201
|
Liang Y, Sun X, Lv Q, Shen Y, Liang H. Fully physically cross-linked hydrogel as highly stretchable, tough, self-healing and sensitive strain sensors. POLYMER 2020; 210:123039. [DOI: 10.1016/j.polymer.2020.123039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
202
|
|
203
|
Visible light induced synthesis of high toughness, self-healing ionic hydrogel and its application in strain sensing. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
204
|
Zhou L, Wang Z, Wu C, Cong Y, Zhang R, Fu J. Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51969-51977. [PMID: 33147947 DOI: 10.1021/acsami.0c15108] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ion-conductive hydrogel sensors have attracted great research interests for applications in wearable devices, electronic skins, and implantable sensors, but most such sensors are fragile, with low conductivity and sensitivity. This study reports on novel ion-conductive double network hydrogels with a cross-linked helical structure, hydrophobic association, and metal-ion coordination. The helical κ-carrageenan first network and the second network cross-linked by Pluronic F127 diacrylate micelles and tridentate Fe3+-COO- coordination work synergistically to show the tensile strength of 2.7 MPa, fracture strain of 1400%, and tensile toughness of 9.82 MJ m-3 and fatigue resistance against cyclic loadings with high strains. The hydrogels show an ion conductivity of 1.15 S m-1, a strain sensitivity of up to 2.8, and a pressure sensitivity of 0.33 kPa-1. Sensor arrays fabricated from the conductive hydrogels provide an in-plane detection of pressures less than 200 Pa. Such hydrogel sensors have potential applications to electron skins and implantable sensors.
Collapse
Affiliation(s)
- Linjie Zhou
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Engineering Research Centre of Large Scale Reactor Engineering and Technology, Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhenwu Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Changsong Wu
- School of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Yang Cong
- School of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Rui Zhang
- Engineering Research Centre of Large Scale Reactor Engineering and Technology, Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
205
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
206
|
Sun M, Qiu J, Lu C, Jin S, Zhang G, Sakai E. Multi-Sacrificial Bonds Enhanced Double Network Hydrogel with High Toughness, Resilience, Damping, and Notch-Insensitivity. Polymers (Basel) 2020; 12:E2263. [PMID: 33019708 PMCID: PMC7650701 DOI: 10.3390/polym12102263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
The engineering applications of hydrogels are generally limited by the common problem of their softness and brittlness. In this study, a composite double network ionic hydrogel (CDN-gel) was obtained by the facile visible light triggered polymerization of acrylic acid (AA), polyvinyl alcohol (PVA), and hydrolyzed triethoxyvinylsilane (TEVS) and subsequent salt impregnation. The resulting CDN-gels exhibited high toughness, recovery ability, and notch-insensitivity. The tensile strength, fracture elongation, Young's modulus, and toughness of the CDN-gels reached up to ~21 MPa, ~700%, ~3.5 MPa, and ~48 M/m3, respectively. The residual strain at a strain of 200% was only ~25% after stretch-release of 1000 cycles. These properties will enable greater application of these hydrogel materials, especially for the fatigue resistance of tough hydrogels, as well as broaden their applications in damping.
Collapse
Affiliation(s)
- Manxi Sun
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; (M.S.); (C.L.); (G.Z.); (E.S.)
| | - Jianhui Qiu
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; (M.S.); (C.L.); (G.Z.); (E.S.)
| | - Chunyin Lu
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; (M.S.); (C.L.); (G.Z.); (E.S.)
| | - Shuping Jin
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, China;
| | - Guohong Zhang
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; (M.S.); (C.L.); (G.Z.); (E.S.)
| | - Eiichi Sakai
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; (M.S.); (C.L.); (G.Z.); (E.S.)
| |
Collapse
|
207
|
Hou Y, Zhong X, Ding Y, Zhang S, Shi F, Hu J. Alginate-based aerogels with double catalytic activity sites and high mechanical strength. Carbohydr Polym 2020; 245:116490. [DOI: 10.1016/j.carbpol.2020.116490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
|
208
|
Wang Z, Wu J, Shi X, Song F, Gao W, Liu S. Stereocomplexation of Poly(Lactic acid) and Chemical Crosslinking of Ethylene Glycol Dimethacrylate (EGDMA) Double-Crosslinked Temperature/pH Dual Responsive Hydrogels. Polymers (Basel) 2020; 12:E2204. [PMID: 32992974 PMCID: PMC7599924 DOI: 10.3390/polym12102204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
Physical crosslinking and chemical crosslinking were used to further improve the mechanical properties and stability of the gel. A temperature/pH dual sensitive and double-crosslinked gel was prepared by the stereo-complex of HEMA-PLLA20 and HEMA-PDLA20 as a physical crosslinking agent, ethylene glycol dimethacrylate (EGDMA) as a chemical crosslinking agent, and azodiisobutyronitrile (AIBN) as an initiator for free radical polymerization. This paper focused on the performance comparison of chemical crosslinked gel, a physical crosslinked gel, and a dual crosslinked gel. The water absorption, temperature, and pH sensitivity of the three hydrogels were studied by a scanning electron microscope (SEM) and swelling performance research. We used a thermal analysis system (TGA) and dynamic viscoelastic spectrometer to study thermal properties and mechanical properties of these gels. Lastly, the in vitro drug release behavior of double-crosslinked hydrogel loaded with doxorubicin under different conditions was studied. The results show that the double-crosslinked and temperature/pH dual responsive hydrogels has great mechanical properties and good stability.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (Z.W.); (J.W.); (X.S.); (F.S.); (W.G.)
| |
Collapse
|
209
|
Das Mahapatra R, Imani KBC, Yoon J. Integration of Macro-Cross-Linker and Metal Coordination: A Super Stretchable Hydrogel with High Toughness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40786-40793. [PMID: 32805982 DOI: 10.1021/acsami.0c11167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of multifunctional hydrogels with high strength and stretchability is one of the most important topics in soft-matter research owing to their potential applications in various fields. In this work, a dual physically cross-linked network was designed for the fabrication of ultrastretchable tough hydrogels. The hydrogels were prepared through in situ polymerization of acrylic acid and acrylamide in the presence of positively charged quaternary poly(ethylene imine) (Q-PEI) and micelle-forming Pluronic F127 diacrylate, thus introducing electrostatic interactions between the positively charged Q-PEI and negatively charged poly(acrylic acid-co-acrylamide). For further mechanical reinforcement, Ca2+ and Cu2+ ions were introduced into the hydrogel network to construct coordination bonds, significantly enhancing tensile strength as well as stretchability. The hydrogel prepared with Ca2+ ion coordination bonds was found to be stretchable to 108 times its original length and exhibited a maximum toughness of 177 MJ·m-3, representing one of the most robust systems with both extraordinary toughness and superstretchability prepared to date. The hydrogels also exhibited excellent recovery of dimensions and reproducibility in terms of mechanical properties, providing a promising ultrastretchable soft-matter system with outstanding mechanical strength.
Collapse
Affiliation(s)
- Rita Das Mahapatra
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Kusuma Betha Cahaya Imani
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
210
|
Zhao X, Karthik N, Xiong D, Liu Y. Bio-inspired surface modification of PEEK through the dual cross-linked hydrogel layers. J Mech Behav Biomed Mater 2020; 112:104032. [PMID: 32861065 DOI: 10.1016/j.jmbbm.2020.104032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/04/2020] [Accepted: 08/08/2020] [Indexed: 11/26/2022]
Abstract
The biocompatible high-performance material PEEK (polyetheretherketone) is an attractive implant material, however, its hydrophobicity and high friction coefficients severely hinder its biomedical applications. Thus, it is inferred from the recent advances in surface modification technology, achieving the biomimetic natural joint lubrication systems on PEEK still remains a challenge. In view of the above, herein we proposed a novel two-step strategy to fabricate a "soft (dual cross-linked hydrogel) layer-hard (PEEK) substrate" texture that mimics the structure and function of soft cartilage on the hard basal bone in joints. At first, a layer of acrylic acid-co-acryl amide (AA-AM) hydrogel is anchored to the PEEK substrate through UV-initiated polymerization. In the second step, hydrogel coated PEEK substrate is immersed in ferric nitrate solution to create the secondary cross-linkage between Fe3+ and -COOH groups in the hydrogel. As a result, the consequential top-coat hydrogel layer not only transforms the surface wettability (hydrophobic to hydrophilic) but also provides scratch resistance to the underlying PEEK substrate. The modified specimens display low friction coefficients in water under different load conditions. In addition, the obtained surface exhibits a certain self-repairing ability due to its unique physically reversible network structure. Therefore, this work provides a promising strategy for broadening the use of PEEK in orthopedic implants.
Collapse
Affiliation(s)
- Xiaoduo Zhao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China; Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technology, 210094, Nanjing, China
| | - Namachivayam Karthik
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China; Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technology, 210094, Nanjing, China
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China; Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technology, 210094, Nanjing, China.
| | - Yuntong Liu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China; Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technology, 210094, Nanjing, China
| |
Collapse
|
211
|
Ge P, Cai Q, Zhang H, Yao X, Zhu W. Full Poly(ethylene glycol) Hydrogels with High Ductility and Self-Recoverability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37549-37560. [PMID: 32702232 DOI: 10.1021/acsami.0c08716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy dissipation is a common mechanism to improve the ductility of polymeric hydrogels. However, for poly(ethylene glycol) (PEG) hydrogels, it is not easy to dissipate energy, as polymer chains are dispersed in water without strong interchain interactions or decent entanglement. The brittleness limits the real applications of PEG hydrogels, although they are promising candidates in biomedical fields, as PEG has been approved by the U.S. Food and Drug Administration. Herein, we chemically introduced a center for energy dissipation in the PEG hydrogel system. Amphiphilic segmented PEG derivatives were designed through the melt polycondensation of triethylene glycol (PEG150) and high molecular weight PEG in the presence of succinic acid and mercaptosuccinic acid as dicarboxylic acids. Full PEG hydrogels with elastic nanospheres as giant cross-linkers were facilely prepared by the self-assembly of esterified PEG150 segments and the oxidation of mercapto groups. The resultant full PEG hydrogels can dissipate energy by the deformation of elastic nanospheres with outstanding ductility and self-recoverability while maintaining the excellent biocompatibility owing to their full PEG components. This work provides an original strategy to fabricate full PEG hydrogels with high ductility and self-recoverability, potentially applicable in biomedical fields.
Collapse
Affiliation(s)
- Pengfei Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongjie Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou, 310027, China
| |
Collapse
|
212
|
Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS APPLIED BIO MATERIALS 2020; 4:85-121. [DOI: 10.1021/acsabm.0c00807] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qingjin Fu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rengang Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
213
|
Dohi S, Suzuki Y, Matsumoto A. One‐shot radical polymerization of vinyl monomers with different reactivity accompanying spontaneous delay of polymerization for the synthesis of double‐network hydrogels. POLYM INT 2020. [DOI: 10.1002/pi.6048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shunsuke Dohi
- Department of Applied Chemistry, Graduate School of Engineering Osaka Prefecture University Sakai Japan
| | - Yasuhito Suzuki
- Department of Applied Chemistry, Graduate School of Engineering Osaka Prefecture University Sakai Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering Osaka Prefecture University Sakai Japan
| |
Collapse
|
214
|
Zhang R, Fu Q, Zhou K, Yao Y, Zhu X. Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
215
|
Suflet DM, Popescu I, Prisacaru AI, Pelin IM. Synthesis and characterization of curdlan – phosphorylated curdlan based hydrogels for drug release. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dana Mihaela Suflet
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Irina Popescu
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Irina Mihaela Pelin
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
216
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
217
|
Liang Y, Ye L, Sun X, Lv Q, Liang H. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1577-1587. [PMID: 31794185 DOI: 10.1021/acsami.9b18796] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a kind of typical soft and wet material, hydrogel has been increasingly investigated as another way to develop flexible electronics. However, the traditional hydrogel with poor strain and strength performance cannot meet the requirements for stretchable electronics; fabricating a stretchable hydrogel with balanced tensile strength, toughness, and conductivity is still a big challenge. Herein, a new type of physically cross-linked hydrogel with poly(acrylamide-co-acrylic acid)-Fe3+ and chitosan-SO42- dual ionic networks via facile free radical polymerization and soaking processes is developed to fabricate excellent high-performance flexible sensors. The abundant Fe3+ and SO42- ions in the hydrogel can not only construct tough and strong dual ionic networks but also give the hydrogel high conductivity. Consequently, the optimal hydrogel possesses high tensile strength (∼5.1 MPa), large strain capacity (∼1225%), elasticity (∼1.13 MPa), high toughness (∼32.1 MJ/m3), and high conductivity (3.04 S/m at f = 0.1M), as well as rapid self-recovery property. Furthermore, the hydrogel conductor has high stretching sensitivity with a gauge factor of 6.0 at strain of 700% and was able to detect conventional motions of the human body such as the motions of the knuckle, speaking, and swallowing, which indicates that our ionic conductive hydrogels can be used to fabricate excellent high-performance flexible sensors.
Collapse
Affiliation(s)
- Yongzhi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Polymer Science and Engineering University of Science and Technology of China , Hefei , Anhui 230026 China
| | - Lina Ye
- College of Chemistry & Chemical Engineering , Anhui University , Hefei , Anhui 230601 , China
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Qiong Lv
- CAS Key Laboratory of Mechanical Behavior and Design of Materials , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials , University of Science and Technology of China , Hefei , Anhui 230026 , China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
218
|
Cho IS, Ooya T. Cell-Encapsulating Hydrogel Puzzle: Polyrotaxane-Based Self-Healing Hydrogels. Chemistry 2019; 26:913-920. [PMID: 31696616 DOI: 10.1002/chem.201904446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Indexed: 11/12/2022]
Abstract
Slide-ring hydrogels using polyrotaxanes have been developed as highly tough soft materials. However, they have never been used as biomaterials because of the lack of biocompatibility. Meanwhile, self-healing hydrogels are expected to improve fatigue resistance and extend the period of use. However, owing to the lack of high mechanical strength, they are limited in their use as biomaterials. Here we first developed a biocompatible self-healing/slide-ring hydrogel using glycol chitosan and a water-soluble polyrotaxane. We obtained excellent mechanical toughness and biocompatibility to promote the proliferation of human umbilical vein endothelial cells (HUVECs) encapsulated in the hydrogel. Owing to the rapid self-healing property, the cell-encapsulating gels adjusted arbitrarily, maintaining good cell proliferation function. Therefore, slide-ring hydrogels enable the use of biomaterials for soft-tissue engineering.
Collapse
Affiliation(s)
- Ik Sung Cho
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tooru Ooya
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
219
|
Means AK, Grunlan MA. Modern Strategies To Achieve Tissue-Mimetic, Mechanically Robust Hydrogels. ACS Macro Lett 2019; 8:705-713. [PMID: 33912358 PMCID: PMC8077972 DOI: 10.1021/acsmacrolett.9b00276] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels are frequently used biomaterials due to their similarity in hydration and structure to biological tissues. However, their utility is limited by poor mechanical properties, namely, a lack of strength and stiffness that mimic that of tissues, particularly load-bearing tissues. Thus, numerous recent strategies have sought to enhance and tune these properties in hydrogels, including interpenetrating networks (IPNs), macromolecular cross-linking, composites, thermal conditioning, polyampholytes, and dual cross-linking. Individually, these approaches have achieved hydrogels with either high strength (σ f > 10 MPa), high stiffness (E > 1 MPa), or, less commonly, both high strength and stiffness (σ f > 10 MPa and E > 1 MPa). However, only certain unique combinations of these approaches have been able to synergistically achieve retention of a high, tissuelike water content as well as high strength and stiffness. Applying such methods to stimuli-responsive hydrogels has also produced robust, smart biomaterials. Overall, methods to achieve hydrogels that simultaneously mimic the hydration, strength, and stiffness of soft and load-bearing tissues have the potential to be used in a much broader range of biomedical applications.
Collapse
Affiliation(s)
- A. Kristen Means
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3120, United States
- Center for Remote Health Technologies Systems, Texas A&M University, College Station, Texas 77843-3120, United States
| |
Collapse
|