201
|
Zhou Z, Chen HT, Nitzan A, Subotnik JE. Nonadiabatic Dynamics in a Laser Field: Using Floquet Fewest Switches Surface Hopping To Calculate Electronic Populations for Slow Nuclear Velocities. J Chem Theory Comput 2020; 16:821-834. [PMID: 31951404 DOI: 10.1021/acs.jctc.9b00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigate two well-known approaches for extending the fewest switches surface hopping (FSSH) algorithm to periodic time-dependent couplings. The first formalism acts as if the instantaneous adiabatic electronic states were standard adiabatic states, which just happen to evolve in time. The second formalism replaces the role of the usual adiabatic states by the time-independent adiabatic Floquet states. For a set of modified Tully model problems, the Floquet FSSH (F-FSSH) formalism gives a better estimate for both transmission and reflection probabilities than the instantaneous adiabatic FSSH (IA-FSSH) formalism, especially for slow nuclear velocities. More importantly, only F-FSSH predicts the correct final scattering momentum. Finally, in order to use Floquet theory accurately, we find that it is crucial to account for the interference between wavepackets on different Floquet states. Our results should be of interest to all those interested in laser-induced molecular dynamics.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Hsing-Ta Chen
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Abraham Nitzan
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joseph Eli Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
202
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
203
|
Bellonzi N, Alguire E, Fatehi S, Shao Y, Subotnik JE. TD-DFT spin-adiabats with analytic nonadiabatic derivative couplings. J Chem Phys 2020; 152:044112. [PMID: 32007078 PMCID: PMC7043850 DOI: 10.1063/1.5126440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/22/2019] [Indexed: 11/14/2022] Open
Abstract
We present an algorithm for efficient calculation of analytic nonadiabatic derivative couplings between spin-adiabatic, time-dependent density functional theory states within the Tamm-Dancoff approximation. Our derivation is based on the direct differentiation of the Kohn-Sham pseudowavefunction using the framework of Ou et al. Our implementation is limited to the case of a system with an even number of electrons in a closed shell ground state, and we validate our algorithm against finite difference at an S1/T2 crossing of benzaldehyde. Through the introduction of a magnetic field spin-coupling operator, we break time-reversal symmetry to generate complex valued nonadiabatic derivative couplings. Although the nonadiabatic derivative couplings are complex valued, we find that a phase rotation can generate an almost entirely real-valued derivative coupling vector for the case of benzaldehyde.
Collapse
Affiliation(s)
- Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Shervin Fatehi
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
204
|
Francés‐Monerris A, Carmona‐García J, Acuña AU, Dávalos JZ, Cuevas CA, Kinnison DE, Francisco JS, Saiz‐Lopez A, Roca‐Sanjuán D. Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Antonio Francés‐Monerris
- Université de LorraineCNRS, LPCT 54000 Nancy France
- Departamento de Química FísicaUniversitat de València 46100 Burjassot Spain
| | | | - A. Ulises Acuña
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Juan Z. Dávalos
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | | - Joseph S. Francisco
- Department of Earth and Environmental Sciences and Department of ChemistryUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Alfonso Saiz‐Lopez
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | |
Collapse
|
205
|
Francés‐Monerris A, Carmona‐García J, Acuña AU, Dávalos JZ, Cuevas CA, Kinnison DE, Francisco JS, Saiz‐Lopez A, Roca‐Sanjuán D. Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angew Chem Int Ed Engl 2020; 59:7605-7610. [DOI: 10.1002/anie.201915656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Université de LorraineCNRS, LPCT 54000 Nancy France
- Departamento de Química FísicaUniversitat de València 46100 Burjassot Spain
| | | | - A. Ulises Acuña
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Juan Z. Dávalos
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | | - Joseph S. Francisco
- Department of Earth and Environmental Sciences and Department of ChemistryUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Alfonso Saiz‐Lopez
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | |
Collapse
|
206
|
Heller ER, Richardson JO. Instanton formulation of Fermi’s golden rule in the Marcus inverted regime. J Chem Phys 2020; 152:034106. [DOI: 10.1063/1.5137823] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eric R. Heller
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
207
|
Abstract
The conical intersection dynamics of thiophenol is studied theoretically using the stimulated X-ray Raman imaging (SXRI) technique. SXRI employs a hard X-ray narrowband/broadband hybrid probe field and provides a real-time and real-space image of the passage through conical intersections. The signal, calculated using the minimal-coupling radiation/matter Hamiltonian, carries the phase information, and the real-space image of the transition charge density can be reconstructed by its Fourier transform. The two conical intersections (S2/S1 (11ππ*/1πσ*) and S1/S0 (1πσ*/S0)) can be distinguished and identified by the diffraction patterns in the level crossing regimes.
Collapse
Affiliation(s)
- Daeheum Cho
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Shaul Mukamel
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| |
Collapse
|
208
|
|
209
|
Ibele LM, Curchod BFE. A molecular perspective on Tully models for nonadiabatic dynamics. Phys Chem Chem Phys 2020; 22:15183-15196. [DOI: 10.1039/d0cp01353f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a series of standardized molecular tests for nonadiabatic dynamics, reminiscent of the one-dimensional Tully models proposed in 1990.
Collapse
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | |
Collapse
|
210
|
Mai S, González L. Identification of important normal modes in nonadiabatic dynamics simulations by coherence, correlation, and frequency analyses. J Chem Phys 2019; 151:244115. [DOI: 10.1063/1.5129335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
211
|
Peters LM, Kussmann J, Ochsenfeld C. Nonadiabatic Molecular Dynamics on Graphics Processing Units: Performance and Application to Rotary Molecular Motors. J Chem Theory Comput 2019; 15:6647-6659. [PMID: 31763834 PMCID: PMC6909237 DOI: 10.1021/acs.jctc.9b00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 11/29/2022]
Abstract
Nonadiabatic molecular dynamics (NAMD) simulations of molecular systems require the efficient evaluation of excited-state properties, such as energies, gradients, and nonadiabatic coupling vectors. Here, we investigate the use of graphics processing units (GPUs) in addition to central processing units (CPUs) to efficiently calculate these properties at the time-dependent density functional theory (TDDFT) level of theory. Our implementation in the FermiONs++ program package uses the J-engine and a preselective screening procedure for the calculation of Coulomb and exchange kernels, respectively. We observe good speed-ups for small and large molecular systems (comparable to those observed in ground-state calculations) and reduced (down to sublinear) scaling behavior with respect to the system size (depending on the spatial locality of the investigated excitation). As a first illustrative application, we present efficient NAMD simulations of a series of newly designed light-driven rotary molecular motors and compare their S1 lifetimes. Although all four rotors show different S1 excitation energies, their ability to rotate upon excitation is conserved, making the series an interesting starting point for rotary molecular motors with tunable excitation energies.
Collapse
Affiliation(s)
- Laurens
D. M. Peters
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
212
|
Park JW. Analytical Gradient Theory for Quasidegenerate N-Electron Valence State Perturbation Theory (QD-NEVPT2). J Chem Theory Comput 2019; 16:326-339. [DOI: 10.1021/acs.jctc.9b00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
213
|
Mai S, González L. Unconventional two-step spin relaxation dynamics of [Re(CO) 3(im)(phen)] + in aqueous solution. Chem Sci 2019; 10:10405-10411. [PMID: 32110331 PMCID: PMC6988600 DOI: 10.1039/c9sc03671g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Changes of molecular spin are ubiquitous in chemistry and biology. Among spin flip processes, one of the fastest is intersystem crossing (ISC) in transition metal complexes. Here, we investigate the spin relaxation dynamics and emission spectrum of [Re(CO)3(im)(phen)]+ (im = imidazole, phen = phenanthroline) using extensive full-dimensional excited-state dynamics simulations in explicit aqueous solution. Contrary to what has been observed in other transition metal complexes, the transition from the singlet to triplet states occurs via a two-step process, with clearly separable electronic and nuclear-driven components with two different time scales. The initially excited electronic wave function is a "molecular spin-orbit wave packet" that evolves almost instantaneously, with an 8 fs time constant, into an approximate 25 : 75 singlet-to-triplet equilibrium. Surprisingly, this ISC process is an order of magnitude faster than it was previously documented for this and other rhenium(i) carbonyl diimine complexes from emission spectra. Simulations including explicit laser field interactions evidence that few-cycle UV laser pulses are required to follow the creation and evolution of such molecular spin-orbit wave packets. The analysis of the dynamics also reveals a retarded ISC component, with a time constant of 420 fs, which can be explained invoking intramolecular vibrational energy redistribution. The emission spectrum is shown to be characterized by ISC convoluted with internal conversion and vibrational relaxation. These results provide fundamental understanding of ultrafast intersystem crossing in transition metal complexes.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| |
Collapse
|
214
|
Zhou W, Mandal A, Huo P. Quasi-Diabatic Scheme for Nonadiabatic On-the-Fly Simulations. J Phys Chem Lett 2019; 10:7062-7070. [PMID: 31665889 DOI: 10.1021/acs.jpclett.9b02747] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We use the quasi-diabatic (QD) propagation scheme to perform on-the-fly nonadiabatic simulations of the photodynamics of ethylene. The QD scheme enables a seamless interface between accurate diabatic-based quantum dynamics approaches and adiabatic electronic structure calculations, explicitly avoiding any efforts to construct global diabatic states or reformulate the diabatic dynamics approach to the adiabatic representation. Using the partial linearized path-integral approach and the symmetrical quasi-classical approach as the diabatic dynamics methods, the QD propagation scheme enables direct nonadiabatic simulation with complete active space self-consistent field on-the-fly electronic structure calculations. The population dynamics obtained from both approaches are in a close agreement with the quantum wavepacket-based method and outperform the widely used trajectory surface-hopping approach. Further analysis of the ethylene photodeactivation pathways demonstrates the correct predictions of competing processes of nonradiative relaxation mechanism through various conical intersections. This work provides the foundation of using accurate diabatic dynamics approaches and on-the-fly adiabatic electronic structure information to perform ab initio nonadiabatic simulation.
Collapse
Affiliation(s)
- Wanghuai Zhou
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science , Hubei University of Automotive Technology , Shiyan , Hubei 442002 , People's Republic of China
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Arkajit Mandal
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Pengfei Huo
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| |
Collapse
|
215
|
Guan Y, Guo H, Yarkony DR. Extending the Representation of Multistate Coupled Potential Energy Surfaces To Include Properties Operators Using Neural Networks: Application to the 1,21A States of Ammonia. J Chem Theory Comput 2019; 16:302-313. [DOI: 10.1021/acs.jctc.9b00898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
216
|
Schmidt B, Klein R, Cancissu Araujo L. WavePacket: A Matlab package for numerical quantum dynamics. III. Quantum-classical simulations and surface hopping trajectories. J Comput Chem 2019; 40:2677-2688. [PMID: 31411345 DOI: 10.1002/jcc.26045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/06/2022]
Abstract
WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I (Schmidt and Lorenz, Comput. Phys. Commun. 2017, 213, 223] and Part II (Schmidt and Hartmann, Comput. Phys. Commun. 2018, 228, 229] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagation techniques to WavePacket. There classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces, trajectories may switch between them. To model these transitions, two classes of stochastic algorithms have been implemented: (1) Tully's fewest switches surface hopping and (2) Landau-Zener-based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring nonadiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.1.0, which is essentially an object-oriented rewrite of previous versions, allowing to perform fully classical, quantum-classical and quantum-mechanical simulations on an equal footing, that is, for the same physical system described by the same WavePacket input. The software package is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics are available. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Burkhard Schmidt
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195, Berlin, Germany
| | - Rupert Klein
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195, Berlin, Germany
| | | |
Collapse
|
217
|
Taffet EJ, Lee BG, Toa ZSD, Pace N, Rumbles G, Southall J, Cogdell RJ, Scholes GD. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J Phys Chem B 2019; 123:8628-8643. [PMID: 31553605 DOI: 10.1021/acs.jpcb.9b04027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S2) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S2) and lowest-energy dark (S1) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowest-lying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S2 to S1, in the sense that these two states attain energetic degeneracy along this pathway.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Benjamin G Lee
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Natalie Pace
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
218
|
Wang H, Odelius M, Prendergast D. A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation. J Chem Phys 2019; 151:124106. [PMID: 31575206 DOI: 10.1063/1.5116816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UV pump-XUV/X-ray probe measurements have been successfully applied in the study of photo-induced chemical reactions. Although rich element-specific electronic structure information is accessible within XUV/X-ray (inner-shell) absorption spectra, it can be difficult to interpret the chemistry directly from the spectrum without supporting theoretical simulations. A multireference method to completely simulate UV pump-XUV/X-ray probe measurement has been developed and applied to study the methyl iodide photodissociation process. Multireference, fewest-switches surface hopping (FSSH) trajectories were used to explore the coupled electronic and ionic dynamics upon photoexcitation of methyl iodide. Interpretation of previous measurements is provided by associated multireference, restricted active space, inner-shell spectral simulations. This combination of multireference FSSH trajectories and XUV spectra provides an interpretation of transient features appearing in previous measurements within the first 100 fs after photoexcitation and validates the significant branching ratio in the final excited-state population. This methodology should prove useful for interpretation of the increasing number of inner-shell probe studies of molecular excited states or for directing new experiments toward interesting regions of the potential energy landscape.
Collapse
Affiliation(s)
- Han Wang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - David Prendergast
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
219
|
Westermayr J, Gastegger M, Menger MFSJ, Mai S, González L, Marquetand P. Machine learning enables long time scale molecular photodynamics simulations. Chem Sci 2019; 10:8100-8107. [PMID: 31857878 PMCID: PMC6849489 DOI: 10.1039/c9sc01742a] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023] Open
Abstract
Photo-induced processes are fundamental in nature but accurate simulations of their dynamics are seriously limited by the cost of the underlying quantum chemical calculations, hampering their application for long time scales. Here we introduce a method based on machine learning to overcome this bottleneck and enable accurate photodynamics on nanosecond time scales, which are otherwise out of reach with contemporary approaches. Instead of expensive quantum chemistry during molecular dynamics simulations, we use deep neural networks to learn the relationship between a molecular geometry and its high-dimensional electronic properties. As an example, the time evolution of the methylenimmonium cation for one nanosecond is used to demonstrate that machine learning algorithms can outperform standard excited-state molecular dynamics approaches in their computational efficiency while delivering the same accuracy.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| | - Michael Gastegger
- Machine Learning Group , Technical University of Berlin , 10587 Berlin , Germany
| | - Maximilian F S J Menger
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Sebastian Mai
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| | - Philipp Marquetand
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| |
Collapse
|
220
|
Fdez. Galván I, Vacher M, Alavi A, Angeli C, Aquilante F, Autschbach J, Bao JJ, Bokarev SI, Bogdanov NA, Carlson RK, Chibotaru LF, Creutzberg J, Dattani N, Delcey MG, Dong SS, Dreuw A, Freitag L, Frutos LM, Gagliardi L, Gendron F, Giussani A, González L, Grell G, Guo M, Hoyer CE, Johansson M, Keller S, Knecht S, Kovačević G, Källman E, Li Manni G, Lundberg M, Ma Y, Mai S, Malhado JP, Malmqvist PÅ, Marquetand P, Mewes SA, Norell J, Olivucci M, Oppel M, Phung QM, Pierloot K, Plasser F, Reiher M, Sand AM, Schapiro I, Sharma P, Stein CJ, Sørensen LK, Truhlar DG, Ugandi M, Ungur L, Valentini A, Vancoillie S, Veryazov V, Weser O, Wesołowski TA, Widmark PO, Wouters S, Zech A, Zobel JP, Lindh R. OpenMolcas: From Source Code to Insight. J Chem Theory Comput 2019; 15:5925-5964. [DOI: 10.1021/acs.jctc.9b00532] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Fdez. Galván
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Morgane Vacher
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Ali Alavi
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Francesco Aquilante
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Nikolay A. Bogdanov
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Rebecca K. Carlson
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Liviu F. Chibotaru
- Theory of Nanomaterials Group, University of Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Joel Creutzberg
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Nike Dattani
- Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Mickaël G. Delcey
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
| | - Leon Freitag
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, and Instituto de Investigación Química “Andrés M. del Río”, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Angelo Giussani
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Meiyuan Guo
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marcus Johansson
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Keller
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Goran Kovačević
- Division of Materials Physics, Ruđer Bošković Institute, P.O.B. 180, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Erik Källman
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Giovanni Li Manni
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Yingjin Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag
102904, Auckland 0632, New Zealand
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- USIAS and Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, 67034 Strasbourg, France
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Stein
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lasse Kragh Sørensen
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Mihkel Ugandi
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Steven Vancoillie
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Valera Veryazov
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Oskar Weser
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Tomasz A. Wesołowski
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Per-Olof Widmark
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Wouters
- Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium
| | - Alexander Zech
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - J. Patrick Zobel
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Roland Lindh
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
221
|
Gómez S, Heindl M, Szabadi A, González L. From Surface Hopping to Quantum Dynamics and Back. Finding Essential Electronic and Nuclear Degrees of Freedom and Optimal Surface Hopping Parameters. J Phys Chem A 2019; 123:8321-8332. [DOI: 10.1021/acs.jpca.9b06103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sandra Gómez
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - András Szabadi
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
222
|
Zobel JP, González L. Nonadiabatic Dynamics Simulation Predict Intersystem Crossing in Nitroaromatic Molecules on a Picosecond Time Scale. CHEMPHOTOCHEM 2019; 3:833-845. [PMID: 31681833 PMCID: PMC6813632 DOI: 10.1002/cptc.201900108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Previous time-resolved spectroscopic experiments and static quantum-chemical calculations attributed nitronaphthalene derivatives one of the fastest time scales for intersystem crossing within organic molecules, reaching the 100 fs mark. Nonadiabatic dynamics simulations on three nitronaphthalene derivatives challenge this view, showing that the experimentally observed ∼100 fs process corresponds to internal conversion in the singlet manifolds. Intersystem crossing, instead, takes place on a longer time scale of ∼1 ps. The dynamics simulations further reveal that the spin transitions occur via two distinct pathways with different contribution for the three systems, which are determined by electronic factors and the torsion of the nitro group. This study, therefore, indicates that the existence of sub-picosecond intersystem crossing in other nitroaromatic molecules should be questioned.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Division of Theoretical Chemistry, KemicentrumLund UniversityP.O. Box 124SE-221 00LundSweden
| | - Leticia González
- Institute of Theoretical ChemistryUniversity of ViennaWähringer Straße 17A-1090ViennaAustria
| |
Collapse
|
223
|
Ruddock JM, Yong H, Stankus B, Du W, Goff N, Chang Y, Odate A, Carrascosa AM, Bellshaw D, Zotev N, Liang M, Carbajo S, Koglin J, Robinson JS, Boutet S, Kirrander A, Minitti MP, Weber PM. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. SCIENCE ADVANCES 2019; 5:eaax6625. [PMID: 31523713 PMCID: PMC6731073 DOI: 10.1126/sciadv.aax6625] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/03/2019] [Indexed: 05/03/2023]
Abstract
We explore the photo-induced kinetics of 1,3-cyclohexadiene upon excitation at 200 nm to the 3p state by ultrafast time-resolved, gas-phase x-ray scattering using the Linac Coherent Light Source. Analysis of the scattering anisotropy reveals that the excitation leads to the 3px and 3py Rydberg electronic states, which relax to the ground state with a time constant of 208 ± 11 fs. In contrast to the well-studied 266 nm excitation, at 200 nm the majority of the molecules (76 ± 3%) relax to vibrationally hot cyclohexadiene in the ground electronic state. A subsequent reaction on the ground electronic state surface leads from the hot cyclohexadiene to 1,3,5-hexatriene, with rates for the forward and backward reactions of 174 ± 13 and 355 ± 45 ps, respectively. The scattering pattern of the final hexatriene product reveals a thermal distribution of rotamers about the carbon-carbon single bonds.
Collapse
Affiliation(s)
- Jennifer M. Ruddock
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Haiwang Yong
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Brian Stankus
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Wenpeng Du
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Nathan Goff
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Yu Chang
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Asami Odate
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Andrés Moreno Carrascosa
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Darren Bellshaw
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Nikola Zotev
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mengning Liang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Sergio Carbajo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Jason Koglin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Joseph S. Robinson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Michael P. Minitti
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Peter M. Weber
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| |
Collapse
|
224
|
Valentine AJS, Li X. Toward the evaluation of intersystem crossing rates with variational relativistic methods. J Chem Phys 2019; 151:084107. [PMID: 31470709 DOI: 10.1063/1.5113815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The change in electronic state from one spin multiplicity to another, known as intersystem crossing, occurs in molecules via the relativistic phenomenon of spin-orbit coupling. Current means of estimating intersystem crossing rates rely on the perturbative evaluation of spin-orbit coupling effects. This perturbative approach, valid in lighter atoms where spin-orbit coupling is weaker, is expected to break down for heavier elements where relativistic effects become dominant. Methods which incorporate spin-orbit effects variationally, such as the exact-two-component (X2C) method, will be necessary to treat this strong-coupling regime. We present a novel procedure which produces a diabatic basis of spin-pure electronic states coupled by spin-orbit terms, generated from fully variational relativistic calculations. This method is implemented within X2C using time-dependent density-functional theory and is compared to results from a perturbative relativistic study in the weak spin-orbit coupling regime. Additional calculations on a more strongly spin-orbit-coupled [UO2Cl4]2- complex further illustrate the strengths of this method. This procedure will be valuable in the estimation of intersystem crossing rates within strongly spin-coupled species.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
225
|
Chang BY, Shin S, Malinovsky VS, Sola IR. Grid-Based Ehrenfest Model To Study Electron-Nuclear Processes. J Phys Chem A 2019; 123:7171-7176. [PMID: 31314529 DOI: 10.1021/acs.jpca.9b05214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two-dimensional electron-nuclear Schrödinger equation using soft-core Coulomb potentials has been a cornerstone for modeling and predicting the behavior of one-active-electron diatomic molecules, particularly for processes where both bound and continuum states are important. The model, however, is computationally expensive to extend to more electron or nuclear coordinates. Here we propose use of the Ehrenfest approach to treat the nuclear motion, while the electronic motion is still solved by quantum propagation on a grid. In this work, we present results for a one-dimensional treatment of H2+, where the quantum and semiclassical dynamics can be directly compared, showing remarkably good agreement for a variety of situations. The advantage of the Ehrenfest approach is that it can be easily extended to treat as many nuclear degrees of freedom as needed.
Collapse
Affiliation(s)
- Bo Y Chang
- School of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokmin Shin
- School of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | | | - Ignacio R Sola
- Departamento de Química Física , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
226
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
227
|
Plasser F, Mai S, Fumanal M, Gindensperger E, Daniel C, González L. Strong Influence of Decoherence Corrections and Momentum Rescaling in Surface Hopping Dynamics of Transition Metal Complexes. J Chem Theory Comput 2019; 15:5031-5045. [DOI: 10.1021/acs.jctc.9b00525] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Felix Plasser
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, U.K
| | - Sebastian Mai
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| | - Maria Fumanal
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR7177 CNRS/Université de Strasbourg 4 Rue Blaise Pascal BP296/R8, F-67008 Strasbourg, France
| | - Etienne Gindensperger
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR7177 CNRS/Université de Strasbourg 4 Rue Blaise Pascal BP296/R8, F-67008 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR7177 CNRS/Université de Strasbourg 4 Rue Blaise Pascal BP296/R8, F-67008 Strasbourg, France
| | - Leticia González
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| |
Collapse
|
228
|
Abedi M, Pápai M, Mikkelsen KV, Henriksen NE, Møller KB. Mechanism of Photoinduced Dihydroazulene Ring-Opening Reaction. J Phys Chem Lett 2019; 10:3944-3949. [PMID: 31264882 DOI: 10.1021/acs.jpclett.9b01522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoinduced ring-opening reaction is a key process in the functioning of dihydroazulene/vinylheptafulvene (DHA/VHF) photoswitches. Over the years, the mechanism of this reaction has been extensively debated. Herein, by means of nonadiabatic trajectory dynamics simulations and quantum chemistry calculations, we present the first detailed and comprehensive investigation on the mechanism of the photoinduced ring-opening reaction of DHA. The results show the crucial role of the excited-state ring planarization process for the bond breaking. Our dynamics simulations show that the DHA ring opening is an ultrafast reaction that does not follow exponential kinetics but exhibits ballistic dynamics. Upon photoexcitation, the planarization occurs within 300-500 fs. This leads to the ring-opening reaction and concurrent decay of the molecule to the ground state within 100 fs through an S1 → S0 internal conversion process toward forming the VHF isomer. These results are consistent with previous ultrafast time-resolved experiments and lead to a thorough understanding of the DHA/VHF photoconversion.
Collapse
Affiliation(s)
- Mostafa Abedi
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Mátyás Pápai
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Niels E Henriksen
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Klaus B Møller
- Department of Chemistry , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| |
Collapse
|
229
|
Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat Chem 2019; 11:716-721. [PMID: 31285542 DOI: 10.1038/s41557-019-0291-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
The coherence and dephasing of vibrational motions of molecules constitute an integral part of chemical dynamics, influence material properties and underpin schemes to control chemical reactions. Considerable progress has been made in understanding vibrational coherence through spectroscopic measurements, but precise, direct measurement of the structure of a vibrating excited-state polyatomic organic molecule has remained unworkable. Here, we measure the time-evolving molecular structure of optically excited N-methylmorpholine through scattering with ultrashort X-ray pulses. The scattering signals are corrected for the differences in electron density in the excited electronic state of the molecule in comparison to the ground state. The experiment maps the evolution of the molecular geometry with femtosecond resolution, showing coherent motion that survives electronic relaxation and seems to persist for longer than previously seen using other methods.
Collapse
|
230
|
Park JW. Single-State Single-Reference and Multistate Multireference Zeroth-Order Hamiltonians in MS-CASPT2 and Conical Intersections. J Chem Theory Comput 2019; 15:3960-3973. [DOI: 10.1021/acs.jctc.9b00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
231
|
Mai S, Atkins AJ, Plasser F, González L. The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde. J Chem Theory Comput 2019; 15:3470-3480. [DOI: 10.1021/acs.jctc.9b00282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straß 17, 1090 Vienna, Austria
| | - Andrew J. Atkins
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straß 17, 1090 Vienna, Austria
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straß 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straß 17, 1090 Vienna, Austria
| |
Collapse
|
232
|
|
233
|
Mai S, Wolf AP, González L. Curious Case of 2-Selenouracil: Efficient Population of Triplet States and Yet Photostable. J Chem Theory Comput 2019; 15:3730-3742. [DOI: 10.1021/acs.jctc.9b00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Anna-Patricia Wolf
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
234
|
Peng J, Xie Y, Hu D, Lan Z. Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics. J Chem Phys 2019; 150:164126. [PMID: 31042919 DOI: 10.1063/1.5079426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce a good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. It improves the result accuracy in many cases, while its influence may also be minor for other cases.
Collapse
Affiliation(s)
- Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
235
|
Mignolet B, Curchod BFE. Excited-State Molecular Dynamics Triggered by Light Pulses—Ab Initio Multiple Spawning vs Trajectory Surface Hopping. J Phys Chem A 2019; 123:3582-3591. [DOI: 10.1021/acs.jpca.9b00940] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSYS, B6c, University of Liège, B4000 Liège, Belgium
| | - Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
236
|
|
237
|
Aguilera-Porta N, Corral I, Munoz-Muriedas J, Granucci G. Excited state dynamics of some nonsteroidal anti-inflammatory drugs: A surface-hopping investigation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
238
|
Scheit S, Goswami S, Meyer HD, Köppel H. Fully quantal treatment of nonadiabatic molecular photodynamics: General considerations and application to the benzene cation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
239
|
Bellonzi N, Medders GR, Epifanovsky E, Subotnik JE. Configuration interaction singles with spin-orbit coupling: Constructing spin-adiabatic states and their analytical nuclear gradients. J Chem Phys 2019; 150:014106. [PMID: 30621414 DOI: 10.1063/1.5045484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
For future use in modeling photoexcited dynamics and intersystem crossing, we calculate spin-adiabatic states and their analytical nuclear gradients within configuration interaction singles theory. These energies and forces should be immediately useful for surface hopping dynamics, which are natural within an adiabatic framework. The resulting code has been implemented within the Q-Chem software and preliminary results suggest that the additional cost of including spin-orbit coupling within the singles-singles block is not large.
Collapse
Affiliation(s)
- Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregory R Medders
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
240
|
Lee S, Kim E, Lee S, Choi CH. Fast Overlap Evaluations for Nonadiabatic Molecular Dynamics Simulations: Applications to SF-TDDFT and TDDFT. J Chem Theory Comput 2019; 15:882-891. [DOI: 10.1021/acs.jctc.8b01049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seunghoon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Eunji Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sangyoub Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
241
|
Nazari M, Bösch CD, Rondi A, Francés-Monerris A, Marazzi M, Lognon E, Gazzetto M, Langenegger SM, Häner R, Feurer T, Monari A, Cannizzo A. Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys Chem Chem Phys 2019; 21:16981-16988. [DOI: 10.1039/c9cp03147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proper interpretation of phenanthrene's and similar PAHs’ photocycle relies on two higher excited state relaxations due to the simultaneous presence of non-adiabatic and adiabatic transitions.
Collapse
Affiliation(s)
- M. Nazari
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - C. D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - A. Rondi
- Institute of Applied Physics
- University of Bern
- Switzerland
| | | | - M. Marazzi
- Université de Lorraine & CNRS
- Nancy
- France
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
| | - E. Lognon
- Université de Lorraine & CNRS
- Nancy
- France
| | - M. Gazzetto
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - S. M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - R. Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - T. Feurer
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - A. Monari
- Université de Lorraine & CNRS
- Nancy
- France
| | - A. Cannizzo
- Institute of Applied Physics
- University of Bern
- Switzerland
| |
Collapse
|
242
|
Zobel JP, Nogueira JJ, González L. Finite-temperature Wigner phase-space sampling and temperature effects on the excited-state dynamics of 2-nitronaphthalene. Phys Chem Chem Phys 2019; 21:13906-13915. [DOI: 10.1039/c8cp03273d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The concept of finite temperature Wigner phase-space sampling allowing the population of vibrationally excited states is introduced and employed to study temperature effects on the absorption spectrum of 2-nitronaphtalene (2NN) and its relaxation dynamics.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Juan J. Nogueira
- Institute of Theoretical Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Leticia González
- Institute of Theoretical Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| |
Collapse
|
243
|
Li X, Hu D, Xie Y, Lan Z. Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics. J Chem Phys 2018; 149:244104. [DOI: 10.1063/1.5048049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Xusong Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deping Hu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
244
|
Plasser F, Gómez S, Menger MFSJ, Mai S, González L. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys Chem Chem Phys 2018; 21:57-69. [PMID: 30306987 DOI: 10.1039/c8cp05662e] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report an implementation of the linear vibronic coupling (LVC) model within the surface hopping dynamics approach and present utilities for parameterizing this model in a blackbox fashion. This results in an extremely efficient method to obtain qualitative and even semi-quantitative information about the photodynamical behavior of a molecule, and provides a new route toward benchmarking the results of surface hopping computations. The merits and applicability of the method are demonstrated in a number of applications. First, the method is applied to the SO2 molecule showing that it is possible to compute its absorption spectrum beyond the Condon approximation, and that all the main features and timescales of previous on-the-fly dynamics simulations of intersystem crossing are reproduced while reducing the computational effort by three orders of magnitude. The dynamics results are benchmarked against exact wavepacket propagations on the same LVC potentials and against a variation of the electronic structure level. Four additional test cases are presented to exemplify the broader applicability of the model. The photodynamics of the isomeric adenine and 2-aminopurine molecules are studied and it is shown that the LVC model correctly predicts ultrafast decay in the former and an extended excited-state lifetime in the latter. Futhermore, the method correctly predicts ultrafast intersystem crossing in the modified nucleobase 2-thiocytosine and its absence in 5-azacytosine while it fails to describe the ultrafast internal conversion to the ground state in the latter.
Collapse
Affiliation(s)
- Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | | | | | |
Collapse
|
245
|
Xie Y, Zheng J, Lan Z. Performance evaluation of the symmetrical quasi-classical dynamics method based on Meyer-Miller mapping Hamiltonian in the treatment of site-exciton models. J Chem Phys 2018; 149:174105. [DOI: 10.1063/1.5047002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yu Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Zhenggang Lan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
246
|
Menger MFSJ, Plasser F, Mennucci B, González L. Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme. J Chem Theory Comput 2018; 14:6139-6148. [PMID: 30299941 DOI: 10.1021/acs.jctc.8b00763] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development and the implementation of an exciton approach that allows ab initio nonadiabatic dynamics simulations of electronic excitation energy transfer in multichromophoric systems. For the dynamics, a trajectory-based strategy is used within the surface hopping formulation. The approach features a consistent hybrid formulation that allows the construction of potential energy surfaces and gradients by combining quantum mechanics and molecular mechanics within an electrostatic embedding scheme. As an application, the study of a molecular dyad consisting of a covalently bound BODIPY moiety and a tetrathiophene group is presented using time-dependent density functional theory (TDDFT). The results obtained with the exciton model are compared to previously performed full TDDFT dynamics of the same system. Our results show excellent agreement with the full TDDFT results, indicating that the couplings that lead to excitation energy transfer (EET) are dominated by Coulomb interaction terms and that charge-transfer states are not necessary to properly describe the nonadiabatic dynamics of the system. The exciton model also reveals ultrafast coherent oscillations of the excitation between the two units in the dyad, which occur during the first 50 fs.
Collapse
Affiliation(s)
- Maximilian F S J Menger
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria.,Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Felix Plasser
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria.,Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Leticia González
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria
| |
Collapse
|
247
|
Moreno-Armenta MG, Pearce HR, Winter P, Cooksy AL. Computational search for metastable high-spin C5Hn (n = 4, 5, 6) species. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
248
|
Schnappinger T, Marazzi M, Mai S, Monari A, González L, de Vivie-Riedle R. Intersystem Crossing as a Key Component of the Nonadiabatic Relaxation Dynamics of Bithiophene and Terthiophene. J Chem Theory Comput 2018; 14:4530-4540. [DOI: 10.1021/acs.jctc.8b00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Schnappinger
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Marco Marazzi
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| |
Collapse
|