201
|
Altered surface trafficking of presynaptic cannabinoid type 1 receptor in and out synaptic terminals parallels receptor desensitization. Proc Natl Acad Sci U S A 2008; 105:18596-601. [PMID: 19015531 DOI: 10.1073/pnas.0805959105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic cannabinoid type 1 receptors (CB1Rs) are major mediators of retrograde synaptic plasticity at both excitatory and inhibitory synapses and participate in a plethora of physiological functions. Whether presynaptic receptors, such as CB1R, display functionally relevant movements at the surface of neuronal membranes is not known. We analyzed the lateral mobility of native CB1Rs in cortical neurons by using single-quantum dot imaging. We found that CB1Rs are highly mobile and rapidly diffuse in and out of presynapses. Agonist-induced desensitization correlated with a reduction in the fraction of surface CB1Rs and a drastic decrease in the membrane dynamic of the CB1Rs that remained at the presynaptic surface. Desensitization specifically excluded CB1Rs from synapses and increased the fraction of immobile receptors in the extrasynaptic compartment. The results suggest that decrease of mobility may be one of the core mechanisms underlying the desensitization of CB1R, the most abundant G protein-coupled receptor in the brain.
Collapse
|
202
|
Carmichael ST, Vespa PM, Saver JL, Coppola G, Geschwind DH, Starkman S, Miller CM, Kidwell CS, Liebeskind DS, Martin NA. Genomic profiles of damage and protection in human intracerebral hemorrhage. J Cereb Blood Flow Metab 2008; 28:1860-75. [PMID: 18628781 PMCID: PMC2745827 DOI: 10.1038/jcbfm.2008.77] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intracerebral hemorrhage (ICH) produces a high rate of death and disability. The molecular mechanisms of damage in perihematomal tissue in humans have not been systematically characterized. This study determines the gene expression profile and molecular networks that are induced in human perihematomal tissue through molecular analysis of tissue obtained from endoscopic clot evacuation. Differentially expressed genes and their cellular origin were confirmed in a mouse model of ICH. A total of 624 genes showed altered regulation in human ICH. Bioinformatic analysis shows that these genes form interconnected networks of proinflammatory, anti-inflammatory, and neuronal signaling cascades. Intracerebral hemorrhage evokes coordinated upregulation of proinflammatory signaling through specific cytokines and chemokines and their downstream molecular pathways. Anti-inflammatory networks are also induced by ICH, including annexins A1 and A2 and transforming growth factor beta (TGFbeta) and their intracellular cascades. Intracerebral hemorrhage downregulates many neuronal signaling systems, including the N-methyl-D-aspartic acid (NMDA) receptor complex and membrane ion channels. Select portions of these molecular networks were confirmed in the mouse, and the proteins in a subset of these networks localized to subsets of neurons, oligodendrocytes, or leukocytes. These inflammatory and anti-inflammatory networks interact at several key points in neutrophil signaling, apoptotic cell death, and protease responses, and indicate that secondary damage in ICH activates opposing molecular systems.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
|
204
|
Dresbach T, Nawrotzki R, Kremer T, Schumacher S, Quinones D, Kluska M, Kuhse J, Kirsch J. Molecular architecture of glycinergic synapses. Histochem Cell Biol 2008; 130:617-33. [DOI: 10.1007/s00418-008-0491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|
205
|
Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ. The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 2008; 28:6720-30. [PMID: 18579746 PMCID: PMC2720755 DOI: 10.1523/jneurosci.1677-08.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 12/28/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) are important regulators of the development of the dentate gyrus (DG). Both SDF-1 and CXCR4 are also highly expressed in the adult DG. We observed that CXCR4 receptors were expressed by dividing neural progenitor cells located in the subgranular zone (SGZ) as well as their derivatives including doublecortin-expressing neuroblasts and immature granule cells. SDF-1 was located in DG neurons and in endothelial cells associated with DG blood vessels. SDF-1-expressing neurons included parvalbumin-containing GABAergic interneurons known as basket cells. Using transgenic mice expressing an SDF-1-mRFP1 (monomeric red fluorescence protein 1) fusion protein we observed that SDF-1 was localized in synaptic vesicles in the terminals of basket cells together with GABA-containing vesicles. These terminals were often observed to be in close proximity to dividing nestin-expressing neural progenitors in the SGZ. Electrophysiological recordings from slices of the DG demonstrated that neural progenitors received both tonic and phasic GABAergic inputs and that SDF-1 enhanced GABAergic transmission, probably by a postsynaptic mechanism. We also demonstrated that, like GABA, SDF-1 was tonically released in the DG and that GABAergic transmission was partially dependent on coreleased SDF-1. These data demonstrate that SDF-1 plays a novel role as a neurotransmitter in the DG and regulates the strength of GABAergic inputs to the pool of dividing neural progenitors. Hence, SDF-1/CXCR4 signaling is likely to be an important regulator of adult neurogenesis in the DG.
Collapse
Affiliation(s)
- Bula J. Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Hosung Jung
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Darran G. Cronshaw
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Yongrui Zou
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| |
Collapse
|
206
|
Leal-Ortiz S, Waites CL, Terry-Lorenzo R, Zamorano P, Gundelfinger ED, Garner CC. Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. ACTA ACUST UNITED AC 2008; 181:831-46. [PMID: 18519737 PMCID: PMC2396795 DOI: 10.1083/jcb.200711167] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in SV recycling. In this study, we use interference RNAs to eliminate Piccolo expression from cultured hippocampal neurons to assess its involvement in synapse formation and function. Our data show that Piccolo is not required for glutamatergic synapse formation but does influence presynaptic function by negatively regulating SV exocytosis. Mechanistically, this regulation appears to be calmodulin kinase II–dependent and mediated through the modulation of Synapsin1a dynamics. This function is not shared by the highly homologous protein Bassoon, which indicates that Piccolo has a unique role in coupling the mobilization of SVs in the reserve pool to events within the active zone.
Collapse
Affiliation(s)
- Sergio Leal-Ortiz
- Deptartment of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
207
|
Wouterlood FG, Boekel AJ, Kajiwara R, Beliën JA. Counting contacts between neurons in 3D in confocal laser scanning images. J Neurosci Methods 2008; 171:296-308. [DOI: 10.1016/j.jneumeth.2008.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/18/2008] [Accepted: 03/13/2008] [Indexed: 11/24/2022]
|
208
|
Abstract
Major advances in understanding regulated mucin secretion from airway goblet cells have been made in the past decade in the areas of pharmacology and basic cell biology. For instance, it is now appreciated that nucleotide agonists acting locally through P2Y purinoceptors on apical membranes of surface goblet cells provide the major regulatory system for mucin secretion. Similarly, Clara cells, the primary secretory cell in the mouse airways (and human small airways), are now recognized as major mucin-secreting cells. In Clara cells, the relative lack of staining for mucosubstances reflects essentially equal baseline rates of mucin synthesis and secretion, with little to no accumulation of mucin granules in storage pools. During mucous metaplasia induced under inflammatory conditions, mucin synthesis is massively upregulated in Clara cells, and stored mucin granules come to dominate the secretory cell phenotype. More importantly, we have seen a transition in the past few years from a pharmacological focus on regulated mucin secretion to a more molecular mechanistic focus that has great promise going forward. In part, these advances are occurring through the use of well-differentiated primary human bronchial epithelial cell cultures, but recent work in mouse models perhaps has had the most important impact. Emerging data from Munc13-2- and synaptotagmin 2-deficient mouse models represent the first direct, molecular-level manipulations of proteins involved in regulated secretory cell mucin secretion. These new data indicate that Munc13-2 is responsible for regulating a baseline mucin secretory pathway in the airways and is not essential for purinergic agonist-induced mucin secretion. In contrast, synaptotagmin 2, a fast Ca2+ sensor for the SNARE complex, is essential for regulated secretion. Interestingly, these early results suggest that there are two pathways for excocytic mucin release from goblet cells.
Collapse
Affiliation(s)
- C William Davis
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | |
Collapse
|
209
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
210
|
Li KW, Smit AB. Proteomics of brain synapses and molecular dissection of synaptic subdomains. Proteomics Clin Appl 2007; 1:1476-84. [DOI: 10.1002/prca.200700328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
211
|
Spilker C, Acuña Sanhueza GA, Böckers TM, Kreutz MR, Gundelfinger ED. SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. J Neurochem 2007; 104:187-201. [PMID: 17961154 DOI: 10.1111/j.1471-4159.2007.04991.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spine-associated RapGAP 2 (SPAR2) is a novel GTPase activating protein (GAP) for the small GTPase Rap that shows significant sequence homology to SPAR, a synaptic RapGAP that was reported to regulate spine morphology in hippocampal neurons. SPAR2, like SPAR, interacts with the recently described synaptic scaffolding protein ProSAP-interacting protein (ProSAPiP), which in turn binds to the PDZ domain of ProSAP/Shank post-synaptic density proteins. In subcellular fractionation experiments, SPAR2 is enriched in synaptosomes and post-synaptic density fractions indicating that it is a synaptic protein. Furthermore, we could show using in vitro GAP assays that SPAR2 has GAP activity for Rap1 and Rap2. Expression in COS-7 cells, however, revealed different actin-binding properties of SPAR2 and SPAR. Additionally, over-expression of SPAR2 in cultured hippocampal neurons did not affect spine morphology as it was reported for SPAR. In situ hybridization studies also revealed a differential tissue distribution of SPAR and SPAR2 with SPAR2 transcripts being mainly expressed in cerebellar and hippocampal granule cells. Moreover, in the cerebellum SPAR2 is developmentally regulated with a peak of expression around the period of synapse formation. Our results imply that SPAR2 is a new RapGAP with specific functions in cerebellar and hippocampal granule cells.
Collapse
Affiliation(s)
- Christina Spilker
- Project Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
212
|
Investigating interactions mediated by the presynaptic protein bassoon in living cells by Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 2007; 94:1483-96. [PMID: 17933880 DOI: 10.1529/biophysj.107.111674] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal synapses are highly specialized structures for communication between nerve cells. Knowledge about their molecular organization and dynamics is still incomplete. The large multidomain protein Bassoon plays a major role in scaffolding and organizing the cytomatrix at the active zone of neurotransmitter release in presynaptic boutons. Utilizing immunofluorescence techniques, we show that Bassoon is essential for corecruitment of its synaptic interaction partners, C-terminal binding protein 1/brefeldin A-dependent ADP-ribosylation substrate and CAZ-associated structural protein, into protein complexes upon heterologous expression in COS-7 cells. A combination of Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy in the time domain was adopted to investigate the potential for the association of these proteins in the same complexes. A direct physical association between Bassoon and CtBP1 could also be observed at synapses of living hippocampal neurons. Simultaneous analysis of fluorescence decays of the donor and the acceptor probes along with their decay-associated spectra allowed a clear discrimination of energy transfer.
Collapse
|
213
|
Tao-Cheng JH. Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience 2007; 150:575-84. [PMID: 17977664 DOI: 10.1016/j.neuroscience.2007.09.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Although it has been suggested that presynaptic active zone (AZ) may be preassembled, it is still unclear which entities carry the various proteins to the AZ during synaptogenesis. Here, I propose that aggregates of dense core vesicles (DCV) and small clear vesicles in the axons of young rat hippocampal cultures are carriers containing preformed AZ and synaptic vesicle (SV) components on their way to developing synapses. The aggregates were positively labeled with antibodies against Bassoon and Piccolo (two AZ cytomatrix proteins), VAMP, SV2, synaptotagmin (three SV membrane proteins), and synapsin I (a SV-associated protein). Bassoon and Piccolo labeling were localized at dense material both in the aggregates and at the AZ. In addition to the SV at the synapses, the SV membrane proteins labeled the clear vesicles in the aggregate as well as many other SV-like and pleiomorphic vesicular structures in the axons, and synapsin I labeling was associated with the vesicles in the aggregates. In single sections, these axonal vesicle aggregates were approximately 0.22 by 0.13 microm in average dimensions and contain one to two DCV and five to six small clear vesicles. Serial sections confirmed that the aggregates were not synaptic junctions sectioned en face. Labeling intensities of Bassoon and Piccolo measured from serially sectioned transport aggregates and AZ were within range of each other, suggesting that one or a few aggregates, but not individual DCV, can carry sufficient Bassoon and Piccolo to form an AZ. The present findings provide the first ultrastructural evidence localizing various AZ and SV proteins in a preassembled multi-vesicle transport aggregate that has the potential to quickly form a functional active zone.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- NINDS EM Facility, NIH, Building 49, Room 3A50, Bethesda, MD 20892-4477, USA.
| |
Collapse
|
214
|
Liang F, Zhang B, Tang J, Guo J, Li W, Ling EA, Chu H, Wu Y, Chan YG, Cao Q. RIM3gamma is a postsynaptic protein in the rat central nervous system. J Comp Neurol 2007; 503:501-10. [PMID: 17534942 DOI: 10.1002/cne.21403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RIMs (Rab3-interacting molecules) are synaptic proteins essential for neural transmission and plasticity. RIM1alpha has been implicated in membrane trafficking and regulation of secretory vesicle exocytosis in eukaryotic cells. Little information is as yet available on RIM3gamma. In the present study, we investigated the cellular expression, subcellular distribution, and possible functions of RIM3gamma in the rat CNS. Rim3gamma cDNA was subcloned and the protein expressed in vitro for the generation and purification of a rabbit anti-RIM3gamma polyclonal antibody. In situ hybridization histochemistry, immunohistochemistry, and immunoelectron microscopy were performed to map expression of the mRNA and protein in the rat CNS. Our results indicated widespread distribution of RIM3gamma in diverse CNS neuronal cell types. The mRNA was found mainly in the cell bodies, whereas the protein immunoreactivity was localized chiefly to neuronal dendrites and to the postsynaptic densities as visualized under the light and electron microscope. This postsynaptic placement of RIM3gamma is distinct from the presynaptic localization of RIM1alpha but may contribute to regulating synaptic transmission and plasticity. The identification of RIM3gamma as a postsynaptic protein has functional implications for CNS synapse functions.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117597.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Kremer T, Kempf C, Wittenmayer N, Nawrotzki R, Kuner T, Kirsch J, Dresbach T. Mover is a novel vertebrate-specific presynaptic protein with differential distribution at subsets of CNS synapses. FEBS Lett 2007; 581:4727-33. [PMID: 17869247 DOI: 10.1016/j.febslet.2007.08.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/07/2007] [Accepted: 08/29/2007] [Indexed: 11/24/2022]
Abstract
Presynaptic nerve terminals contain scaffolding proteins that orchestrate neurotransmitter release at active zones. Here we describe mover, a yet unknown non-transmembrane protein that is targeted to presynaptic terminals when overexpressed in cultured neurons. Confocal immunomicroscopy revealed that mover colocalizes with presynaptic markers in the calyx of Held. In the hippocampus, mover localizes to mossy fibre terminals, but is absent from inhibitory nerve terminals. By contrast, mover localizes to inhibitory terminals throughout the cerebellar cortex. Our results suggest that mover may act in concert with generally expressed scaffolding proteins in distinct sets of presynaptic terminals.
Collapse
Affiliation(s)
- Thomas Kremer
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
216
|
Mittelstaedt T, Schoch S. Structure and evolution of RIM-BP genes: identification of a novel family member. Gene 2007; 403:70-9. [PMID: 17855024 DOI: 10.1016/j.gene.2007.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 11/16/2022]
Abstract
RIM-binding proteins (RIM-BPs) were identified as binding partners of the presynaptic active zone proteins RIMs as well as for voltage-gated Ca(2+)-channels. They were suggested to form a functional link between the synaptic-vesicle fusion apparatus and Ca(2+)-channels. Here we show that the RIM-BP gene family diversified in different stages during evolution, but retained their unique domain structure. While invertebrate genomes contain one, and vertebrates include at least two RIM-BPs, we identified an additional gene, RIM-BP3, which is exclusively expressed in mammals. RIM-BP3 is encoded by a single exon of which three copies are present in the human genome. All RIM-BP genes encode proteins with three SH3-domains and two to three fibronectin III repeats. The flanking regions diverge in size and sequence and are alternatively spliced in RIM-BP1 and -2. Quantitative real-time RT-PCR and in situ hybridization analyses revealed overlapping but distinct expression patterns throughout the brain for RIM-BP1 and -2, while RIM-BP3 was detected at high levels outside the nervous system. The modular domain structure of RIM-BPs, their expression pattern and the conservative expansion during evolution shown here support their potential role as important molecular adaptors.
Collapse
Affiliation(s)
- Tobias Mittelstaedt
- Department of Neuropathology and Epileptology, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | | |
Collapse
|
217
|
Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtová A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S. Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 2007; 27:6868-77. [PMID: 17596435 PMCID: PMC6672225 DOI: 10.1523/jneurosci.1773-07.2007] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals are specialized for mediating rapid fusion of synaptic vesicles (SVs) after calcium influx. The regulated trafficking of SVs likely results from a highly organized cytomatrix. How this cytomatrix links SVs, maintains them near the active zones (AZs) of release, and organizes docked SVs at the release sites is not fully understood. To analyze the three-dimensional (3D) architecture of the presynaptic cytomatrix, electron tomography of presynaptic terminals contacting spines was performed in the stratum radiatum of the rat hippocampal CA1 area. To preserve the cytomatrix, hippocampal slices were immobilized using high-pressure freezing, followed by cryosubstitution and embedding. SVs are surrounded by a dense network of filaments. A given vesicle is connected to approximately 1.5 neighboring ones. SVs at the periphery of this network are also linked to the plasma membrane, by longer filaments. More of these filaments are found at the AZ. At the AZ, docked SVs are grouped around presynaptic densities. Filaments with adjacent SVs emerge from these densities. Immunogold localizations revealed that synapsin is located in the presynaptic bouton, whereas Bassoon and CAST (ERC2) are at focal points next to the AZ. In synapsin triple knock-out mice, the number of SVs is reduced by 63%, but the size of the boutons is reduced by only 18%, and the mean distance of SVs to the AZ is unchanged. This 3D analysis reveals the morphological constraints exerted by the presynaptic molecular scaffold. SVs are tightly interconnected in the axonal bouton, and this network is preferentially connected to the AZ.
Collapse
Affiliation(s)
- Léa Siksou
- Inserm U789, Ecole Normale Supérieure, 75005 Paris, France
| | | | - Jean-Pierre Lechaire
- Service de CryoMicroscopie Electronique, Institut Fédératif de Recherche Biologie Intégrative 83 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | - Thomas Boudier
- Imagerie Intégrative, Inserm U759, Institut Curie, Bâtiment 112, Centre Universitaire Orsay, 91405 Orsay cedex, France
| | - Toshihisa Ohtsuka
- Department of Clinical and Molecular Pathology, Faculty of Medicine/Graduate School of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Anna Fejtová
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hung-Teh Kao
- Department of Psychiatry, New York University School of Medicine, and Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, and
| | - Paul Greengard
- Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021
| | - Eckart D. Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Serge Marty
- Inserm U789, Ecole Normale Supérieure, 75005 Paris, France
| |
Collapse
|
218
|
Wouterlood FG, Boekel AJ, Meijer GA, Beliën JAM. Computer-assisted estimation in the CNS of 3D multimarker 'overlap' or 'touch' at the level of individual nerve endings: a confocal laser scanning microscope application. J Neurosci Res 2007; 85:1215-28. [PMID: 17387746 DOI: 10.1002/jnr.21244] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Presynaptic boutons and associated postsynaptic structures in the CNS express markers that are highly synapse type-specific. In multilabel immunofluorescence imaging, coexpression of such markers appears as overlap of signals in the same structures whereas closely related yet segregated markers, e.g., located pre-and postsynaptically, translate into signals that touch. 'Overlap' and 'touch' occur in three dimensions (3D). The instrument of choice to study overlap vs. touch of small objects in tissue volumes is the confocal laser scanning microscope (CSLM). To quantify overlap and touch we used two paradigms. Overlap was studied in rat brain sections triple-immunostained with antibodies against markers predominantly located presynaptically: glutamic acid decarboxylase, vesicular glutamate transporter 2, and calretinin. Touch was studied in rat temporal cortex where afferent, tracer-labeled entorhinohippocampal fibers in the subiculum were imaged together with possible postsynaptic target neurons immunostained with an antibody against the calcium binding protein, parvalbumin. Z-series of CLSM images were obtained in multiple channels. After post-acquisition deconvolution we further processed the images via software written in the C/C++ SCIL Image computer programming environment. The software receives parameters via scripts, after which it first identifies 3D objects through establishing isodensity envelopes around pixels representing small biologic structures (in our case: boutons) and then compares associated Z-series in which it determines whether there is overlap or touch between recognized 3D objects. Finally, graphic and numeric output is produced. With this script-commanded software we feel equipped to accurately and objectively quantify overlap and touch.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
219
|
Cruz-Garcia D, Vazquez-Martinez R, Peinado JR, Anouar Y, Tonon MC, Vaudry H, Castaño JP, Malagon MM. Identification and characterization of two novel (neuro)endocrine long coiled-coil proteins. FEBS Lett 2007; 581:3149-56. [PMID: 17572408 DOI: 10.1016/j.febslet.2007.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 11/17/2022]
Abstract
We have identified a novel vertebrate-specific gene by applying a Differential Display method on two distinct subtypes of pituitary melanotropes showing divergent secretory phenotypes of hypo- and hypersecretion. A paralogue of this gene was also identified. The existence of a long coiled-coil domain and a C-terminal transmembrane domain in the sequences, together with the Golgi distribution of the proteins in transfected cells, suggest that they can be considered as new members of the golgin family of proteins. Both genes were primarily expressed in (neuro)endocrine tissues in vertebrates thus supporting a role for these proteins in the regulated secretory pathway.
Collapse
Affiliation(s)
- D Cruz-Garcia
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Hoogenraad CC, Feliu-Mojer MI, Spangler SA, Milstein AD, Dunah AW, Hung AY, Sheng M. Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development. Dev Cell 2007; 12:587-602. [PMID: 17419996 DOI: 10.1016/j.devcel.2007.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 01/09/2007] [Accepted: 02/08/2007] [Indexed: 11/26/2022]
Abstract
Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system. In hippocampal neurons, liprinalpha1 mutants that are immune to CaMKII degradation impair dendrite arborization, reduce spine and synapse number, and inhibit dendritic targeting of receptor tyrosine phosphatase LAR, which is important for dendrite development. Thus, regulated degradation of liprinalpha1 is important for proper LAR receptor distribution, and could provide a mechanism for localized control of dendrite and synapse morphogenesis by activity and CaMKII.
Collapse
Affiliation(s)
- Casper C Hoogenraad
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
221
|
Liebau S, Vaida B, Storch A, Boeckers TM. Maturation of synaptic contacts in differentiating neural stem cells. Stem Cells 2007; 25:1720-9. [PMID: 17379760 DOI: 10.1634/stemcells.2006-0823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NSCs are found in the developing brain, as well as in the adult brain. They are self-renewing cells that maintain the capacity to differentiate into all major brain-specific cell types, such as glial cells and neurons. However, it is still unclear whether these cells are capable of gaining full functionality, which is one of the major prerequisites for NSC-based cell replacement strategies of neurological diseases. The ability to establish and maintain polarized excitatory synaptic contacts would be one of the basic requirements for intercellular communication and functional integration into existing neuronal networks. In primary cultures of hippocampal neurons, it has already been shown that synaptogenesis is characterized by a well-ordered, time-dependent targeting and recruitment of pre- and postsynaptic proteins. In this study, we investigated the expression and localization of important pre- and postsynaptic proteins, including Bassoon and synaptophysin, as well as proteins of the ProSAP/Shank family, in differentiating rat fetal mesencephalic NSCs. Moreover, we analyzed the ultrastructural features of neuronal cell-cell contacts during synaptogenesis. We show that NSCs express and localize cytoskeletal and scaffolding molecules of the pre- and postsynaptic specializations in a well-defined temporal order, leading to mature synaptic contacts after 14 days of differentiation. The temporal and spatial pattern of synaptic maturation is comparable to synaptogenesis of hippocampal neurons grown in primary culture. Therefore, with respect to the general ability to create mature synaptic contacts, NSCs seem to be well equipped to potentially compensate for lost or injured brain tissue. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Stefan Liebau
- Institute of Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
222
|
Rollenhagen A, Lübke JHR. The morphology of excitatory central synapses: from structure to function. Cell Tissue Res 2006; 326:221-37. [PMID: 16932936 DOI: 10.1007/s00441-006-0288-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.
Collapse
Affiliation(s)
- Astrid Rollenhagen
- Institute of Neuroscience and Biophysics, Department of Medicine, Research Center Jülich, D-52425, Jülich, Germany
| | | |
Collapse
|
223
|
Garner CC, Waites CL, Ziv NE. Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 2006; 326:249-62. [PMID: 16909256 DOI: 10.1007/s00441-006-0278-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/23/2023]
Abstract
Synapse development in the vertebrate central nervous system is a highly orchestrated process occurring not only during early stages of brain development, but also (to a lesser extent) in the mature nervous system. During development, the formation of synapses is intimately linked to the differentiation of neuronal cells, the extension of their axons and dendrites, and the course wiring of the nervous system. Subsequently, the stabilization, elimination, and strengthening of synaptic contacts is coupled to the refinement of axonal and dendritic arbors, to the establishment of functionally meaningful connections, and probably also to the day-to-day acquisition, storage, and retrieval of memories, higher order thought processes, and behavioral patterns.
Collapse
Affiliation(s)
- Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzer Laboratory, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | |
Collapse
|
224
|
Becherer U, Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res 2006; 326:393-407. [PMID: 16819626 DOI: 10.1007/s00441-006-0243-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The release of neurotransmitter from synaptic vesicles represents the final event by which presynapses send their chemical signal to the receiving postsynapses. Prior to fusion, synaptic vesicles undergo a series of maturation events, most notably the membrane-delimited docking and priming steps. Physiological and optical experiments with high-time resolution have allowed the distinction of vesicles in different maturation states with respect to fusion, the so-called vesicle pools. In this review, we define the various vesicle pools and discuss pathways leading into and out of these pools. We also provide an overview of an array of proteins that have been identified or are speculated to play a role in the transition between the various vesicle pools.
Collapse
Affiliation(s)
- Ute Becherer
- Universität des Saarlandes, Physiologisches Institut, Gebäude 59, Kirrberger Strasse 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|
225
|
Brodin L, Shupliakov O. Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones. Cell Tissue Res 2006; 326:301-10. [PMID: 16786368 DOI: 10.1007/s00441-006-0216-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Deciphering the function of synaptic release sites is central to understanding neuronal communication. Here, we review studies of the lamprey giant reticulospinal synapse, a model that can be used to dissect synaptic vesicle trafficking at single release sites. The presynaptic axon is large and contains active zones that are spatially separated from each other. During activity, synaptic vesicle membrane is shuttled between the active zone and the periactive zone at which endocytosis occurs. Recent studies have shown that the periactive zone contains an actin-rich cytomatrix that expands during synaptic activity. This cytomatrix has been implicated in multiple functions that include (1) activity-dependent trafficking of proteins between the synaptic vesicle cluster and the periactive zone, (2) synaptic vesicle endocytosis, and (3) the movement of newly formed synaptic vesicles to the vesicle cluster. The actin cytomatrix thus provides a link between the active zone and the periactive zone; this link appears to be critical for sustained cycling of synaptic vesicles.
Collapse
Affiliation(s)
- Lennart Brodin
- Department of Neuroscience, CEDB, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | |
Collapse
|