201
|
Falconar AKI, Romero-Vivas CME. Simple Prognostic Criteria can Definitively Identify Patients who Develop Severe Versus Non-Severe Dengue Disease, or Have Other Febrile Illnesses. J Clin Med Res 2012; 4:33-44. [PMID: 22383925 PMCID: PMC3279499 DOI: 10.4021/jocmr694w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2011] [Indexed: 11/26/2022] Open
Abstract
Background Severe dengue disease (SDD) (DHF/DSS: dengue hemorrhagic fever/dengue shock syndrome) results from either primary or secondary dengue virus (DENV) infections, which occur 4 - 6 days after the onset of fever. As yet, there are no definitive clinical or hematological criteria that can specifically identify SDD patients during the early acute febrile-phase of disease (day 0 - 3: < 72 hours). This study was performed during a SDD (DHF/DSS) epidemic to: 1) identify the DENV serotypes that caused SDD during primary or secondary DENV infections; 2) identify simple clinical and hematological criteria that could significantly discriminate between patients who subsequently developed SDD versus non-SDD (N-SDD), or had a non-DENV fever of unknown origin (FUO) during day 0 - 3 of fever; 3) assess whether DENV serotype co-infections resulted in SDD. Methods First serum samples, with clinical and hematological criteria, were collected from 100 patients during the early acute febrile-phase (day 0 - 3: < 72 hours), assessed for DENV or FUO infections by IgM- and IgG-capture ELISAs on paired serum samples and by DENV isolations, and subsequently graded as SDD, N-SDD or FUO patients. Results In this study: 1) Thirty-three patients had DENV infections, predominantly secondary DENV-2 infections, including each SDD (DHF/DSS) case; 2) Secondary DENV-2/-3 and DENV-2/-4 serotype co-infections however resulted in N-SDD; 3) Each patient who subsequently developed SDD, but none of the others, displayed three clinical criteria: abdominal pain, conjunctival injection and veni-puncture bleeding, therefore each of these criteria provided definitively significant prognostic (P < 0.001) values; 4) Petechia, positive tourniquet tests and hepatomegaly, and neutrophilia or leukopenia also significantly identified those who: a) subsequently developed SDD versus N-SDD, or had a FUO; b) subsequently developed SDD versus N-SDD; c) subsequently developed N-SDD versus FUOs, respectively. Conclusions This is the first report of simple definitively prognostic criteria for SDD patients, including the first assessment and confirmation of conjunctival injection. The three definitive clinical criteria used alone, or supported by the other four criteria, could be essential for specifically identifying those patients needing prompt hospital-based therapies to lessen or avert SDD, without unnecessary hospitalization of the other patients. Keywords Dengue virus; Severe dengue; Dengue fever; Diagnostic; Criteria; Hemorrhage; Shock
Collapse
Affiliation(s)
- Andrew K I Falconar
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundacion Universidad del Norte Km5 Antigua Via a Puerto Colombia, Barranquilla, Colombia, South America
| | | |
Collapse
|
202
|
Viral Genomics: Implications for the Understanding and Control of Emerging Viral Diseases. ADVANCES IN MICROBIAL ECOLOGY 2012. [PMCID: PMC7120675 DOI: 10.1007/978-1-4614-2182-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent decades, many infectious diseases have significantly increased in incidence and/or geographic range, in some cases impacting heavily on human, animal or plant populations. Some of these ‘emerging infectious diseases’ are associated with pathogens that have appeared in populations for the first time as a result of cross-species transmission (e.g. human immunodeficiency virus—acquired immunodeficiency syndrome (HIV-AIDS), severe acute respiratory syndrome (SARS)), while others were previously known but are rapidly increasing in incidence or geographic range as a result of underlying epidemiological changes (e.g. multi-drug resistant Staphylococcus aureus (MRSA) infection, dengue, West Nile encephalitis, foot and mouth disease, cassava mosaic disease). The latter include prominent diseases as tuberculosis, malaria and yellow fever that were once on the decline but are now ‘re-emerging diseases’.
Collapse
|
203
|
Recent emergence of dengue virus serotype 4 in French Polynesia results from multiple introductions from other South Pacific Islands. PLoS One 2011; 6:e29555. [PMID: 22216313 PMCID: PMC3247278 DOI: 10.1371/journal.pone.0029555] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/30/2011] [Indexed: 12/01/2022] Open
Abstract
Background Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. Methodology/Principal Findings Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009–2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. Conclusions/Significance This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs.
Collapse
|
204
|
IFN-γ production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner. PLoS Negl Trop Dis 2011; 5:e1449. [PMID: 22206036 PMCID: PMC3243710 DOI: 10.1371/journal.pntd.0001449] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 11/06/2011] [Indexed: 12/22/2022] Open
Abstract
Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ−/− mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40−/− and IL-18−/− infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40−/− mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ−/− mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2−/− mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection. Dengue fever and its severe forms, dengue hemorrhagic fever and dengue shock syndrome, are the most prevalent mosquito-borne diseases on Earth. It is caused by one of four serotypes of Dengue virus (DENV-1–4). At present, there are no vaccines or specific therapies for dengue and treatment is supportive. Host response to infection is also poorly understood. Here, using a DENV-2 strain that causes a disease that resembles the severe manifestations of Dengue in humans, we demonstrate that IFN-γ production is essential for the host to deal with infection. We have also shown that IFN-γ production during DENV infection is controlled by the cytokines IL-12 and IL-18. Finally, we show that one of the mechanisms triggered by IFN-γ during host response to DENV infection is the production of Nitric Oxide, an important virustatic metabolite. Mice deficient for each of these molecules present marked increase in DENV replication after infection and more severe disease. Altogether, this study demonstrates that the IL-12/IL-18-IFN-γ-NO axis plays a major role in host ability to deal with primary DENV infection. These data bear relevance to the understanding of antiviral immune responses during Dengue disease and may aid in the rational design of vaccines against DENV infection.
Collapse
|
205
|
Dengue: a newly emerging viral infection in Andaman and Nicobar Islands, India. Epidemiol Infect 2011; 140:1920-4. [DOI: 10.1017/s0950268811002500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYPrior to 2009 dengue fever had not been reported in the Andaman and Nicobar archipelago. In 2009, a few patients with dengue fever-like illness were reported, some of whom tested positive for dengue antibodies. In 2010, 516 suspected cases were reported, including some with dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS); 80 (15·5%) were positive for dengue antibodies. DENV RNA was detected in five patients and PCR-based typing showed that three of these belonged to serotype 1 and two to serotype 2. This was confirmed by sequence typing. Two clones of dengue virus, one belonging to serotype 1 and the other to serotype 2 appeared to be circulating in Andaman. Emergence of severe diseases such as DHF and DSS might be due to recent introduction of a more virulent strain or because of the enhancing effect of sub-neutralizing levels of antibodies developed due to prior infections. There is a need to revise the vector-borne disease surveillance system in the islands.
Collapse
|
206
|
Conservation of the DENV-2 type-specific and DEN complex-reactive antigenic sites among DENV-2 genotypes. Virology 2011; 422:386-92. [PMID: 22153298 DOI: 10.1016/j.virol.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/29/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
The envelope (E) protein is composed of three domains (ED1, ED2 and ED3) with ED3 targeted by the most potent neutralizing antibodies. DENV-2 strains can be divided into six genotypes. Comparison of ED3 of representative strains of the six genotypes revealed that there are nine variable residues that are specific to a given genotype. Recombinant ED3s (rED3s) of six different DENV-2 strains representing all nine variable residues were expressed, and their reactivity against a panel of two DENV-2 type-specific and three DENV complex-reactive monoclonal antibodies (mAbs) were compared. The differences in binding affinity to the rED3s representing different DENV-2 genotypes were relatively small, with the exception of type-specific-mAb 3H5 that showed up to 10-fold differences in binding between genotypes. Overall the binding differences did not lead to detectable differences in neutralization. Based on these results, DENV-2 ED3-specific neutralizing antibodies will likely be effective against DENV-2 strains from all six genotypes.
Collapse
|
207
|
Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 2011; 86:1853-61. [PMID: 22130539 DOI: 10.1128/jvi.06458-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.
Collapse
|
208
|
Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, Rantam FA, Soegijanto S, Konishi E. Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008-2010. PLoS One 2011; 6:e27322. [PMID: 22087290 PMCID: PMC3210158 DOI: 10.1371/journal.pone.0027322] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022] Open
Abstract
Indonesia has annually experienced approximately 100,000 reported cases of dengue fever (DF) and dengue hemorrhagic fever (DHF) in recent years. However, epidemiological surveys of dengue viruses (DENVs) have been limited in this country. In Surabaya, the second largest city, a single report indicated that dengue virus type 2 (DENV2) was the predominant circulating virus in 2003–2005. We conducted three surveys in Surabaya during: (i) April 2007, (ii) June 2008 to April 2009, and (iii) September 2009 to December 2010. A total of 231 isolates were obtained from dengue patients and examined by PCR typing. We found that the predominant DENV shifted from type 2 to type 1 between October and November 2008. Another survey using wild-caught mosquitoes in April 2009 confirmed that dengue type 1 virus (DENV1) was the predominant type in Surabaya. Phylogenetic analyses of the nucleotide sequences of the complete envelope gene of DENV1 indicated that all 22 selected isolates in the second survey belonged to genotype IV and all 17 selected isolates in the third survey belonged to genotype I, indicating a genotype shift between April and September 2009. Furthermore, in December 2010, isolates were grouped into a new clade of DENV1 genotype I, suggesting clade shift between September and December 2010. According to statistics reported by the Surabaya Health Office, the proportion of DHF cases among the total number of dengue cases increased about three times after the type shift in 2008. In addition, the subsequent genotype shift in 2009 was associated with the increased number of total dengue cases. This indicates the need for continuous surveillance of circulating viruses to predict the risk of DHF and DF.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Circulation of different lineages of dengue virus type 2 in Central America, their evolutionary time-scale and selection pressure analysis. PLoS One 2011; 6:e27459. [PMID: 22076162 PMCID: PMC3208639 DOI: 10.1371/journal.pone.0027459] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is caused by any of the four serotypes of dengue virus (DENV-1 to 4). Each serotype is genetically distant from the others, and each has been subdivided into different genotypes based on phylogenetic analysis. The study of dengue evolution in endemic regions is important since the diagnosis is often made by nucleic acid amplification tests, which depends upon recognition of the viral genome target, and natural occurring mutations can affect the performance of these assays. Here we report for the first time a detailed study of the phylogenetic relationships of DENV-2 from Central America, and report the first fully sequenced DENV-2 strain from Guatemala. Our analysis of the envelope (E) protein and of the open reading frame of strains from Central American countries, between 1999 and 2009, revealed that at least two lineages of the American/Asian genotype of DENV-2 have recently circulated in that region. In occasions the co-circulation of these lineages may have occurred and that has been suggested to play a role in the observed increased severity of clinical cases. Our time-scale analysis indicated that the most recent common ancestor for Central American DENV-2 of the American/Asian genotype existed about 19 years ago. Finally, we report positive selection in DENV-2 from Central America in codons of the genes encoding for C, E, NS2A, NS3, and NS5 proteins. Some of these identified codons are novel findings, described for the first time for any of the DENV-2 genotypes.
Collapse
|
210
|
Hue KDT, Tuan TV, Thi HTN, Bich CTN, Anh HHL, Wills BA, Simmons CP. Validation of an internally controlled one-step real-time multiplex RT-PCR assay for the detection and quantitation of dengue virus RNA in plasma. J Virol Methods 2011; 177:168-73. [PMID: 21843553 PMCID: PMC4347661 DOI: 10.1016/j.jviromet.2011.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/26/2011] [Accepted: 08/01/2011] [Indexed: 11/23/2022]
Abstract
Dengue is mosquito-borne virus infection that annually causes ~50 million clinically apparent cases worldwide. An internally controlled one-step real-time multiplex RT-PCR assay was developed for detection and quantitation of DENV RNA in plasma sample by using specific primers and fluorogenic TaqMan probes. All primers and probes targeted sequences near the 3' end of the NS5 gene. The method comprised two multiplex assays and was validated for sensitivity, specificity, linearity, reproducibility and precision. An internal control template was spiked into each clinical specimen to provide quality assurance for each experimental step. The assay allowed for detection of between 0.5 and 3 infectious particles per mL, is rapid and has been operationally characterized in 287 Vietnamese dengue patients from two therapeutic intervention trials at the Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Collapse
Affiliation(s)
- Kien Duong Thi Hue
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Viet Nam.
| | | | | | | | | | | | | |
Collapse
|
211
|
Lee KS, Lo S, Tan SSY, Chua R, Tan LK, Xu H, Ng LC. Dengue virus surveillance in Singapore reveals high viral diversity through multiple introductions and in situ evolution. INFECTION GENETICS AND EVOLUTION 2011; 12:77-85. [PMID: 22036707 DOI: 10.1016/j.meegid.2011.10.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Dengue fever, a vector-borne disease, has caused tremendous burden to countries in the tropics and sub tropics. Over the past 20 years, dengue epidemics have become more widespread, severe and frequent. This study aims to understand the dynamics of dengue viruses in cosmopolitan Singapore. Envelope protein gene sequences of all four dengue serotypes (DENV-1-DENV-4) obtained from human sera in Singapore (2008-2010) revealed that constant viral introductions and in situ evolution contribute to viral diversity in Singapore and play important roles in shaping the epidemiology of dengue in the island state. The diversity of dengue viruses reported here could be a reflection of the on-going dengue situation in the region given Singapore's location in a dengue hyperendemic region and its role as the regional hub for travels and trade. Though cosmopolitan genotype of DENV-2 has remained as the predominant strain circulating in Singapore, we uncovered evidence of in situ evolution which could possibly result in viruses with improved fitness. While we have previously shown that a switch in the predominant dengue serotype could serve as a warning for an impending outbreak, our current data shows that a replacement of a predominant viral clade, even in the absence of a switch in predominant serotype, could signal a possible increase in dengue transmission. The circulating dengue viruses in Singapore are highly diverse, a situation which could offer ample opportunities for selection of strains of higher fitness, thus increasing the risk of outbreaks despite a low Aedes population.
Collapse
Affiliation(s)
- Kim-Sung Lee
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Advances in sequencing technology and genome-wide association studies are now revealing the complex interactions between hosts and pathogen through genomic variation signatures, which arise from evolutionary co-existence.
Collapse
Affiliation(s)
- Chiea-Chuen Khor
- Infectious Diseases, Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672
| | | |
Collapse
|
213
|
Abstract
Epidemiological evidence indicates that host genetic factors are relevant and predispose DHF/DSS development. Here, we review the host genetic studies concerning human leucocyte antigens, antibody receptors, immune/inflammatory mediators, attachment molecules, cytokines and other factors exerting an immunoregulatory effect as well as the current genome-wide association studies. We also discuss some viewpoints on future challenges related to the design of safe and effective prevention and treatment options.
Collapse
Affiliation(s)
- Nguyen Thi Phuong Lan
- Department of Microbiology and Immunology, Pasteur Institute Ho Chi Minh City, Vietnam
| | | |
Collapse
|
214
|
Fagundes CT, Costa VV, Cisalpino D, Souza DG, Teixeira MM. Therapeutic opportunities in dengue infection. Drug Dev Res 2011. [DOI: 10.1002/ddr.20455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
215
|
Tuiskunen A, Monteil V, Plumet S, Boubis L, Wahlström M, Duong V, Buchy P, Lundkvist A, Tolou H, Leparc-Goffart I. Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Arch Virol 2011; 156:2023-32. [PMID: 21922323 DOI: 10.1007/s00705-011-1100-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Dengue viruses (DENV) cause 50-100 million cases of acute febrile disease every year, including 500,000 reported cases of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Viral factors have been proposed to influence the severity of the disease, but markers of virulence have never been identified on DENV. Three DENV serotype-1 isolates from the 2007 epidemic in Cambodia that are derived from patients experiencing the various clinical forms of dengue were characterized both phenotypically and genetically. Phenotypic characteristics in vitro, based on replication kinetics in different cell lines and apoptosis response, grouped isolates from DF and DHF patients together, whereas the virus isolate from a DSS patient showed unique features: a lower level of replication in mammalian cells and extensive apoptosis in mosquito cells. Genomic comparison of viruses revealed six unique amino acid residues in the membrane, envelope, and in non-structural genes in the virus isolated from the DSS patient.
Collapse
Affiliation(s)
- Anne Tuiskunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Bigham AW, Buckingham KJ, Husain S, Emond MJ, Bofferding KM, Gildersleeve H, Rutherford A, Astakhova NM, Perelygin AA, Busch MP, Murray KO, Sejvar JJ, Green S, Kriesel J, Brinton MA, Bamshad M. Host genetic risk factors for West Nile virus infection and disease progression. PLoS One 2011; 6:e24745. [PMID: 21935451 PMCID: PMC3174177 DOI: 10.1371/journal.pone.0024745] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV), a category B pathogen endemic in parts of Africa, Asia and Europe, emerged in North America in 1999, and spread rapidly across the continental U.S. Outcomes of infection with WNV range from asymptomatic to severe neuroinvasive disease manifested as encephalitis, paralysis, and/or death. Neuroinvasive WNV disease occurs in less than one percent of cases, and although host genetic factors are thought to influence risk for symptomatic disease, the identity of these factors remains largely unknown. We tested 360 common haplotype tagging and/or functional SNPs in 86 genes that encode key regulators of immune function in 753 individuals infected with WNV including: 422 symptomatic WNV cases and 331 cases with asymptomatic infections. After applying a Bonferroni correction for multiple tests and controlling for population stratification, SNPs in IRF3 (OR 0.54, p = 0.035) and MX1, (OR 0.19, p = 0.014) were associated with symptomatic WNV infection and a single SNP in OAS1 (OR 9.79, p = 0.003) was associated with increased risk for West Nile encephalitis and paralysis (WNE/P). Together, these results suggest that genetic variation in the interferon response pathway is associated with both risk for symptomatic WNV infection and WNV disease progression.
Collapse
Affiliation(s)
- Abigail W. Bigham
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail: (AWB); (MB)
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Sofia Husain
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Kathryn M. Bofferding
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heidi Gildersleeve
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Ann Rutherford
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, United States of America
| | - Natalia M. Astakhova
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Andrey A. Perelygin
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Michael P. Busch
- Blood Systems, San Francisco, California, United States of America
| | - Kristy O. Murray
- School of Public Health, University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | - James J. Sejvar
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Sharone Green
- Department of Medicine, Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John Kriesel
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, United States of America
| | - Margo A. Brinton
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail: (AWB); (MB)
| |
Collapse
|
217
|
Fatima Z, Idrees M, Bajwa MA, Tahir Z, Ullah O, Zia MQ, Hussain A, Akram M, Khubaib B, Afzal S, Munir S, Saleem S, Rauff B, Badar S, Naudhani M, Butt S, Aftab M, Ali L, Ali M. Serotype and genotype analysis of dengue virus by sequencing followed by phylogenetic analysis using samples from three mini outbreaks-2007-2009 in Pakistan. BMC Microbiol 2011; 11:200. [PMID: 21906394 PMCID: PMC3180347 DOI: 10.1186/1471-2180-11-200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/10/2011] [Indexed: 11/24/2022] Open
Abstract
Background Since the first reported outbreak of dengue hemorrhagic fever in Pakistan, several mini outbreaks have erupted in the region. Dengue virus serotype 3 (DEN-3) was first documented in 2005 outbreak in Karachi. Reports show that serotype 3 is prevalent in Lahore since 2008. Serotype 2 (DEN-2) is the major circulating serotype in Pakistan as it is documented since 1994. We have conducted a detailed study of three outbreaks of dengue virus infection that occurred in years 2007, 2008 and 2009 in Lahore by using molecular techniques such as PCR and nucleotide sequencing of the C-prM gene junction of Dengue virus. Results Through the analysis of 114 serum samples collected over the period of three years (2007-2009), total 20 patients were found to be infected with dengue virus. In year 2007, four were positive for serotype 2 and one sample was positive for serotype DEN-3. In 2008, five samples had concurrent infection with serotypes DEN-2 and DEN-3 while three samples were infected only with serotype DEN-2. In year 2009, one sample had concurrent infection with serotypes DEN-2 and DEN-3 while six were positive for serotype DEN-2 only. Conclusions Our study showed that serotype DEN-2 was dominant in positive samples of dengue virus infection collected during the period of three years (2007-2009). The other serotype present was serotype DEN-3. Genotypes of serotype DEN-2 and serotype DEN-3 were subtype IV and subtype III, respectively.
Collapse
Affiliation(s)
- Zareen Fatima
- Division of Molecular Virology, CEMB University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore-53700, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Chen R, Vasilakis N. Dengue--quo tu et quo vadis? Viruses 2011; 3:1562-608. [PMID: 21994796 PMCID: PMC3187692 DOI: 10.3390/v3091562] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 02/08/2023] Open
Abstract
Dengue viruses (DENV) are by far the most important arboviral pathogens in the tropics around the world, putting at risk of infection nearly a third of the global human population. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise four antigenically distinct serotypes (DENV-1-4). Although they share almost identical epidemiological features, they are genetically distinct. Phylogenetic analyses have revealed valuable insights into the origins, epidemiology and the forces that shape DENV evolution in nature. In this review, we examine the current status of DENV evolution, including but not limited to rates of evolution, selection pressures, population sizes and evolutionary constraints, and we discuss how these factors influence transmission, pathogenesis and emergence.
Collapse
Affiliation(s)
- Rubing Chen
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
219
|
Co-existence of major and minor viral populations from two different origins in patients secondarily infected with dengue virus serotype 2 in Bangkok. Biochem Biophys Res Commun 2011; 413:136-42. [PMID: 21872571 DOI: 10.1016/j.bbrc.2011.08.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 11/22/2022]
Abstract
Generally, RNA viruses exhibit significant genetic diversity that sometimes effect viral fitness in infected hosts and probably also pathogenesis. Dengue viruses (DENVs) consist of four antigenically distinct serotypes. All the serotypes of DENV can cause mild to severe dengue illnesses. In this study, we examined the sequence variation of DENV in plasma obtained from four patients living in Bangkok who had been secondarily infected with serotype 2 (DENV-2) in 2010. The plasma-derived RNA was directly subjected to reverse transcriptase (RT)-polymerase chain reaction (PCR) at a region including most of domain III of the envelope (E) protein gene, and the PCR products obtained were subjected to clonal sequencing. Using 19-20 clones sequenced from each patient (78 total) plus 601 corresponding sequences from a public database, phylogenetic analysis revealed that the nucleic acid sequences fell into two clusters with clearly different origins. Interestingly, all patients gave sequences indicating that they carried viral populations containing 2, 3 or 5 genetic variants that consisted of one major variant plus one or more minor variants. Three patients showed a major variant from one cluster plus one or more minor components from the other while one showed major and minor variants from a single cluster. Thus, it can be concluded that DENV belonging to two different genetic lineages were co-circulated in Bangkok in 2010. For these two genotype clusters there was also a clear difference in H or Y at the deduced amino acid position 346 (i.e. H346Y) that was consistent for our sequences and 601 sequences from the public database. Thus, one among the mixed viral genotypes introduced into human individuals seems to be variably selected as the predominant component of the carried viral population, and it is possible that the dynamics of this process could influence virus evolution and disease severity.
Collapse
|
220
|
Abstract
Dengue is an important cause of childhood and adult morbidity in Asian and Latin American countries and its geographic footprint is growing. The clinical manifestations of dengue are the expression of a constellation of host and viral factors, some acquired, others intrinsic to the individual. The virulence of the virus plus the flavivirus infection history, age, gender and genotype of the host all appear to help shape the severity of infection. Similarly, the characteristics of the innate and acquired host immune response subsequent to infection are also likely determinants of outcome. This review summarises recent developments in the understanding of dengue pathogenesis and their relevance to dengue vaccine development.
Collapse
|
221
|
Thai KTD, Anders KL. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med (Maywood) 2011; 236:944-54. [PMID: 21737578 DOI: 10.1258/ebm.2011.010402] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mounting evidence for anthropogenic changes in global climate raises many pressing questions about the potential effects on biological systems, and in particular the transmission of infectious diseases. Vector-borne diseases, such as dengue, may be particularly sensitive to both periodic fluctuations and sustained changes in global and local climates, because vector biology and viral replication are temperature- and moisture-dependent. This paper reviews the current state of knowledge on the associations between climate variability, climate change and dengue transmission, and the tools being used to quantify these associations. The underlying causes of dengue's recent global expansion are multifactorial and poorly understood, but climatic factors should be considered within the context of the sociodemographic, economic and immunological determinants that have contributed to dengue's spread. These factors may mediate the direct effects of climate on dengue and many may operate at a very local level. Translating theoretical models of dengue transmission based on historical data into predictive models that can inform public health interventions is a critical next step and efforts should be focused on developing and refining models at smaller spatial scales to characterize the relationships between both climatic and non-climatic factors and dengue risk.
Collapse
Affiliation(s)
- Khoa T D Thai
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|
222
|
Rodriguez-Roche R, Sanchez L, Burgher Y, Rosario D, Alvarez M, Kouri G, Halstead SB, Gould EA, Guzman MG. Virus Role During Intraepidemic Increase in Dengue Disease Severity. Vector Borne Zoonotic Dis 2011; 11:675-81. [DOI: 10.1089/vbz.2010.0177] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Lizet Sanchez
- “Pedro Kouri” Tropical Medicine Institute, Havana, Cuba
| | - Yaima Burgher
- National Center for Animal and Plant Health, Havana, Cuba
| | | | | | - Gustavo Kouri
- “Pedro Kouri” Tropical Medicine Institute, Havana, Cuba
| | | | - Ernie A. Gould
- CEH Wallingford, OX10 8BB, Oxford, United Kingdom
- Unité des Virus Emergents, Faculté de Médecine Timone, Marseille, France
| | | |
Collapse
|
223
|
Raghwani J, Rambaut A, Holmes EC, Hang VT, Hien TT, Farrar J, Wills B, Lennon NJ, Birren BW, Henn MR, Simmons CP. Endemic dengue associated with the co-circulation of multiple viral lineages and localized density-dependent transmission. PLoS Pathog 2011; 7:e1002064. [PMID: 21655108 PMCID: PMC3107208 DOI: 10.1371/journal.ppat.1002064] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/25/2011] [Indexed: 01/19/2023] Open
Abstract
Dengue is one of the most important infectious diseases of humans and has spread throughout much of the tropical and subtropical world. Despite this widespread dispersal, the determinants of dengue transmission in endemic populations are not well understood, although essential for virus control. To address this issue we performed a phylogeographic analysis of 751 complete genome sequences of dengue 1 virus (DENV-1) sampled from both rural (Dong Thap) and urban (Ho Chi Minh City) populations in southern Viet Nam during the period 2003-2008. We show that DENV-1 in Viet Nam exhibits strong spatial clustering, with likely importation from Cambodia on multiple occasions. Notably, multiple lineages of DENV-1 co-circulated in Ho Chi Minh City. That these lineages emerged at approximately the same time and dispersed over similar spatial regions suggests that they are of broadly equivalent fitness. We also observed an important relationship between the density of the human host population and the dispersion rate of dengue, such that DENV-1 tends to move from urban to rural populations, and that densely populated regions within Ho Chi Minh City act as major transmission foci. Despite these fluid dynamics, the dispersion rates of DENV-1 are relatively low, particularly in Ho Chi Minh City where the virus moves less than an average of 20 km/year. These low rates suggest a major role for mosquito-mediated dispersal, such that DENV-1 does not need to move great distances to infect a new host when there are abundant susceptibles, and imply that control measures should be directed toward the most densely populated urban environments.
Collapse
Affiliation(s)
- Jayna Raghwani
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Andrew Rambaut
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward C. Holmes
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vu Ty Hang
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Tran Tinh Hien
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Niall J. Lennon
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce W. Birren
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
| | - Matthew R. Henn
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
| | - Cameron P. Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| |
Collapse
|
224
|
Phylogenetic characterization of dengue virus type 2 in Espírito Santo, Brazil. Mol Biol Rep 2011; 39:71-80. [DOI: 10.1007/s11033-011-0711-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
225
|
Sharma S, Dash PK, Agarwal S, Shukla J, Parida MM, Rao PVL. Comparative complete genome analysis of dengue virus type 3 circulating in India between 2003 and 2008. J Gen Virol 2011; 92:1595-1600. [PMID: 21411675 DOI: 10.1099/vir.0.030437-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue is endemic in most parts of the tropics including India. So far, complete genome information for Indian dengue isolates is not available. In the present study, we characterized the genome of three dengue type 3 viruses isolated from India. The genomes of all three viruses were found to be 10,707 bp long with an ORF encoding 3390 aa. Extensive molecular phylogenetic analysis based on comparison of the complete genome and envelope gene classified the recent Indian viruses into genotype III (lineage III), revealing a shift of lineage from lineage V. The sequence analysis revealed several non-conservative changes in major structural proteins. This study clearly indicates that the genotype III (lineage III) dengue type 3 viruses have been continuously circulating in major parts of India since 2003 and are responsible for the recent major outbreaks all over India. This is the first extensive study on complete genome analysis of dengue type 3 viruses in India.
Collapse
Affiliation(s)
- Shashi Sharma
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - Paban Kumar Dash
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - Surekha Agarwal
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - Jyoti Shukla
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - M M Parida
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - P V L Rao
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| |
Collapse
|
226
|
Fox A, Le NMH, Simmons CP, Wolbers M, Wertheim HFL, Pham TK, Tran THN, Trinh TML, Nguyen TL, Nguyen VT, Nguyen DH, Farrar J, Horby P, Taylor WR, Nguyen VK. Immunological and viral determinants of dengue severity in hospitalized adults in Ha Noi, Viet Nam. PLoS Negl Trop Dis 2011; 5:e967. [PMID: 21390156 PMCID: PMC3046970 DOI: 10.1371/journal.pntd.0000967] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/19/2011] [Indexed: 11/24/2022] Open
Abstract
Background The relationships between the infecting dengue serotype, primary and secondary infection, viremia and dengue severity remain unclear. This cross-sectional study examined these interactions in adult patients hospitalized with dengue in Ha Noi. Methods and Findings 158 patients were enrolled between September 16 and November 11, 2008. Quantitative RT-PCR, serology and NS1 detection were used to confirm dengue infection, determine the serotype and plasma viral RNA concentration, and categorize infections as primary or secondary. 130 (82%) were laboratory confirmed. Serology was consistent with primary and secondary infection in 34% and 61%, respectively. The infecting serotype was DENV-1 in 42 (32%), DENV-2 in 39 (30%) and unknown in 49 (38%). Secondary infection was more common in DENV-2 infections (79%) compared to DENV-1 (36%, p<0.001). The proportion that developed dengue haemorrhagic fever (DHF) was 32% for secondary infection compared to 18% for primary infection (p = 0.14), and 26% for DENV-1 compared to 28% for DENV-2. The time until NS1 and plasma viral RNA were undetectable was shorter for DENV-2 compared to DENV-1 (p≤0.001) and plasma viral RNA concentration on day 5 was higher for DENV-1 (p = 0.03). Plasma viral RNA concentration was higher in secondary infection on day 5 of illness (p = 0.046). We didn't find an association between plasma viral RNA concentration and clinical severity. Conclusion Dengue is emerging as a major public health problem in Ha Noi. DENV-1 and DENV-2 were the prevalent serotypes with similar numbers and clinical presentation. Secondary infection may be more common amongst DENV-2 than DENV-1 infections because DENV-2 infections resulted in lower plasma viral RNA concentrations and viral RNA concentrations were higher in secondary infection. The drivers of dengue emergence in northern Viet Nam need to be elucidated and public health measures instituted. Dengue is estimated to affect 50 million people each year and can occur as explosive outbreaks that overwhelm health systems. Despite significant advances the available knowledge is not sufficient to predict the outcome of individual infections or the occurrence of epidemics. Studies from low dengue transmission settings are lacking but offer the potential to better understand the contribution of age, primary versus secondary infection and serotype because there are likely to be more adult and primary infection patients and fewer serotypes circulating compared to high transmission settings. This is the first reported study of clinical dengue in Ha Noi, the largest urban area of Northern Viet Nam. Records kept by the Preventive Medicine Center indicate that <2500 clinical dengue cases attended government health care facilities in Ha Noi each year from 1999 until 2007. Patients in Ha Noi were older than in high transmission settings, the contribution of primary infection to overt and severe illness was greater and associations between serotype, plasma viral RNA concentration and overt and severe illness were distinct. The dengue situation in Ha Noi provides an opportunity to further examine the roles of serotype and prior immunity in dengue severity and epidemic emergence.
Collapse
Affiliation(s)
- Annette Fox
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hanoi, Socialist Republic of Vietnam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Liu IJ, Chiu CY, Chen YC, Wu HC. Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J Biol Chem 2011; 286:9726-36. [PMID: 21233208 DOI: 10.1074/jbc.m110.170993] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), both serious complications of dengue virus (DV) infection, remains unclear. In this study, we found that anti-DV NS1 (nonstructural protein 1) polyclonal antibodies cross-reacted with human umbilical vein endothelial cells (HUVECs). We further identified a complex-specific mAb, DB16-1, which could recognize DV NS1 and cross-react with HUVECs and human blood vessels. The target protein of DB16-1 was further purified by immunoaffinity chromatography. LC-MS/MS analysis and co-immunoprecipitation revealed that the target protein of DB16-1 was human LYRIC (lysine-rich CEACAM1 co-isolated). Our newly generated anti-LYRIC mAbs bound to HUVECs in a pattern similar to that of DB16-1. The B-cell epitope of DB16-1 displayed a consensus motif, Lys-X-Trp-Gly (KXWG), which corresponded to amino acid residues 116-119 of DV NS1 and mimicked amino acid residues 334-337 in LYRIC. Moreover, the binding activity of DB16-1 in NS1 of DV-2 and in LYRIC disappeared after the KXWG epitope was deleted in each. In conclusion, DB16-1 targeted the same epitope in DV NS1 and LYRIC protein on human endothelial cells, suggesting that it might play a role in the pathogenesis of DHF/DSS. Future studies on the role of the anti-NS1 antibody in causing vascular permeability will undoubtedly be performed on sera collected from individuals before, during, and after the endothelial cell malfunction phase of a dengue illness.
Collapse
Affiliation(s)
- I-Ju Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | |
Collapse
|
228
|
McElroy KL, Santiago GA, Lennon NJ, Birren BW, Henn MR, Muñoz-Jordán JL. Endurance, refuge, and reemergence of dengue virus type 2, Puerto Rico, 1986-2007. Emerg Infect Dis 2011; 17:64-71. [PMID: 21192856 PMCID: PMC3204641 DOI: 10.3201/eid1701.100961] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To study the evolution of dengue virus (DENV) serotype 2 in Puerto Rico, we examined the genetic composition and diversity of 160 DENV-2 genomes obtained through 22 consecutive years of sampling. A clade replacement took place in 1994-1997 during a period of high incidence of autochthonous DENV-2 and frequent, short-lived reintroductions of foreign DENV-2. This unique clade replacement was complete just before DENV-3 emerged. By temporally and geographically defining DENV-2 lineages, we describe a refuge of this virus through 4 years of low genome diversity. Our analyses may explain the long-term endurance of DENV-2 despite great epidemiologic changes in disease incidence and serotype distribution.
Collapse
Affiliation(s)
| | | | - Niall J. Lennon
- Author affiliations: Centers for Disease Control and Prevention, San Juan, Puerto Rico (K.L. McElroy, G.A. Santiago, J.L. Muñoz-Jordán)
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA (N.J. Lennon, B.W. Birren, M.R. Henn)
| | - Bruce W. Birren
- Author affiliations: Centers for Disease Control and Prevention, San Juan, Puerto Rico (K.L. McElroy, G.A. Santiago, J.L. Muñoz-Jordán)
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA (N.J. Lennon, B.W. Birren, M.R. Henn)
| | | | | |
Collapse
|
229
|
Vong S, Khieu V, Glass O, Ly S, Duong V, Huy R, Ngan C, Wichmann O, Letson GW, Margolis HS, Buchy P. Dengue incidence in urban and rural Cambodia: results from population-based active fever surveillance, 2006-2008. PLoS Negl Trop Dis 2010; 4:e903. [PMID: 21152061 PMCID: PMC2994922 DOI: 10.1371/journal.pntd.0000903] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022] Open
Abstract
Background Dengue vaccines are now in late-stage development, and evaluation and robust estimates of dengue disease burden are needed to facilitate further development and introduction. In Cambodia, the national dengue case-definition only allows reporting of children less than 16 years of age, and little is known about dengue burden in rural areas and among older persons. To estimate the true burden of dengue in the largest province of Cambodia, Kampong Cham, we conducted community-based active dengue fever surveillance among the 0-to-19–year age group in rural villages and urban areas during 2006–2008. Methods and Findings Active surveillance for febrile illness was conducted in 32 villages and 10 urban areas by mothers trained to use digital thermometers combined with weekly home visits to identify persons with fever. An investigation team visited families with febrile persons to obtain informed consent for participation in the follow-up study, which included collection of personal data and blood specimens. Dengue-related febrile illness was defined using molecular and serological testing of paired acute and convalescent blood samples. Over the three years of surveillance, 6,121 fever episodes were identified with 736 laboratory-confirmed dengue virus (DENV) infections for incidences of 13.4–57.8/1,000 person-seasons. Average incidence was highest among children less than 7 years of age (41.1/1,000 person-seasons) and lowest among the 16-to-19–year age group (11.3/1,000 person-seasons). The distribution of dengue was highly focal, with incidence rates in villages and urban areas ranging from 1.5–211.5/1,000 person-seasons (median 36.5). During a DENV-3 outbreak in 2007, rural areas were affected more than urban areas (incidence 71 vs. 17/1,000 person-seasons, p<0.001). Conclusion The large-scale active surveillance study for dengue fever in Cambodia found a higher disease incidence than reported to the national surveillance system, particularly in preschool children and that disease incidence was high in both rural and urban areas. It also confirmed the previously observed focal nature of dengue virus transmission. Dengue is a major public health problem in South-East Asia. Several dengue vaccine candidates are now in late-stage development and are being evaluated in clinical trials. Accurate estimates of true dengue disease burden will become an important factor in the public-health decision-making process for endemic countries once safe and effective vaccines become available. However, estimates of the true disease incidence are difficult to make, because national surveillance systems suffer from disease under-recognition and reporting. Dengue is mainly reported among children, and in some countries, such as Cambodia, the national case definition only includes hospitalized children. This study used active, community-based surveillance of febrile illness coupled with laboratory testing for DENV infection to identify cases of dengue fever in rural and urban populations. We found a high burden of dengue in young children and late adolescents in both rural and urban communities at a magnitude greater than previously described. The study also confirmed the previously observed focal nature of dengue virus transmission.
Collapse
Affiliation(s)
- Sirenda Vong
- Institut Pasteur-Cambodia, Phnom Penh, Cambodia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Lourenço J, Recker M. Viral and epidemiological determinants of the invasion dynamics of novel dengue genotypes. PLoS Negl Trop Dis 2010; 4:e894. [PMID: 21124880 PMCID: PMC2990689 DOI: 10.1371/journal.pntd.0000894] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/25/2010] [Indexed: 02/06/2023] Open
Abstract
Background Dengue has become a major concern for international public health. Frequent epidemic outbreaks are believed to be driven by a complex interplay of immunological interactions between its four co-circulating serotypes and large fluctuations in mosquito densities. Viral lineage replacement events, caused for example by different levels of cross-protection or differences in viral fitness, have also been linked to a temporary change in dengue epidemiology. A major replacement event was recently described for South-East Asia where the Asian-1 genotype of dengue serotype 2 replaced the resident Asian/American type. Although this was proposed to be due to increased viral fitness in terms of enhanced human-to-mosquito transmission, no major change in dengue epidemiology could be observed. Methods/Results Here we investigate the invasion dynamics of a novel, advantageous dengue genotype within a model system and determine the factors influencing the success and rate of fixation as well as their epidemiological consequences. We find that while viral fitness overall correlates with invasion success and competitive exclusion of the resident genotype, the epidemiological landscape plays a more significant role for successful emergence. Novel genotypes can thus face high risks of stochastic extinction despite their fitness advantage if they get introduced during episodes of high dengue prevalence, especially with respect to that particular serotype. Conclusion The rarity of markers for positive selection has often been explained by strong purifying selection whereby the constraints imposed by dengue's two-host cycle are expected to result in a high rate of deleterious mutations. Our results demonstrate that even highly beneficial mutants are under severe threat of extinction, which would suggest that apart from purifying selection, stochastic effects and genetic drift beyond seasonal bottlenecks are equally important in shaping dengue's viral ecology and evolution. Dengue fever and the more severe dengue haemorrhagic fever and dengue shock syndrome are mosquito borne viral infections that have seen a major increase in terms of global distribution and total case numbers over the last few decades. There are currently four antigenically distinct and potentially co-circulating dengue serotypes and each serotype shows substantial genetic diversity, organised into phylogenetically distinct genotypes or lineages. While there is some evidence for positive selection, the evolutionary dynamics of dengue virus (DENV) is supposed to be mostly dominated by purifying selection due to the constraints imposed by its two-host life-cycle. Motivated by a recent genotype replacement event whereby the resident American/Asian lineage of dengue virus serotype 2 (DENV2) had been displaced by the fitter Asian-1 lineage we investigated some of the epidemiological factors that might determine the success and invasion dynamics of a novel, advantageous dengue genotype. Our results show that although small differences in viral fitness can explain the rapid expansion and fixation of novel genotypes, their fate is ultimately determined by the epidemiological landscape in which they arise.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mario Recker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
231
|
An outbreak of dengue fever in St. Croix (US Virgin Islands), 2005. PLoS One 2010; 5:e13729. [PMID: 21060852 PMCID: PMC2965679 DOI: 10.1371/journal.pone.0013729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/03/2010] [Indexed: 11/26/2022] Open
Abstract
Background Periodic outbreaks of dengue fever occur in the United States Virgin Islands. In June 2005, an outbreak of dengue virus (DENV) serotype-2 with cases of dengue hemorrhagic fever (DHF) was detected in St. Croix, US Virgin Islands. The objective of this report is to describe this outbreak of DENV-2 and the findings of a case-control study examining risk factors for DHF. Methodology/Principal Findings This is the largest dengue outbreak ever recorded in St. Croix, with 331 suspected dengue cases reported island-wide during 2005 (62.2 cases/10,000 population); 54% were hospitalized, 21% had at least one hemorrhagic manifestation, 28% had thrombocytopenia, 5% had DHF and 1 patient died. Eighty-nine laboratory-positive hospitalized patients were identified. Of these, there were 15 (17%) who met the WHO criteria for DHF (cases) and 74 (83%) who did not (controls). The only variable significantly associated with DHF on bivariate or multivariable analysis was age, with an adjusted odds ratio (95% confidence interval) of 1.033 (1.003,1.064). Conclusions/Significance During this outbreak of DENV-2, a high proportion of cases developed DHF and increasing age was significantly associated with DHF.
Collapse
|
232
|
Domingo C, Niedrig M, Teichmann A, Kaiser M, Rumer L, Jarman RG, Donoso-Mantke O. 2nd International external quality control assessment for the molecular diagnosis of dengue infections. PLoS Negl Trop Dis 2010; 4. [PMID: 20957194 PMCID: PMC2950135 DOI: 10.1371/journal.pntd.0000833] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 09/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background Currently dengue viruses (DENV) pose an increasing threat to over 2.5 billion people in over 100 tropical and sub-tropical countries worldwide. International air travel is facilitating rapid global movement of DENV, increasing the risk of severe dengue epidemics by introducing different serotypes. Accurate diagnosis is critical for early initiation of preventive measures. Different reverse transcriptase PCR (RT-PCR) methods are available, which should be evaluated and standardized. Epidemiological and laboratory-based surveillance is required to monitor and guide dengue prevention and control programmes, i.e., by mosquito control or possible vaccination (as soon as an effective and safe vaccine becomes available). Objective The purpose of the external quality assurance (EQA) study described is to assess the efficiency and accuracy of dengue molecular diagnosis methods applied by expert laboratories. Study Design A panel of 12 human plasma samples was distributed and tested for DENV-specific RNA. The panel comprised 9 samples spiked with different DENV serotypes (DENV-1 to DENV-4), including 10-fold dilution series of DENV-1 and DENV-3. Two specificity controls consisted of a sample with a pool of 4 other flaviviruses and a sample with chikungunya virus. A negative control sample was also included. Results Thirty-seven laboratories (from Europe, Middle East Asia, Asia, the Americas/Caribbean, and Africa) participated in this EQA study, and reports including 46 sets of results were returned. Performance among laboratories varied according to methodologies used. Only 5 (10.9%) data sets met all criteria with optimal performance, and 4 (8.7%) with acceptable performance, while 37 (80.4%) reported results showed the need for improvement regarding accomplishment of dengue molecular diagnosis. Failures were mainly due to lack of sensitivity and the presence of false positives. Conclusions The EQA provides information on each laboratory's efficacy of RT-PCR techniques for dengue diagnosis and indicates for most laboratories an urgent need to improve sensitivity and specificity. Dengue viruses (DENV) are the most widespread arthropod-borne viruses which have shown an unexpected geographic expansion, as well as an increase in the number and severity of outbreaks in the last decades. In this context, the accurate diagnosis and reliable surveillance of dengue infections are essential. The laboratory diagnosis of dengue relies on the use of several methods detecting markers of DENV infection present in patient serum. Molecular diagnosis methods are usually rapid, sensitive, and simple when correctly standardized. Moreover, PCR-based diagnosis techniques are able to readily detect DENV during the acute phase of the disease and may assume an important role in dengue diagnosis and surveillance. Different reverse transcriptase PCR (RT-PCR) methods have been developed and are currently available and should be standardized in each laboratory to maintain high quality performance. In this work an External quality assessment (EQA) activity has been carried out to evaluate the accuracy and quality of laboratory data for the molecular diagnosis and surveillance of dengue, which involved worldwide dengue reference laboratories. In conclusion, RT-PCR techniques for dengue diagnosis applied by the participating laboratories demonstrated the need of further improvement in most laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard G. Jarman
- United States Army Medical Component of the Armed Forces Research Institute of the Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | |
Collapse
|
233
|
Letson GW, Singhasivanon P, Fernandez E, Abeysinghe N, Amador JJ, Margolis HS, Edelman R. Dengue vaccine trial guidelines and role of large-scale, post proof-of-concept demonstration projects in bringing a dengue vaccine to use in dengue endemic areas. HUMAN VACCINES 2010; 6:802-9. [PMID: 20935506 DOI: 10.4161/hv.6.10.13018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we consider the issues impacting conduct and design of dengue vaccine trials with reference to the recently published World Health Organization "Guidelines for Conduct of Clinical Trials of Dengue Vaccines in Endemic Areas." We discuss logistic, scientific and ethical challenges concerning evaluation and introduction of dengue vaccines; these range from randomized trials that establish "proof of concept" of vaccine efficacy, to post-"proof of concept" trials, particularly demonstration projects likely to be required for licensure or for the introduction of an already licensed vaccine into public use. We clarify and define the meaning of "proof of concept" in the clinical trial context and the meaning of terms "phase 2b", "phase 3b" and "demonstration project", which are commonly used but have not been defined well in the clinical literature.
Collapse
Affiliation(s)
- G William Letson
- Pediatric Dengue Vaccine Initiative, International Vaccine Institute, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
234
|
Ospina MC, Diaz FJ, Osorio JE. Prolonged co-circulation of two distinct Dengue virus Type 3 lineages in the hyperendemic area of Medellin, Colombia. Am J Trop Med Hyg 2010; 83:672-8. [PMID: 20810837 DOI: 10.4269/ajtmh.2010.09-0766] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During the past two decades, Dengue virus-3 (DENV-3) has re-emerged in the Western Hemisphere causing significant epidemics of dengue fever (DF) and dengue hemorrhagic fever (DHF). In an effort to understand the molecular evolution of DENV-3 and their relationships to other DENV-3 circulating in the western hemisphere, we conducted a phylogenetic study on DENV-3 isolates made between 2002 and 2007 in the metropolitan area of Medellín, Colombia. An unexpected co-circulation of two different variants of DENV-3 subtype III during at least 5 years in Medellín was found. In addition, a more complete analysis of DENV-3 viruses isolated in other South American regions revealed the existence of three different subtype III lineages, all derived from independent introductions. This study documents significant genetic diversity of circulating viruses within the same subtype and an unusual capacity of the population of this city to support continuous circulation of multiple variants of dengue virus.
Collapse
Affiliation(s)
- Marta C Ospina
- Dirección Seccional de Salud y Protección Social de Antioquia, Laboratorio Departamental de Salud Pública de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
235
|
Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, Gallego-Gomez JC. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J 2010; 7:226. [PMID: 20836894 PMCID: PMC2944171 DOI: 10.1186/1743-422x-7-226] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 09/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70's when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1), there are not studies about its origin, genetic diversity and distribution. Results We used 224 bp corresponding to the carboxyl terminus of envelope (E) gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages.
Collapse
Affiliation(s)
- Jairo A Mendez
- Laboratorio de Virología, Instituto Nacional de Salud, Avenida/Calle 26 No, Bogotá D.C., Colombia.
| | | | | | | | | | | | | |
Collapse
|
236
|
Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 2010; 67:2773-86. [PMID: 20372965 PMCID: PMC11115823 DOI: 10.1007/s00018-010-0357-z] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/08/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
Abstract
Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50-100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited dengue fever, an increasing number of patients present more severe manifestations, such as dengue hemorrhagic fever and dengue shock syndrome. In this review we will give an overview of the infectious life cycle of DENV and will discuss the viral and host factors that are important in controlling DENV infection.
Collapse
Affiliation(s)
- Izabela A. Rodenhuis-Zybert
- Molecular Virology Section, Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Jan Wilschut
- Molecular Virology Section, Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Jolanda M. Smit
- Molecular Virology Section, Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
237
|
Abstract
Dengue is an emerging arboviral disease and currently poses the greatest arboviral threat to human health. In recent decades, there has been a substantial increase in dengue outbreaks in many parts of the world including India. We performed an in-depth investigation of a major dengue outbreak in Andhra Pradesh, southern India in 2007 by serology, virus isolation, RT-PCR and genotyping. The results revealed an unusual emergence of dengue virus type 4 (DENV-4) along with the prevailing DENV-3. Phylogenetic analysis based on complete envelope gene of 182 globally diverse DENV-4 isolates demonstrated the involvement of a unique clade of genotype I of DENV-4 in the outbreak. This study also demonstrated a clear shift in the dominant serotype from DENV-3 to DENV-4 in India. This is the first report regarding the molecular characterization of Indian isolates of DENV-4, which has the potential to be involved in future outbreaks.
Collapse
|
238
|
Romano CM, de Matos AM, Araújo ESA, Villas-Boas LS, da Silva WC, Oliveira OMNPF, Carvalho KI, de Souza ACM, Rodrigues CL, Levi JE, Kallas EG, Pannuti CS. Characterization of Dengue virus type 2: new insights on the 2010 Brazilian epidemic. PLoS One 2010; 5:e11811. [PMID: 20676363 PMCID: PMC2911371 DOI: 10.1371/journal.pone.0011811] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/02/2010] [Indexed: 11/18/2022] Open
Abstract
Dengue viruses (DENV) serotypes 1, 2, and 3 have been causing yearly outbreaks in Brazil. In this study, we report the re-introduction of DENV2 in the coast of São Paulo State. Partial envelope viral genes were sequenced from eighteen patients with dengue fever during the 2010 epidemic. Phylogenetic analysis showed this strain belongs to the American/Asian genotype and was closely related to the virus that circulated in Rio de Janeiro in 2007 and 2008. The phylogeny also showed no clustering by clinical presentation, suggesting that the disease severity could not be explained by distinct variants or genotypes. The time of the most recent common ancestor of American/Asian genotype and the São Paulo and Rio de Janeiro (SP/RJ) monophyletic cluster was estimated to be around 40 and 10 years, respectively. Since this virus was first identified in Brazil in 2007, we suggest that it was already circulating in the country before causing the first documented outbreak. This is the first description of the 2010 outbreak in the State of São Paulo, Brazil, and should contribute to efforts to control and monitor the spread of DENVs in endemic areas.
Collapse
Affiliation(s)
- Camila Malta Romano
- Departamento de Moléstias Infecciosas e Parasitárias-(LIMHC), Instituto de Medicina Tropical de São Paulo e Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Sierra B, Perez AB, Vogt K, Garcia G, Schmolke K, Aguirre E, Alvarez M, Volk HD, Guzman MG. MCP-1 and MIP-1α expression in a model resembling early immune response to dengue. Cytokine 2010; 52:175-83. [PMID: 20650649 DOI: 10.1016/j.cyto.2010.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/07/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
Dengue virus has become endemic in most tropical urban areas throughout the world, and DHF has appeared concomitantly with this expansion. The intensity of dengue virus replication during the early stages of infection could determine clinical outcomes; therefore, it is important to understand the impact of dengue virus infection on the earliest immune defense against microbial infection, which also strongly regulates the adaptive immune responses. This study was aimed at evaluating the expression of the CC-chemokines MIP-1α/CCL3 and MCP-1/CCL2 in peripheral blood leukocytes using an ex vivo model resembling dengue infection in vivo, in subjects with a well characterized dengue immune background, due to the exceptional Cuban epidemiological situation in dengue. The expression of IFNγ, TNFα and IL10 was also evaluated, giving insight about the role of MCP-1 and MIP-1α in the interplay between innate and adaptive immunity. From individuals with different dengue immune background after dengue virus challenge, increased and different expression of the chemokines and cytokines studied was verified in peripheral blood mononuclear cells, thus demonstrating that the previous immunity to a dengue virus serotype has a strong influence on the early immune response after dengue re-infection.
Collapse
Affiliation(s)
- Beatriz Sierra
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodia Km. 6 ½, La Lisa, Havana City, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Ty Hang VT, Holmes EC, Veasna D, Quy NT, Tinh Hien T, Quail M, Churcher C, Parkhill J, Cardosa J, Farrar J, Wills B, Lennon NJ, Birren BW, Buchy P, Henn MR, Simmons CP. Emergence of the Asian 1 genotype of dengue virus serotype 2 in viet nam: in vivo fitness advantage and lineage replacement in South-East Asia. PLoS Negl Trop Dis 2010; 4:e757. [PMID: 20651932 PMCID: PMC2907417 DOI: 10.1371/journal.pntd.0000757] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/04/2010] [Indexed: 11/18/2022] Open
Abstract
A better description of the extent and structure of genetic diversity in dengue virus (DENV) in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Vu Thi Ty Hang
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Edward C. Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Duong Veasna
- Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Nguyen Thien Quy
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Tran Tinh Hien
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Michael Quail
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Carol Churcher
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Jane Cardosa
- Institute of Health and Community Medicine of the University of Malaysia, Sarawak, Malaysia
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Niall J. Lennon
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Bruce W. Birren
- Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Matthew R. Henn
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Cameron P. Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| |
Collapse
|
241
|
Christenbury JG, Aw PPK, Ong SH, Schreiber MJ, Chow A, Gubler DJ, Vasudevan SG, Ooi EE, Hibberd ML. A method for full genome sequencing of all four serotypes of the dengue virus. J Virol Methods 2010; 169:202-6. [PMID: 20600330 DOI: 10.1016/j.jviromet.2010.06.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/11/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
The availability of whole genome sequencing has contributed to many aspects of dengue research, and its use in dengue virus (DENV) surveillance for early epidemic warning has been proposed. Methods to sequence the genomes of individual dengue serotypes have been described previously, but no single method is known to be applicable for all four serotypes. This report describes a method for sequencing the entire genome of all four DENV serotypes. Using tagged oligonucleotide primers designed for the 3' end, viral RNA was reverse transcribed into a cDNA spanning the entire genome of each of the four serotypes (DENV-1 to -4). This was followed by amplification of the entire cDNA in five overlapping amplicons. A sequence tag was added to the sense primer annealing to the 5' UTR sequence and the antisense primer annealing to the 3' UTR sequence to ensure no terminal nucleotides were omitted during PCR. Sixty-one virus isolates were sequenced: 58 DENV-2, one DENV-1, one DENV-4 and one DENV-3 published previously. The method described could be applied readily for viral biology studies and incorporated into proactive dengue virologic surveillance.
Collapse
Affiliation(s)
- Joseph G Christenbury
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Rd., Singapore 169857, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Carrillo-Valenzo E, Danis-Lozano R, Velasco-Hernández JX, Sánchez-Burgos G, Alpuche C, López I, Rosales C, Baronti C, de Lamballerie X, Holmes EC, Ramos-Castañeda J. Evolution of dengue virus in Mexico is characterized by frequent lineage replacement. Arch Virol 2010; 155:1401-12. [DOI: 10.1007/s00705-010-0721-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022]
|
243
|
Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, O'Brien KM, Nelson CA, Johnson S, Fremont DH, Diamond MS. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 2010; 6:e1000823. [PMID: 20369024 PMCID: PMC2848552 DOI: 10.1371/journal.ppat.1000823] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/12/2010] [Indexed: 12/03/2022] Open
Abstract
Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential. Dengue virus (DENV) is a mosquito-transmitted virus that infects 25 to 100 million humans annually and can progress to a life-threatening hemorrhagic fever and shock syndrome. Currently, no vaccines or specific therapies are available. Prior studies identified a highly neutralizing monoclonal antibody (MAb) against West Nile virus, a related flavivirus, as a candidate therapy for humans. In this study, we generated 79 new MAbs against the DENV type 1 (DENV-1) serotype, 16 of which strongly inhibited infection in cell culture. Using structural and molecular approaches, the binding sites of these inhibitory MAbs were localized to distinct regions on domain III of the DENV-1 envelope protein. We tested the protective capacity of all of the neutralizing MAbs in mice against infection by a strain of DENV-1 from a distinct genotype. Only two of the MAbs, DENV1-E105 and DENV1-E106, showed efficacy in a post-exposure treatment model, and these antibodies efficiently neutralized all five DENV-1 genotypes. Collectively, our studies define a complex structural binding site on domain III of the envelope protein for MAbs with therapeutic potential against DENV-1.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James D. Brien
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Soila Sukupolvi-Petty
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Taekyung Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katie M. O'Brien
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Inc., Rockville, Maryland, United States of America
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
244
|
Imrie A, Roche C, Zhao Z, Bennett S, Laille M, Effler P, Cao-Lormeau VM. Homology of complete genome sequences for dengue virus type-1, from dengue-fever- and dengue-haemorrhagic-fever-associated epidemics in Hawaii and French Polynesia. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2010; 104:225-35. [PMID: 20507696 PMCID: PMC3084289 DOI: 10.1179/136485910x12647085215570] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dengue epidemic virulence is thought to be conferred by various factors, including the genotype of the virus involved. Increased or decreased epidemic virulence has been associated not only with the introduction of type-2 (DENV-2) strains into the South Pacific, the Caribbean and South America, but also with newly emergent DENV-3 genotypes in Sri Lanka, and the year-to-year variation in the DENV-4 strains circulating in Puerto Rico. These observations indicate that there are inherent differences among viral genotypes in their capacity to induce severe disease, that is, their virulence potential. The present study involved a comparison of the complete genome sequences of DENV-1 viruses that had been isolated from cases of dengue fever (DF) or dengue haemorrhagic fever (DHF) that occurred in French Polynesia or Hawaii in 2001, when a virulent DHF-associated dengue epidemic was occurring throughout the Pacific region. Previous studies have identified putative virulence-associated motifs and substitutions in the DENV-2 genome, and the main aim of the present study was to identify similar changes in DENV-1 that may be associated with viral virulence. As no virulence determinants were seen, however, in any gene or untranslated region, it appears that genotype is not the sole determinant of virulence in DENV-1. Further studies, to compare DF- and DHF-associated strains of DENV-1 isolated from epidemics of variable virulence, in the same eco-biological context, are needed.
Collapse
Affiliation(s)
- A Imrie
- Asia-Pacific Institute of Tropical Medicine and Infectious Diseases, Department of Tropical Medicine, J. A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | |
Collapse
|
245
|
Kurosu T, Khamlert C, Phanthanawiboon S, Ikuta K, Anantapreecha S. Highly efficient rescue of dengue virus using a co-culture system with mosquito/mammalian cells. Biochem Biophys Res Commun 2010; 394:398-404. [PMID: 20214880 DOI: 10.1016/j.bbrc.2010.02.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/26/2010] [Indexed: 11/28/2022]
Abstract
The production rate of dengue viruses (DENVs), especially low-passage virus isolates, is low, and, therefore, the isolates are generally used only after several passages. However, in vitro passages could induce mutation(s). In this study, we established a system for the characterization of low-passage viral isolates using an infectious cDNA clone. We used R05-624, a plaque derived from type 2 (DENV-2) Thai strain, for the construction of the cDNA clone, named pmMW/R05-624. We found that transfection of both of mammalian Vero cells and mosquito C6/36 cells with viral RNA derived from the cDNA clone produced a significant amount of progeny virus: 3.2x10(6) focus-forming units (FFU) production per ml of cultured fluid only 3days after transfection with 2 microg RNA. Conversely, no detectable level of viruses was produced by conventional methods using a single cell line, Vero or C6/36. When this system was applied for the characterization of eight low-passage clinical viral isolates by placing their 5'-half or 3'-half in the above cDNA clone, we found that all the isolates, except for L04-225, produced similar levels of progeny virus. Among a total of eight cDNA clones reconstructed with the NS4A-3'NCR region derived from L04-225, one clone carried an insertion and produced a low level of progeny virus. Thus, our system to efficiently rescue clinical samples or low-passage viral isolates could be useful for assessing the virological and molecular characteristics of DENV that could be related to disease pathogenesis.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Research Institute for Microbial Diseases (RIMD), Osaka University, Tiwanon Road, Muang, Nonthaburi 11000, Thailand.
| | | | | | | | | |
Collapse
|
246
|
Abstract
Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are the cause of one of the most important emerging viral diseases. DENV infections result in a wide spectrum of clinical disease including dengue haemorrhagic fever (DHF), a viral haemorrhagic disease characterised by bleeding and plasma leakage. The characteristic feature of DHF is the transient period of plasma leakage and a haemorrhagic tendency. DHF occurs mostly during a secondary DENV infection. Serotype cross-reactive antibodies and mediators from serotype cross-reactive Dengue-specific T cells have been implicated in the pathogenesis. A complex interaction between virus, host immune response and endothelial cells likely impacts the barrier integrity and functions of endothelial cells leading to plasma leakage. Recently the role of angiogenic factors and the role of dengue virus on endothelial cell transcription and functions have been studied. Insights into the mechanisms that confer protection or cause disease are critical in the development of prophylactic and therapeutic modalities for this important disease.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- University of Massachusetts Medical School, Center for Infectious Diseases and Vaccine Research, Worcester, MA 01655-0002, USA.
| |
Collapse
|
247
|
Abstract
Much remains to be learned about the pathogenesis of the different manifestations of dengue virus (DENV) infections in humans. They may range from subclinical infection to dengue fever, dengue hemorrhagic fever (DHF), and eventually dengue shock syndrome (DSS). As both cell tropism and tissue tropism of DENV are considered major determinants in the pathogenesis of dengue, there is a critical need for adequate tropism assays, animal models, and human autopsy data. More than 50 years of research on dengue has resulted in a host of literature, which strongly suggests that the pathogenesis of DHF and DSS involves viral virulence factors and detrimental host responses, collectively resulting in abnormal hemostasis and increased vascular permeability. Differential targeting of specific vascular beds is likely to trigger the localized vascular hyperpermeability underlying DSS. A personalized approach to the study of pathogenesis will elucidate the basis of individual risk for development of DHF and DSS as well as identify the genetic and environmental bases for differences in risk for development of severe disease.
Collapse
|
248
|
San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, Guzmán MG. The epidemiology of dengue in the americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 2010; 82:128-35. [PMID: 20065008 DOI: 10.4269/ajtmh.2010.09-0346] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have reported the epidemic patterns of dengue disease in the Region of the Americas from 1980 through 2007. Dengue cases reported to the Pan American Health Organization were analyzed from three periods: 1980-1989 (80s), 1990-1999 (90s), and 2000-2007 (2000-7). Age distribution data were examined from Brazil, Venezuela, Honduras, and Mexico. Cases increased over time: 1,033,417 (80s) to 2,725,405 (90s) to 4,759,007 (2000-7). The highest concentrations were reported in the Hispanic Caribbean (39.1%) in the 80s shifting to the Southern Cone in the 90s (55%) and 2000-7 (62.9%). From 1980 through 1987, 242 deaths were reported compared with 1,391 during 2000-7. The most frequently isolated serotypes were DENV-1 and DENV-2 (90s) and DENV-2 and DENV-3 (2000-7). The highest incidence was observed among adolescents and young adults; dengue hemorrhagic fever incidence was highest among infants in Venezuela. Increasing dengue morbidity/mortality was observed in the Americas in recent decades.
Collapse
Affiliation(s)
- José Luis San Martín
- Dengue Regional Program, Pan American Health Organization (PAHO), Panama, Republic of Panama.
| | | | | | | | | | | | | |
Collapse
|
249
|
Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans R Soc Trop Med Hyg 2010; 104:16-23. [DOI: 10.1016/j.trstmh.2009.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 12/20/2022] Open
|
250
|
Perez-Ramirez G, Diaz-Badillo A, Camacho-Nuez M, Cisneros A, Munoz MDL. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico. BMC Microbiol 2009; 9:260. [PMID: 20003526 PMCID: PMC2804599 DOI: 10.1186/1471-2180-9-260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 12/15/2009] [Indexed: 11/12/2022] Open
Abstract
Background Dengue (DEN) is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV) that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. Results To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91)-prM-E-NS1(2400) structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. Conclusions This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for the vaccines and drugs formulation as occurs for other viruses like poliovirus, influenza and HIV.
Collapse
Affiliation(s)
- Gerardo Perez-Ramirez
- Department of Genetics and Molecular Biology, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av, Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Mexico.
| | | | | | | | | |
Collapse
|