-Martínez
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Marais Mosqueda
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Ester Munera-Maravilla
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Rafael Sirera
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Lara Navarro
- Department of Pathology, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Ana Blasco
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.T.-M.); (S.G.); (M.M.); (E.M.-M.); (C.C.); (E.J.-L.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain;
- Nanomedicine, Centro Investigación Príncipe Felipe—Universitat Politècnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
227
|
Sun M, Wang L, Ge L, Xu D, Zhang R. IGF2BP1 facilitates non-small cell lung cancer progression by regulating the KIF2A-mediated Wnt/β-catenin pathway. Funct Integr Genomics 2023; 24:4. [PMID: 38102458 DOI: 10.1007/s10142-023-01275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) are crucially implicated in the cancer progression. The current study intends to excavate and clarify the mechanisms of the key IGF2BPs in non-small cell lung cancer (NSCLC). The expression of IGF2BPs and kinesin family member 2A (KIF2A) was examined using immunohistochemistry, real-time quantitative polymerase chain reaction, and western blot in NSCLC tissue samples or cell lines. NSCLC cell viability was examined using a cell counting kit-8 assay. Cell apoptotic rate was assessed using flow cytometry analysis. The migration and invasion of H1299 cells were subject to scratch test and Transwell assays, respectively. Starbase 2.0 was used to detect the downstream factors of the IGF2BP1 protein. The binding of IGF2BP with KIF2A was detected using RNA binding protein immunoprecipitation assays. Ki-67 immunohistochemistry assay and TUNEL assays were applied for the evaluation of proliferation and apoptosis in vivo, respectively. IGF2BP1 was upregulated in NSCLC tissue samples and cells. Functionally, IGF2BP1 overexpression promoted the proliferative ability, migration, and invasiveness of H1299 cells, while inhibiting cell apoptosis in vitro. In vivo studies revealed that overexpression of IGF2BP1 promoted tumor growth of NSCLC. Mechanistically, IGF2BP1 was involved in KIF2A mRNA stabilization. KIF2A exerted the same functions as IGF2BP1 via the Wnt/β-catenin signaling. In conclusion, IGF2BP1 enhances NSCLC malignant progression by stabilizing KIF2A to modulate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ming Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Thoracic Surgery, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Ling Wang
- Department of Thoracic Surgery, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Lei Ge
- Department of Oncology, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Daojun Xu
- Department of Pathology, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
228
|
Tønnesen EMT, Stougaard M, Meldgaard P, Lade-Keller J. Prognostic value of KRAS mutations, TP53 mutations and PD-L1 expression among lung adenocarcinomas treated with immunotherapy. J Clin Pathol 2023; 77:54-60. [PMID: 36410939 DOI: 10.1136/jcp-2022-208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
AIMS The aim of this study was to investigate the association between oncogenic alterations and programmed cell death ligand 1 (PD-L1) expression in lung adenocarcinomas, as well as the prognostic value of KRAS and/or TP53 mutations in patients treated with immunotherapy. METHODS This study is a retrospective cohort study of 519 patients with lung adenocarcinomas analysed for mutations and PD-L1 expression. Data were collected from electronic pathology record system, next-generation sequencing system, and clinical databases. Association between mutations and PD-L1 expression was investigated, as well as survival statistics of the 65 patients treated with immunotherapy. RESULTS 41% of the samples contained a KRAS mutation, predominantly together with mutations in TP53 (41%) or STK11 (10%). Higher expression of PD-L1 was seen among patients with KRAS mutations (p=0.002) and EGFR wild type (p=0.006). For patients treated with immunotherapy, there was no statistically significant difference for overall survival (OS) and progression-free survival (PFS) according to KRAS mutation status, TP53 mutation status or PD-L1 expression. The HR for concomitant mutations in TP53 and KRAS was 0.78 (95% CI 0.62 to 0.99) for OS and 0.43 (0.21 to 0.88) for PFS. Furthermore, concomitant TP53 and KRAS mutations predicted a better PFS (p=0.015) and OS (p=0.029) compared with no mutations or a single mutation in either TP53 or KRAS. CONCLUSION Mutations in TP53 together with KRAS may serve as a potential biomarker for survival benefits with immunotherapy.
Collapse
Affiliation(s)
- Ea Maria Tønning Tønnesen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Viborg Regional Hospital, Viborg, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Meldgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johanne Lade-Keller
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
229
|
Chen X, Qin Z, Zhu X, Wang L, Li C, Wang H. Identification and validation of telomerase related lncRNAs signature to predict prognosis and tumor immunotherapy response in bladder cancer. Sci Rep 2023; 13:21816. [PMID: 38071230 PMCID: PMC10710514 DOI: 10.1038/s41598-023-49167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Telomerase allows eukaryotic cells to proliferate indefinitely, an important characteristic of tumor cells. Telomerase-related long no coding RNAs (TERLs) are involved in prognosis and drug sensitivity prediction; however, their association with bladder cancer (BLCA) is still unreported. The objective of this research is to determine a predictive prognostic TERL signature for OS and to provide an efficient treatment option for BLCA. The RNA sequence, clinical information, and mutational data of BLCA patients were acquired from The Cancer Genome Atlas (TCGA) database. With the help of the data from least absolute shrinkage and selection operator (LASSO) regression and Cox regression, a prognostic signature was established including 14 TERLs, which could divide BLCA patients into low-risk (L-R) and high-risk (H-R) cohorts. The time-dependent receiver operating characteristic (ROC) curve demonstrated the greater predictive power of the model. By combing the TERLs-based signature and clinical risk factors (age, sex, grade, and stage), a prognostic nomogram was constructed to forecast the survival rates of patients with BLCA at 1-, 3-, and 5-years, which was well matched by calibration plots C-index and Decision curve analysis (DCA). Furthermore, the L-R cohort showed higher tumor mutation burden (TMB) and lower tumor immune dysfunction and exclusion (TIDE) than the H-R cohort, as well as substantial variability in immune cell infiltration and immune function between the two cohorts was elucidated. As for external validation, LINC01711 and RAP2C-AS1 were identified as poor prognostic factors by survival analysis from the Kaplan-Meier Plotter database, which were validated in BLCA cell lines (EJ, 253J, T24, and 5637) and SV-HUC-1 cells as the control group using qRT-PCR. In addition, interference with the expression of RAP2C-AS1 suppresses the proliferation and migration of BLCA cells, and RAP2C-AS1 could affect the expression of CD274 and CTLA4, which could serve as prognostic markers and characterize the tumor microenvironment in BLCA. Overall, the model based on the 14-TERLs signature can efficiently predict the prognosis and drug treatment response in individuals with bladder cancer.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Qin
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiao Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
230
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
231
|
Deng XM, Zhang Y, Gao PL, Zhang Z. Primary hepatic carcinosarcoma with osteosarcoma components: A case report and literature review. Asian J Surg 2023; 46:5765-5767. [PMID: 37659925 DOI: 10.1016/j.asjsur.2023.08.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Affiliation(s)
- Xiao-Min Deng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei-Lu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
232
|
Singh S, Singh N, Baranwal M, Sharma S, Devi SSK, Kumar S. Understanding immune checkpoints and PD-1/PD-L1-mediated immune resistance towards tumour immunotherapy. 3 Biotech 2023; 13:411. [PMID: 37997595 PMCID: PMC10663421 DOI: 10.1007/s13205-023-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Immunotherapy has emerged as a transformative approach in the treatment of various cancers, offering new hope for patients previously faced with limited treatment options. A cornerstone of cancer immunotherapy lies in targeting immune checkpoints, particularly the programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway. Immune checkpoints serve as crucial regulators of the immune response, preventing excessive immune activity and maintaining self-tolerance. PD-1, expressed on the surface of T cells, and its ligand PD-L1, expressed on various cell types, including cancer cells and immune cells, play a central role in this regulatory process. Although the success rate associated with these immunotherapies is very promising, most patients still show intrinsic or acquired resistance. Since the mechanisms related to PD-1/PD-L1 resistance are not well understood, an in-depth analysis is necessary to improve the success rate of anti-PD-1/PD-L1 therapy. Hence, here we provide an overview of PD-1, its ligand PD-L1, and the resistance mechanism towards PD-1/PD-L1. Furthermore, we have discussed the plausible solution to increase efficacy and clinical response. For the following research, joint endeavours of clinicians and basic scientists are essential to address the limitation of resistance towards immunotherapy.
Collapse
Affiliation(s)
- Sidhartha Singh
- School of Bioscience and Bioengineering, D Y Patil International University, Pune, Maharastra 411051 India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004 India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004 India
| | - S. S. Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037 India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037 India
| |
Collapse
|
233
|
de Luca C, Russo G, Nacchio M, Ingenito M, Palumbo L, Gragnano G, Conticelli F, Russo M, Rocco D, Gridelli C, Bianco R, Galetta D, Troncone G, Parente P, Iaccarino A. Liquid biopsy for lung cancer: A cross section on the diagnostic routine experience of a referral Italian institution. THE JOURNAL OF LIQUID BIOPSY 2023; 2:100128. [PMID: 40028489 PMCID: PMC11863807 DOI: 10.1016/j.jlb.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 03/05/2025]
Abstract
Background Lung cancer is the leading cause of cancer death worldwide. Over the last decade, molecular testing of a growing number of predictive biomarkers has become mandatory in the management of NSCLC patients. However, a major obstacle in routine clinical practice is the scant quantity of available tissue specimens obtainable from advanced stage of NSCLC patients. Thus, liquid biopsy, mostly involving blood sampling, has now been integrated in routine diagnostic practice. However, although liquid biopsies constitute a versatile, compliant, and dynamic source of nucleic acids, many of the current testing approaches pose few technical challenges. Here, to validate the feasibility of implementing NGS-based liquid biopsy approaches in routine diagnostic practice, we overviewed the NGS molecular data generated by our in-house narrow gene panel on plasma samples from real-world NSCLC patients. Methods Our Institution received testing request on liquid biopsy samples from peripheral institutions not equipped to internally analyze liquid biopsy samples. Molecular data from NSCLC patients following oncological requested for clinically approved plasma-based biomarkers evaluated in a diagnostic routine setting from January 2020 to September 2022 were retrieved from our institutional archive. A customized NGS panel integrated with an optimized bioinformatic pipeline was adopted. Results Overall, a total of n = 185 cases were retrieved. Of note, 103 (55.7 %) and 82 (44.3 %) patients were analyzed at basal setting and after resistance to first line TKI administration, respectively. Moreover, 31 out of 185 (16.7 %) cases reveled EGFR clinically relevant alterations. In particular, 6 out of 31 (19.3 %) and 25 out 31 (80.7 %) EGFR mutated patients were tested in basal setting and after first or second line TKIs progression. In addition, exon 20 p.T790 M mutation was also detected in 12 out of 25 (48.0 %) EGFR concomitant mutated cases. Moreover, KRAS hot spot mutations were found in 24 out of 185 (13.0 %) cases. Among them, exon 2 p.G12C clinically relevant mutations were observed in 8 out 24 cases (33.3 %). Conclusions This review highlights the technical suitability of an NGS-based liquid biopsy system for the analysis of clinically relevant mutations in NSCLC patients.
Collapse
Affiliation(s)
- Caterina de Luca
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Mariantonia Nacchio
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Maria Ingenito
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Gianluca Gragnano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Floriana Conticelli
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Maria Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Danilo Rocco
- Pneumo-Oncology Unit, Ospedali dei Colli Monaldi Cotugno CTO, Napoli, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, “S. G. Moscati” Hospital, Avellino, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131, Naples, Italy
| | - Domenico Galetta
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124, Bari, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Antonino Iaccarino
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
234
|
Ren B, Yang Y, Lv Y, Liu K. Survival benefits of palliative gastrectomy for gastric cancer patients with liver metastasis: a population-based propensity score-matched cohort analysis. Front Oncol 2023; 13:1309699. [PMID: 38107061 PMCID: PMC10722504 DOI: 10.3389/fonc.2023.1309699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Background and aims Palliative primary tumor resection (pPTR) can benefit colorectal cancer patients with liver metastasis. Whether pPTR benefiting gastric cancer (GC) patients with liver metastasis is still controversial. Methods Data on patients with metastatic GC diagnosed between 2010 to 2019 was extracted from SEER database. Propensity score analysis with 1:1 matching was performed. The univariable and multivariable Cox proportional hazards regression models were used to explore prognostic factors. Kaplan-Meier method was used to analyze survival outcomes. Results Of 5691 GC patients with liver metastasis, 468 were included in the matched cohorts. The results showed that the median survival time was 6 months in the non-surgery groups and 14.5 months in the surgery groups (p < 0.001). Multivariable analysis showed that surgery was a protective prognostic factor for overall survival [hazard ratio (HR) = 0.416] as well as cancer-specific survival (HR = 0.417). Also, pPTR was only recommended for GC patients with isolated liver metastasis. Moreover, pPTR combined with chemotherapy brought the greatest therapeutic effect. Conclusion pPTR benefits GC patients with isolated liver metastasis, and GC patients with liver metastasis receiving pPTR combined with chemotherapy had the best survival outcomes than any other therapeutic model.
Collapse
Affiliation(s)
- Bingyi Ren
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yichen Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
235
|
Quan Q, Guo L, Huang L, Liu Z, Guo T, Shen Y, Ding S, Liu C, Cao L. Expression and clinical significance of PD-L1 and infiltrated immune cells in the gastric adenocarcinoma microenvironment. Medicine (Baltimore) 2023; 102:e36323. [PMID: 38050283 PMCID: PMC10695517 DOI: 10.1097/md.0000000000036323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a crucial negative costimulatory molecule expressed on both tumor and immune cells. It binds to programmed death-1, facilitating tumor escape. Tumor-infiltrating immune cells play a vital role in this process. However, the clinical relationship between PD-L1 expression and tumor-infiltrating immune cells remains uncertain. Immunohistochemistry (IHC) was utilized to assess PD-L1 expression and TIIC markers (CD3, CD4, CD8, CD19, CD31, CD68, CD11c, CD56, and α-smooth muscle actin) in gastric adenocarcinoma tissues from 268 patients. The aim was to explore the prognostic significance of PD-L1 and the infiltration of different immune cell types. The study analyzed overall survival and the correlations between PD-L1 expression, immune cell infiltration, and clinicopathological characteristics. Among the 268 patients, 52 (19.40%) exhibited high PD-L1 expression on tumor cells (TPD-L1), while 167 (62.31%) displayed high PD-L1 expression on immune cells (IPD-L1). Patients with high IPD-L1 expression showed improved survival compared to those with low IPD-L1 expression (P = .028). High TPD-L1 expression associated with various clinicopathological features, such as larger tumor size, poorer differentiation, deeper invasion depth, and higher tumor stage. Conversely, patients with high IPD-L1 expression exhibited shallower tumor invasion and lower mortality rates. Univariate analysis indicated that superficial tumor infiltration, absence of lymph node and distant metastasis, low tumor stage, high IPD-L1 expression, and elevated CD8 and CD19 expression were associated with a reduced risk of tumor progression. Multivariate analysis revealed that patients with high IPD-L1 and CD8 expression or high TPD-L1 and low CD31 expression experienced significantly better overall survival than patients with other combinations. The findings indicate that patients with high PD-L1 expression in immune cells have a substantially improved prognosis. Additionally, the combination of PD-L1 with CD8 or CD31 expression status can serve as an indicator of prognosis in patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Qiuying Quan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Huang
- Department of Clinical Laboratory, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiju Liu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianwei Guo
- Department of Pathology, Changshu Hospital of Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sisi Ding
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou, Jiangsu, China
| |
Collapse
|
236
|
Ramazi S, Dadzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
237
|
Cui M, Wan Z, Yang J, Liao D, Yang Y, Xiang Y. Diagnostic value of programmed cell death-ligand 1 expression on circulating tumor cells in lung cancer: A systematic review and meta-analysis. Int J Biol Markers 2023; 38:159-166. [PMID: 37545433 DOI: 10.1177/03936155231192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The expression of programmed cell death-ligand 1 (PD-L1) on circulating tumor cells offers a noninvasive method for the detection of PD-L1 expression in lung cancer, and could serve as a potential surrogate for cancer tissue. However, discrepant results make it difficult to apply PD-L1 on circulating tumor cells to clinical practice. Therefore, we conducted a meta-analysis to investigate the diagnostic value of PD-L1 on circulating tumor cells in lung cancer. To identify the relationship between the expression of PD-L1 on circulating tumor cells and lung cancer, the PubMed, Web of Science, Embase, China National Knowledge Infrastructure, and Wanfang databases were searched from inception to March 2023. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the corresponding 95% confidence intervals were calculated to assess the diagnostic performance of PD-L1. We also conducted subgroup and sensitivity analyses. A total of 11 studies including 472 lung cancer patients were included in our study. The overall performance in terms of pooled sensitivity and specificity was 0.72 (0.52-0.86) and 0.54 (0.25-0.81), respectively. The positive likelihood ratio, negative likelihood ratio, and area under the curve were 1.57 (0.87-2.84), 0.52 (0.30-0.90), and 0.70 (0.66-0.74), respectively. Deeks' funnel plot test indicated no publication bias. Our analysis demonstrated that positive PD-L1 expression on circulating tumor cells (CTCs) exhibited a moderate diagnostic value in lung cancer, and CTCs may serve as a feasible alternative tissue analysis for the detection of PD-L1 in lung cancer.
Collapse
Affiliation(s)
- Meng Cui
- Laboratory Department, People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Zhiyong Wan
- Laboratory Department, People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Jia Yang
- Laboratory Department, People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Dan Liao
- Laboratory Department, People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Yang Yang
- Laboratory Department, People's Hospital of Leshan, Leshan, Sichuan Province, China
| | - Yin Xiang
- Laboratory Department, People's Hospital of Leshan, Leshan, Sichuan Province, China
| |
Collapse
|
238
|
Franco AFDV, Malinverni ACM, Waitzberg AFL. Immunoexpression of HER2 pathway related markers in HER2 invasive breast carcinomas treated with trastuzumab. Pathol Res Pract 2023; 252:154917. [PMID: 37977031 DOI: 10.1016/j.prp.2023.154917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE We evaluated the immunoexpression of potential markers involved in the HER2 pathway in invasive breast carcinoma with HER2 amplification treated with trastuzumab. METHODS Samples of ninety patients diagnosed and treated at two public Brazilian hospitals with overexpressed invasive carcinoma between 2009 and 2018 were included. Several markers (Bcl-2, CDK4, cyclin D1, EGFR, IGF1, IGF-1R, MDM2, MUC4, p16, p21, p27, p53, PTEN, RA, TNFα, and VEGF) were immune analyzed in the tumor by immunohistochemistry and then correlated with clinicopathological variables. RESULTS Tumor sample expression results determined potential markers of good prognosis with statistically significant values: cyclin D1 with a nuclear grade, and recurrence; IGF-1 with tumor size, and death; p16 with a response after treatment; PTEN with a response after treatment, and death. Markers of poor prognosis: p53 with histological, and nuclear grade; IGF-1R with a compromised lymph node. The treatment resistance rate after trastuzumab was 40%; the overall survival was 4.13 years (95% CI 5.1-12.5) and the disease-free survival was 3.6 years (95% CI 5.1-13.1). CONCLUSIONS The tumor samples profile demonstrated that cyclin D1, IGF-1, p16, and PTEN presented the potential for a good prognosis and p53 and IGF-1R for worse.
Collapse
Affiliation(s)
- Andreia Fabiana do Vale Franco
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil.
| | - Andrea Cristina Moraes Malinverni
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil
| | - Angela Flavia Logullo Waitzberg
- Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
239
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
240
|
Nemtsova MV, Kuznetsova EB, Bure IV. Chromosomal Instability in Gastric Cancer: Role in Tumor Development, Progression, and Therapy. Int J Mol Sci 2023; 24:16961. [PMID: 38069284 PMCID: PMC10707305 DOI: 10.3390/ijms242316961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
According to the Cancer Genome Atlas (TCGA), gastric cancers are classified into four molecular subtypes: Epstein-Barr virus-positive (EBV+), tumors with microsatellite instability (MSI), tumors with chromosomal instability (CIN), and genomically stable (GS) tumors. However, the gastric cancer (GC) with chromosomal instability remains insufficiently described and does not have effective markers for molecular and histological verification and diagnosis. The CIN subtype of GC is characterized by chromosomal instability, which is manifested by an increased frequency of aneuploidies and/or structural chromosomal rearrangements in tumor cells. Structural rearrangements in the CIN subtype of GC are not accidental and are commonly detected in chromosomal loci, being abnormal because of specific structural organization. The causes of CIN are still being discussed; however, according to recent data, aberrations in the TP53 gene may cause CIN development or worsen its phenotype. Clinically, patients with the CIN subtype of GC demonstrate poor survival, but receive the maximum benefit from adjuvant chemotherapy. In the review, we consider the molecular mechanisms and possible causes of chromosomal instability in GC, the common rearrangements of chromosomal loci and their impact on the development and clinical course of the disease, as well as the driver genes, their functions, and perspectives on their targeting in the CIN subtype of GC.
Collapse
Affiliation(s)
- Marina V. Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Ekaterina B. Kuznetsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Irina V. Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
241
|
Mozooni Z, Mansouri N, Bafrani F, Kolahi AA, Movafagh A, Mirzaei HR. Molecular Characteristics of TYK2 Gene Expressions in Patients with Colorectal Cancer. Adv Biomed Res 2023; 12:255. [PMID: 38192889 PMCID: PMC10772794 DOI: 10.4103/abr.abr_440_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/09/2023] [Accepted: 07/23/2023] [Indexed: 01/10/2024] Open
Abstract
Background TYK2 is a member of the JAK family and is known to mediate signals of multiple cytokines that play a crucial role in immune and inflammatory signaling. Activation of TYK2 in tumor cells has been linked to promote cell survival, growth, and invasion. This study aimed to investigate the expression of tyrosine kinase 2 (TYK2) in colorectal cancer (CRC) and adjacent control tissues. Materials and Methods Quantitative Real-Time PCR (qRT-PCR) method was elaborated to examine the expression levels of TYK2 in 100 colorectal tumor tissues and adjacent tissues as a control. Furthermore, we analyzed the diagnostic power of the mentioned TYK2 by plotting the receiver operating characteristic (ROC) curve. Results Our results revealed that the expression level of TYK2 was significantly up-regulated in CRC patients sample compared to the adjacent sample of the control group. Analysis of patient's clinic pathological features shows that expressions TYK2 were differently associated with lymph vascular invasion and TMN stage (P < 0.0001, P < 0.0006). Conclusion These results indicated that TYK2 levels potential biomarkers for diagnosing colorectal cancer may be identified.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mansouri
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Freshteh Bafrani
- Department of Gastroenterology, Iran University of Medical Sciences, Tehran Iran
| | - Ali A. Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
242
|
Yao Y, Ren J, Lu J, Sui Y, Gong J, Chen X. Prognostic significance of high NPC2 expression in gastric cancer. Sci Rep 2023; 13:20710. [PMID: 38001127 PMCID: PMC10673825 DOI: 10.1038/s41598-023-47882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and the third leading cause of cancer-related death. The identification of novel biomarkers and therapeutic targets is critical to improve the prognosis. A total of 380 patients with primary gastric cancer from the TCGA database were analyzed. The receiver operating characteristic curves were plotted. We further evaluated the independent prognostic ability of NPC2 expression for overall survival (OS) and relapse-free survival (RFS) through the Kaplan-Meier curve and Cox analysis. The NPC2 expression was significantly higher (P < 0.001) in gastric cancer. High NPC2 expression was significantly (P < 0.0001) associated with poor OS and poor RFS. The age, stage, radiation therapy, residual tumor, and NPC2 expression showed independent prognostic value for OS. The gender and NPC2 expression showed independent prognostic value for RFS. The higher NPC2 expression was observed in gastric cancer, compared with adjacent normal tissue (P < 0.001), confirmed by the IHC staining. The CCK-8 assay showed that NPC2 knockdown inhibits cell proliferation while NPC2 overexpression promotes cell proliferation (P < 0.05). NPC2 expression may serve as a promising prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Yunzhuang Yao
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jinnan Ren
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Junhui Lu
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Yue Sui
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Jingwen Gong
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Xing Chen
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
243
|
Wu Y, Hou J, Ren R, Chen Z, Yue M, Li L, Hou H, Zheng X, Li L. DNA methylation and lipid metabolism are involved in GA-induced maize aleurone layers PCD as revealed by transcriptome analysis. BMC PLANT BIOLOGY 2023; 23:584. [PMID: 37993774 PMCID: PMC10664605 DOI: 10.1186/s12870-023-04565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Le Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- College of Food, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
244
|
Kouroukli AG, Rajaram N, Bashtrykov P, Kretzmer H, Siebert R, Jeltsch A, Bens S. Targeting oncogenic TERT promoter variants by allele-specific epigenome editing. Clin Epigenetics 2023; 15:183. [PMID: 37993930 PMCID: PMC10666398 DOI: 10.1186/s13148-023-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Activation of dominant oncogenes by small or structural genomic alterations is a common driver mechanism in many cancers. Silencing of such dominantly activated oncogenic alleles, thus, is a promising strategy to treat cancer. Recently, allele-specific epigenome editing (ASEE) has been described as a means to reduce transcription of genes in an allele-specific manner. In cancer, specificity to an oncogenic allele can be reached by either targeting directly a pathogenic single-nucleotide variant or a polymorphic single-nucleotide variant linked to the oncogenic allele. To investigate the potential of ASEE in cancer, we here explored this approach by targeting variants at the TERT promoter region. The TERT promoter region has been described as one of the most frequently mutated non-coding cancer drivers. RESULTS Sequencing of the TERT promoter in cancer cell lines showed 53% (41/77) to contain at least one heterozygous sequence variant allowing allele distinction. We chose the hepatoblastoma cell line Hep-G2 and the lung cancer cell line A-549 for this proof-of-principle study, as they contained two different kinds of variants, namely the activating mutation C228T in the TERT core promoter and the common SNP rs2853669 in the THOR region, respectively. These variants were targeted in an allele-specific manner using sgRNA-guided dCas9-DNMT3A-3L complexes. In both cell lines, we successfully introduced DNA methylation specifically to the on-target allele of the TERT promoter with limited background methylation on the off-target allele or an off-target locus (VEGFA), respectively. We observed a maximum CpG methylation gain of 39% and 76% on the target allele when targeting the activating mutation and the common SNP, respectively. The epigenome editing translated into reduced TERT RNA expression in Hep-G2. CONCLUSIONS We applied an ASEE-mediated approach to silence TERT allele specifically. Our results show that the concept of dominant oncogene inactivation by allele-specific epigenome editing can be successfully translated into cancer models. This new strategy may have important advantages in comparison with existing therapeutic approaches, e.g., targeting telomerase, especially with regard to reducing adverse side effects.
Collapse
Affiliation(s)
- Alexandra G Kouroukli
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nivethika Rajaram
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Helene Kretzmer
- Computational Genomics, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
245
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
247
|
Xiao F, Zhang H, Ding H, An C, Gu C. Change in expressional level and clinicopathological significance of miR-193b-3p in non-small cell lung cancer. Medicine (Baltimore) 2023; 102:e35918. [PMID: 37960820 PMCID: PMC10637511 DOI: 10.1097/md.0000000000035918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate and analyze changes in the expression level and clinicopathological significance of miR-193b-3p in non-small cell lung cancer (NSCLC). In the present study, Gene Expression Omnibus (GEO), Targetscan, starBase, and Metastases databases were retrieved for bioinformatics analysis. qRT-PCR was conducted to determine the expression level of miR-193b-3p in the serum or tissues of NSCLC patients. The correlation between the expression level of serum miR-193b-3p and the clinical characteristics of NSCLC patients was analyzed, and receiver operating characteristic (ROC) curves were analyzed to assess the diagnostic significance of serum expression of miR-193b-3p in NSCLC. The GEO2R tool was used to analyze the GSE102286 dataset in the GEO database, indicating that miR-193b-3p is one of the overexpressed miRNAs in NSCLC. Databases, such as TargetScan and starBase, were used to predict miR-193b-3p target genes. Finally, 153 target genes were retrieved, and gene ontology (GO) and KEGG analyses were conducted based on the Metascape database, which indicated that all 153 target genes participated in multiple biological processes and signaling pathways closely correlated with the genesis and progression of NSCLC. miR-193b-3p is highly expressed in the serum and cancer tissues of patients with NSCLC. The high miR-193b-3p expression group had a lower degree of cancer differentiation, a higher proportion of late TNM stage, and a greater incidence of lymph node metastasis. ROC curve analysis reported that the area under the curve was 0.89 (95% CI: 0.85-0.92). High miR-193b-3p expression levels were detected in NSCLC patients and were closely correlated with the degree of malignancy in NSCLC. miR-193b-3p expression levels have a diagnostic effect on NSCLC.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Haiyan Zhang
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Haiping Ding
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Chaolun An
- Cardiothoracic Surgery, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, Jiangsu, China
| |
Collapse
|
248
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
249
|
Ma X, Zhou X, Hu B, Li X, Yao M, Li L, Qin X, Li D, Yao Y, Hou X, Liu S, Chen Y, Wang Z, Zhou W, Li N, Zhu H, Jia B, Yang Z. Preclinical evaluation and pilot clinical study of [ 68Ga]Ga-THP-APN09, a novel PD-L1 targeted nanobody radiotracer for rapid one-step radiolabeling and PET imaging. Eur J Nucl Med Mol Imaging 2023; 50:3838-3850. [PMID: 37555904 DOI: 10.1007/s00259-023-06373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Programmed cell death protein-1/ligand-1 (PD-1/L1) blockade has been a breakthrough in the treatment of patients with non-small cell lung cancer (NSCLC), but there is still a lack of effective methods to screen patients. Here we report a novel 68 Ga-labeled nanobody [68 Ga]Ga-THP-APN09 for PET imaging of PD-L1 status in mouse models and a first-in-human study in NSCLC patients. METHODS [68 Ga]Ga-THP-APN09 was prepared by site-specific radiolabeling, with no further purification. Cell uptake assays were completed in the human lung adenocarcinoma cell line A549, NSCLC cell line H1975 and human PD-L1 gene-transfected A549 cells (A549PD-L1). The imaging to image PD-L1 status and biodistribution were investigated in tumor-bearing mice of these three tumor cell types. The first-in-human clinical translational trial was registered as NCT05156515. The safety, radiation dosimetry, biodistribution, and correlations of tracer uptake with immunohistochemical staining and major pathologic response (MPR) were evaluated in NSCLC patients who underwent adjuvant immunotherapy combined with chemotherapy. RESULTS Radiosynthesis of [68 Ga]Ga-THP-APN09 was achieved at room temperature and a pH of 6.0-6.5 in 10 min with a high radiochemical yield (> 99%) and 13.9-27.8 GBq/μmol molar activity. The results of the cell uptake study reflected variable levels of surface PD-L1 expression observed by flow cytometry in the order A549PD-L1 > H1975 > A549. In small-animal PET/CT imaging, H1975 and A549PD-L1 tumors were clearly visualized in an 8.3:1 and 2.2:1 ratios over PD-L1-negative A549 tumors. Ex vivo biodistribution studies showed that tumor uptake was consistent with the PET results, with the highest A549PD-L1 being taken up the most (8.20 ± 0.87%ID/g), followed by H1975 (3.69 ± 0.50%ID/g) and A549 (0.90 ± 0.16%ID/g). Nine resectable NSCLC patients were enrolled in the clinical study. Uptake of [68 Ga]Ga-THP-APN09 was mainly observed in the kidneys and spleen, followed by low uptake in bone marrow. The radiation dose is within a reliable range. Tumor uptake was positively correlated with PD-L1 expression TPS (rs = 0.8763, P = 0.019). Tumor uptake of [68 Ga]Ga-THP-APN09 (SUVmax) in MPR patients was higher than that in non-MPR patients (median SUVmax 2.73 vs. 2.10, P = 0.036, determined with Mann-Whitney U-test). CONCLUSION [68 Ga]Ga-THP-APN09 has the potential to be transformed into a kit-based radiotracer for rapid, simple, one-step, room temperature radiolabeling. The tracer can detect PD-L1 expression levels in tumors, and it may make it possibility to predict the response of PD-1 immunotherapy combined with chemotherapy. Confirmation in a large number of cases is needed. TRIAL REGISTRATION Clinical Trial (NCT05156515). Registered 12 December 2021.
Collapse
Affiliation(s)
- Xiaopan Ma
- Medical College, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Biao Hu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, No.38 Xueyuan Rd., Beijing, 100191, China
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, No.38 Xueyuan Rd., Beijing, 100191, China
| | - Meinan Yao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, No.38 Xueyuan Rd., Beijing, 100191, China
| | - Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Xue Qin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - DaPeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Yan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Wenyuan Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China.
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China.
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, No.38 Xueyuan Rd., Beijing, 100191, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No.52 Fucheng Rd., Beijing, 100142, China.
| |
Collapse
|
250
|
Yun WJ, Zhang L, Yang N, Cui ZG, Jiang HM, Ha MW, Yu DY, Zhao MZ, Zheng HC. FAM64A aggravates proliferation, invasion, lipid droplet formation, and chemoresistance in gastric cancer: A biomarker for aggressiveness and a gene therapy target. Drug Dev Res 2023; 84:1537-1552. [PMID: 37571819 DOI: 10.1002/ddr.22105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
FAM64A is a mitogen-induced regulator of the metaphase and anaphase transition. Here, we found that FAM64A messenger RNA (mRNA) and protein expression levels were higher in gastric cancer tissue than in normal mucosa (p < .05). FAM64A methylation was negatively correlated with FAM64A mRNA expression (p < .05). The differentially expressed genes of FAM64A were mainly involved in digestion, potassium transporting or exchanging ATPase, contractile fibers, endopeptidase, and pancreatic secretion (p < .05). The FAM64A-related genes were principally categorized into ubiquitin-mediated proteolysis, cell cycle, chromosome segregation and mitosis, microtubule binding and organization, metabolism of amino acids, cytokine receptors, lipid droplet, central nervous system, and collagen trimer (p < .05). FAM64A protein expression was lower in normal gastric mucosa than intestinal metaplasia, adenoma, and primary cancer (p < .05), negatively correlated with older age, T stage, lymphatic and venous invasion, tumor, node, metastasis stage, and dedifferentiation (p < .05), and associated with a favorable overall survival of gastric cancer patients. FAM64A overexpression promoted proliferation, antiapoptosis, migration, invasion, and epithelial-mesenchymal transition via the EGFR/Akt/mTOR/NF-κB, while the opposite effect was observed for FAM64A knockdown. FAM64A also induced chemoresistance directly or indirectly through lipid droplet formation via ING5. These results suggested that upregulation of FAM64A expression might induce aggressive phenotypes, leading to gastric carcinogenesis and its subsequent progression. Thus, FAM64A could be regarded as a prognosis biomarker and a target for gene therapy.
Collapse
Affiliation(s)
- Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Li Zhang
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ning Yang
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Hua-Mao Jiang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Min-Wen Ha
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Da-Yong Yu
- Department of Cell Biology, Basic Medical College of Chengde Medical University, Chengde, China
| | - Ming-Zhen Zhao
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|