201
|
Haase E, Riehl D, Mack M, Brendel M. Molecular cloning of SNM1, a yeast gene responsible for a specific step in the repair of cross-linked DNA. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:64-71. [PMID: 2550766 DOI: 10.1007/bf00330566] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have isolated yeast gene SNM1 via complementation of sensitivity towards bi- and tri-functional alkylating agents in haploid and diploid yeast DNA repair-deficient snm1-1 mutants. Four independent clones of plasmid DNA containing the SNM1 locus were isolated after transformation with a YEp24-based yeast gene bank. Subcloned SNM1-containing DNA showed (i) complementation of the repair-deficiency phenotype caused by either one of the two different mutant alleles snm1-1 and snm1-2ts; (ii) complementation in haploid and diploid yeast snm1-1 mutants by either single or multiple copies of the SNM1 locus; and (iii) that the SNM1 gene is at most 2.4 kb in size. Expression of SNM1 on the smallest subclone, however, was under the control of the GAL1 promotor. Gene size and direction of transcription was further verified by mutagenesis of SNM1 by Tn10-LUK transposon insertion. Five plasmids containing Tn10-LUK insertions at different sites of the SNM1-containing DNA were able to disrupt the function of genomic SNM1 after gene transplacement. Correct integration of the disrupted SNM1::Tn10-LUK at the genomic site of SNM1 was verified via tetrad analysis of the sporulated diploid obtained after mating of the SNM1::Tn10-LUK transformant to a haploid strain containing the URA3 SNM1 wild-type alleles. The size of the poly(A)+ RNA transcript of the SNM1 gene is 1.1 kb as determined by Northern analysis.
Collapse
Affiliation(s)
- E Haase
- Institut für Mikrobiologie Johann Wolfgang Goethe-Universität, Frankfurt/Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
202
|
Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease. Mol Cell Biol 1989. [PMID: 2471063 DOI: 10.1128/mcb.9.3.965] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinic-apyrimidinic (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Drosophila extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-kb mRNA also hybridized to the AP3 cDNA, but this species was restricted to the early stages of development.
Collapse
|
203
|
Darroudi F, Westerveld A, Natarajan AT. Cytogenetical characterisation of Chinese hamster 43-3B transferants with the amplified or non-amplified human DNA repair gene ERCC-1. Mutat Res 1989; 212:113-22. [PMID: 2499774 DOI: 10.1016/0027-5107(89)90062-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A comparative study on the biological responses to different mutagens (UV, 4NQO, MMC, MMS and EMS) was made on CHO wild-type cells (CHO-9), its UV-hypersensitive mutant 43-3B, and 2 types of its transferants, i.e., one containing a few copies of the human repair gene ERCC-1 and the other having more than 100 copies of ERCC-1 (due to gene amplification). Cell survival, chromosomal aberrations and SCEs were used as biological end-points. The spontaneous frequency of chromosomal aberrations in the transferants was less than found in 43-3B mutant cells, but still 2-3 times higher than in wild-type CHO cells. The spontaneous frequency of SCEs in the transferants was less than in 43-3B and similar to that of wild-type cells. The induction of SCEs by all tested agents in transferants was similar to that found in CHO-9 cells, while the mutant is known to respond with higher frequencies. ERCC-1 also bestowed resistance to MMS and EMS on the mutant to induction of chromosomal aberrations and cell killing to levels comparable with those of the wild-type strain. On the other hand ERCC-1 could not completely regain the repair proficiency against cell killing and induction of chromosomal aberrations by UV or MMC to the wild-type level. These results suggest that the ERCC-1 corrects the repair defect in CHO mutant cells, but it is unable to rectify fully the defect; probable reasons for this are discussed. However, amplified transferants (having more than 100 copies of the ERCC-1 gene) restored the impaired repair function in 43-3B to UV-, MMC- or 4NQO-induced DNA damage better than non-amplified transferants with a few copies of the ERCC-1. This difference may be due to the high amount of gene product involved in the excision repair process in the amplified cells.
Collapse
Affiliation(s)
- F Darroudi
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
204
|
van Duin M, van Den Tol J, Hoeijmakers JH, Bootsma D, Rupp IP, Reynolds P, Prakash L, Prakash S. Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. Mol Cell Biol 1989; 9:1794-8. [PMID: 2471070 PMCID: PMC362600 DOI: 10.1128/mcb.9.4.1794-1798.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.
Collapse
Affiliation(s)
- M van Duin
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Kelley MR, Venugopal S, Harless J, Deutsch WA. Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease. Mol Cell Biol 1989; 9:965-73. [PMID: 2471063 PMCID: PMC362685 DOI: 10.1128/mcb.9.3.965-973.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinic-apyrimidinic (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Drosophila extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-kb mRNA also hybridized to the AP3 cDNA, but this species was restricted to the early stages of development.
Collapse
Affiliation(s)
- M R Kelley
- Department of Biochemistry and Biophysics, Loyola University Medical School, Maywood, Illinois 60152
| | | | | | | |
Collapse
|
206
|
Angulo JF, Moreau PL, Maunoury R, Laporte J, Hill AM, Bertolotti R, Devoret R. KIN, a mammalian nuclear protein immunologically related to E. coli RecA protein. Mutat Res 1989; 217:123-34. [PMID: 2493134 DOI: 10.1016/0921-8777(89)90064-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A polypeptide of about 120 kDa, called KIN, has been identified in rat FR 3T3 cells by immunoblotting using affinity-purified antibodies against the RecA protein of Escherichia coli (38 kDa). The KIN protein as shown by fluorescent light microscopy and electron microscopy is essentially concentrated in the nucleus. Its level is higher in proliferating than in quiescent cells. Cell treatment with mitomycin C increases the level of the KIN protein. We sought similar proteins in other mammalian cells. Proteins with the same electrophoretic mobility were detected in mouse, monkey and human cell lines as well as in rat and mouse embryos.
Collapse
Affiliation(s)
- J F Angulo
- Laboratoire d'Enzymologie, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
207
|
van Duin M, Vredeveldt G, Mayne LV, Odijk H, Vermeulen W, Klein B, Weeda G, Hoeijmakers JH, Bootsma D, Westerveld A. The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I. Mutat Res 1989; 217:83-92. [PMID: 2918869 DOI: 10.1016/0921-8777(89)90059-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human DNA excision repair gene ERCC-1 complements the ultraviolet light (UV) and mitomycin C (MMC) sensitivity of CHO mutants of complementation group 1. We have investigated whether ERCC-1 is the mutated gene in cell lines from xeroderma pigmentosum (XP) complementation groups A through I by analyzing the endogenous gene in XP cells and by introduction of the gene followed by repair assays. Our studies show that ERCC-1 is not deleted or grossly rearranged in representative cell lines of 9 XP groups. Furthermore, Northern blot analysis revealed correct transcription of ERCC-1 in all groups. The cloned human ERCC-1 gene was introduced into immortalized XP cells by DNA transfection (groups A, C, D, E and F). The presence of the integrated transfected sequences was verified on Southern blots and by selection for 2 dominant marker genes that flank the ERCC-1 gene on the transfected cos43-34 DNA. ERCC-1 failed to confer a normal UV survival and UV-induced unscheduled DNA synthesis (UDS) to transfected populations. In the case of the remaining XP complementation groups (B, G, H and I), nuclear microinjection was used to introduce an ERCC-1 cDNA construct driven by an SV40 promoter into primary fibroblasts. Coinjection of the SV40 large T gene and analysis of its expression served as a control for the injection. The ERCC-1 cDNA failed to induce increased levels of UDS in the microinjected fibroblasts. We infer from these experiments that ERCC-1 is not the mutated gene in the 9 XP complementation groups examined. From a similar type of experiments we conclude that ERCC-1 is not the defective gene in UV-sensitive Cockayne's syndrome cells.
Collapse
Affiliation(s)
- M van Duin
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
DNA methylation was examined in xeroderma pigmentosum (XP) cells. The amount of 5-methylcytosine (mC) in DNA from XP cells was about 70% of that in DNA from normal controls. Southern hybridization analysis showed that the HLA-DR alpha gene in XP lymphocyte B cells was differently methylated from normals, but its expression was apparently unaffected. The methylation of dihydrofolate reductase, a housekeeping gene, was the same as in controls. The revertants to UV resistance from XP fibroblasts recovered a methylation level close to that of normal cells. Results suggested that XP DNA was undermethylated non-randomly, and that DNA methylation might be associated with DNA repair function.
Collapse
Affiliation(s)
- H Sano
- Laboratory of Molecular Genetics, Biotechnology Institute, Akita Prefectural College of Agriculture, Japan
| | | | | | | | | |
Collapse
|
209
|
DeMarini DM, Brockman HE, de Serres FJ, Evans HH, Stankowski LF, Hsie AW. Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspective. Mutat Res 1989; 220:11-29. [PMID: 2643030 DOI: 10.1016/0165-1110(89)90006-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the course of discovering the first mutagen (X-rays) just over 60 years ago, Herman J. Muller asked whether X-rays induced single-gene mutations and/or chromosomal (multiple-gene) mutations. To a large extent, his question has set the agenda for mutagenesis research ever since. We explore historically the answers to this question, with special emphasis on recent developments in the field of mammalian cell mutagenesis. Studies indicate that ionizing radiation and many chemical mutagens/carcinogens induce both gene and chromosomal mutations; however, only certain genetic systems permit the recovery and analysis of both classes of mutations. Few chemical mutagens induce only gene mutations in mammalian cells; instead, most mutagens appear to induce both classes of mutations, with chromosomal mutations (especially multilocus deletions) predominating at high doses. These results have implications regarding the mechanisms of mutagenesis, the role of chromosomal mutations in carcinogenesis and hereditary disease, and the type of data required for risk assessment of physical and chemical mutagens/carcinogens.
Collapse
Affiliation(s)
- D M DeMarini
- Genetic Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | | | | | | | | | | |
Collapse
|
210
|
Affiliation(s)
- S I Rattan
- Department of Chemistry, Aarhus University, Denmark
| |
Collapse
|
211
|
Abstract
This review describes the evolution of research into the genetic basis of how different organisms use the process of excision repair to recognize and remove lesions from their cellular DNA. One particular aspect of excision repair, DNA incision, and how it is controlled at the genetic level in bacteriophage, bacteria, S. cerevisae, D. melanogaster, rodent cells and humans is examined. In phage T4, DNA is incised by a DNA glycosylase-AP endonuclease that is coded for by the denV gene. In E. coli, the products of three genes, uvrA, uvrB and uvrC, are required to form the UVRABC excinuclease that cleaves DNA and releases a fragment 12-13 nucleotides long containing the site of damage. In S. cerevisiae, genes complementing five mutants of the RAD3 epistasis group, rad1, rad2, rad3, rad4 and rad10 have been cloned and analyzed. Rodent cells sensitive to a variety of mutagenic agents and deficient in excision repair are being used in molecular studies to identify and clone human repair genes (e.g. ERCC1) capable of complementing mammalian repair defects. Most studies of the human system, however, have been done with cells isolated from patients suffering from the repair defective, cancer-prone disorder, xeroderma pigmentosum, and these cells are now beginning to be characterized at the molecular level. Studies such as these that provide a greater understanding of the genetic basis of DNA repair should also offer new insights into other cellular processes, including genetic recombination, differentiation, mutagenesis, carcinogenesis and aging.
Collapse
Affiliation(s)
- J S Rubin
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
212
|
Bohr VA, Chu EH, van Duin M, Hanawalt PC, Okumoto DS. Human repair gene restores normal pattern of preferential DNA repair in repair defective CHO cells. Nucleic Acids Res 1988; 16:7397-403. [PMID: 3412890 PMCID: PMC338416 DOI: 10.1093/nar/16.15.7397] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.
Collapse
Affiliation(s)
- V A Bohr
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
213
|
Naumovski L, Friedberg EC. Rad3 protein of Saccharomyces cerevisiae: overexpression and preliminary characterization using specific antibodies. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:400-8. [PMID: 2972908 DOI: 10.1007/bf00339609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cloned RAD3 gene of Saccharomyces cerevisiae was tailored into expression vectors for overexpression of Rad3 protein in Escherichia coli and in yeast. In both organisms the overexpressed protein is detected as a species of molecular weight ca. 90 kDa, the size expected from the sequence of the cloned gene. The protein overexpressed in E. coli is largely insoluble; however the insoluble fraction was used to generate affinity-purified polyclonal antisera which proved to be powerful reagents for the initial characterization of Rad3 protein expressed in yeast. These studies showed that: (1) when overexpressed in yeast most of the Rad3 protein is detected in the soluble fraction of cell extracts; (2) endogenous Rad3 protein is untransformed cells is also ca. 90 kDa in size and is located in the cell nucleus; (3) Rad3/beta-galactosidase fusion protein partially purified on an affinity matrix is associated with DNA-dependent ATPase activity that is inhibited in the presence of anti-Rad3 antibodies, suggesting that Rad3 protein is an ATPase; and (4) Rad3 antibodies cross-react with two electrophoretically distinguishable polypeptides present in the nuclear fraction of human cells, and with a single polypeptide in extracts of Drosophila cells.
Collapse
Affiliation(s)
- L Naumovski
- Department of Pathology, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
214
|
Beckett MA, Weichselbaum RR. Southern analysis of human head and neck cancer cells for homologous sequences using yeast gamma repair genes. J Surg Oncol 1988; 38:257-60. [PMID: 3045425 DOI: 10.1002/jso.2930380410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We employed southern analysis to examine homology between yeast genes RAD 51, RAD 52, RAD 54, and RAD 55 for possible gamma repair genes in radioresistant or repair proficient human tumor cell lines and normal placental DNA. No homology wa observed; however, other strategies including further gene restriction and transfection are underway to identify repair genes in human tumors. Understanding mechanisms of radiation repair might lead to more effective clinical radiation treatment protocols.
Collapse
Affiliation(s)
- M A Beckett
- Michael Reese/University of Chicago Center for Radiation Therapy, IL
| | | |
Collapse
|
215
|
Mitchell DL. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol 1988; 48:51-7. [PMID: 3217442 DOI: 10.1111/j.1751-1097.1988.tb02785.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
216
|
Burtscher HJ, Cooper AJ, Couto LB. Cellular responses to DNA damage in the yeast Saccharomyces cerevisiae. Mutat Res 1988; 194:1-8. [PMID: 3290675 DOI: 10.1016/0167-8817(88)90050-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- H J Burtscher
- Department of Pathology, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|
217
|
van Duin M, van den Tol J, Warmerdam P, Odijk H, Meijer D, Westerveld A, Bootsma D, Hoeijmakers JH. Evolution and mutagenesis of the mammalian excision repair gene ERCC-1. Nucleic Acids Res 1988; 16:5305-22. [PMID: 3290851 PMCID: PMC336769 DOI: 10.1093/nar/16.12.5305] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The human DNA excision repair protein ERCC-1 exhibits homology to the yeast RAD10 repair protein and its longer C-terminus displays similarity to parts of the E. coli repair proteins uvrA and uvrC. To study the evolution of this 'mosaic' ERCC-1 gene we have isolated the mouse homologue. Mouse ERCC-1 harbors the same pattern of homology with RAD10 and has a comparable C-terminal extension as its human equivalent. Mutation studies show that the strongly conserved C-terminus is essential in contrast to the less conserved N-terminus which is even dispensible. The mouse ERCC-1 amino acid sequence is compatible with a previously postulated nuclear location signal and DNA-binding domain. The ERCC-1 promoter harbors a region which is highly conserved in mouse and man. Since the ERCC-1 promoter is devoid of all classical promoter elements this region may be responsible for the low constitutive level of expression in all mouse tissues and stages of embryogenesis examined.
Collapse
Affiliation(s)
- M van Duin
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol Cell Biol 1988. [PMID: 2835663 DOI: 10.1128/mcb.8.3.1137] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UV-sensitive Chinese hamster ovary (CHO) cell line UV5, which is defective in the incision step of nucleotide excision repair, was used to identify and clone a complementing human gene, ERCC2, and to study the repair process. Genomic DNA from a human-hamster hybrid cell line was sheared and cotransferred with pSV2gpt plasmid DNA into UV5 cells to obtain five primary transformants. Transfer of sheared DNA from one primary transformant resulted in a secondary transformant expressing both gpt and ERCC2. The human repair gene was identified with a probe for Alu-family repetitive sequences. For most primary, secondary, and cosmid transformants, survival after UV exposure showed a return to wild-type levels of resistance. The levels of UV-induced mutation at the aprt locus for secondary and cosmid transformants varied from 50 to 130% of the wild-type level. Measurements of the initial rate of UV-induced strand incision by alkaline elution indicated that, whereas the UV5 rate was 3% of the wild-type level, rates of cosmid-transformed lines were similar to that of the wild type, and the secondary transformant rate was about 165% of the wild-type rate. Analysis of overlapping cosmids determined that ERCC2 is between 15.5 and 20 kilobases and identified a closely linked gpt gene. Cosmids were obtained with functional copies of both ERCC2 and gpt. ERCC2 corrects only the first of the five CHO complementation groups of incision-defective mutants.
Collapse
|
219
|
Mahalingam R, Wellish M, Cabirac G, Gilden D, Vafai A. Regulation of varicella zoster virus gene 27 translation in vitro by upstream sequences. Virus Res 1988; 10:193-204. [PMID: 2842970 PMCID: PMC7133936 DOI: 10.1016/0168-1702(88)90015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Northern blot analysis revealed the presence of varicella-zoster virus (VZV) gene 27 transcripts in infected cells. The Sal I-G DNA fragment, located in the unique long segment of the VZV genome and containing overlapping genes 26 and 27, was analyzed in an in vitro transcription-translation system. Translation of RNA transcribed from these open reading frames showed prominent expression of gene 27. Four different subclones were constructed to contain gene 27 with and without 100 base pairs (bp) of upstream sequences. Translation of RNA from these constructs using wheat germ extract or rabbit reticulocyte lysate indicated that the sequences upstream from the predicted initiation codon (AUG) of gene 27 downregulated the expression of this gene at the level of translation and that the predicted AUG within gene 27 was preferentially used.
Collapse
Affiliation(s)
- R Mahalingam
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
220
|
Wood RD, Robins P, Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 1988; 53:97-106. [PMID: 3349527 DOI: 10.1016/0092-8674(88)90491-6] [Citation(s) in RCA: 339] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Soluble extracts from human lymphoid cell lines that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers or psoralen adducts are described. Short patches of nucleotides are introduced by excision repair of damaged DNA in an ATP-dependent reaction. Extracts from xeroderma pigmentosum cell lines fail to act on damaged circular DNA, but are proficient in repair synthesis of ultraviolet-irradiated DNA containing incisions generated by Micrococcus luteus pyrimidine dimer-DNA glycosylase. Repair is defective in extracts from all xeroderma pigmentosum cell lines investigated, representing the genetic complementation groups A, B, C, D, H, and V. Mixing of cell extracts of group A and C origin leads to reconstitution of the DNA repair activity.
Collapse
Affiliation(s)
- R D Wood
- Imperial Cancer Research Fund, Clare Hall Laboratories, Hertfordshire, England
| | | | | |
Collapse
|
221
|
|
222
|
|
223
|
Shiomi T, Hieda-Shiomi N, Sato K, Yoshizumi T, Nakazawa T. Cell fusion-mediated improvement in transfection competence for repair-deficient mutant of mouse T cell line. SOMATIC CELL AND MOLECULAR GENETICS 1988; 14:195-203. [PMID: 3126553 DOI: 10.1007/bf01534404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A multiple mutagen-sensitive mutant (XUM1) of mouse T-cell lymphoma line, L5178Y, is hypersensitive to ionizing radiation, ultraviolet (UV) light, and cross-linking agents (such as mitomycin C). The frequency of transfection for XUM1 cells after exposure to calcium phosphate-coprecipitated pSV2neo DNA was more than 10(4)-fold less effective than that for Ltk-aprt- (LTA) cells. Other transfection methods (DEAE-dextran and polybrene-DMSO) were not effective for L5178Y and XUM1 cells. The transfection-proficient trait of LTA cells was demonstrated to be genetically dominant by examining the the transfection frequency in hybrid clones constructed between XUM1 and LTA cells. To circumvent the problem with XUM1, the LTA genes necessary for transformation processes were introduced into XUM1 cells by constructing hybrids between XUM1 and LTA cells irradiated with X-rays which causes directional chromosome elimination for hybrid cells. Four of 194 hybrid clones tested were transfection-proficient and hypersensitive to UV (XL102, XL107, XL215, and XL216). All four clones were not hypersensitive to X-rays or mitomycin C. The frequencies of transfection for XL102 and XL216 were nearly the same level as that for LTA cells. The efficiency of transfection for XL107 and XL215 was 10 to 100-fold lower than that for LTA cells.
Collapse
Affiliation(s)
- T Shiomi
- Division of Genetics, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | |
Collapse
|
224
|
Weber CA, Salazar EP, Stewart SA, Thompson LH. Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol Cell Biol 1988; 8:1137-46. [PMID: 2835663 PMCID: PMC363258 DOI: 10.1128/mcb.8.3.1137-1146.1988] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The UV-sensitive Chinese hamster ovary (CHO) cell line UV5, which is defective in the incision step of nucleotide excision repair, was used to identify and clone a complementing human gene, ERCC2, and to study the repair process. Genomic DNA from a human-hamster hybrid cell line was sheared and cotransferred with pSV2gpt plasmid DNA into UV5 cells to obtain five primary transformants. Transfer of sheared DNA from one primary transformant resulted in a secondary transformant expressing both gpt and ERCC2. The human repair gene was identified with a probe for Alu-family repetitive sequences. For most primary, secondary, and cosmid transformants, survival after UV exposure showed a return to wild-type levels of resistance. The levels of UV-induced mutation at the aprt locus for secondary and cosmid transformants varied from 50 to 130% of the wild-type level. Measurements of the initial rate of UV-induced strand incision by alkaline elution indicated that, whereas the UV5 rate was 3% of the wild-type level, rates of cosmid-transformed lines were similar to that of the wild type, and the secondary transformant rate was about 165% of the wild-type rate. Analysis of overlapping cosmids determined that ERCC2 is between 15.5 and 20 kilobases and identified a closely linked gpt gene. Cosmids were obtained with functional copies of both ERCC2 and gpt. ERCC2 corrects only the first of the five CHO complementation groups of incision-defective mutants.
Collapse
Affiliation(s)
- C A Weber
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, California 94550
| | | | | | | |
Collapse
|
225
|
van Duin M, Janssen JH, de Wit J, Hoeijmakers JH, Thompson LH, Bootsma D, Westerveld A. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group-2 mutants. Mutat Res 1988; 193:123-30. [PMID: 3347205 DOI: 10.1016/0167-8817(88)90042-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In order to establish whether the correction by ERCC-1 is confined to CHO mutants of one complementation group, the cloned repair gene, present on cosmid 43-34, was transfected to representative cell lines of the 6 complementation groups that have been identified to date. Following transfection, mycophenolic acid was used to select for transferants expressing the dominant marker gene Ecogpt, also present on cosmid 43-34. Cotransfer of the ERCC-1 gene was shown by Southern blot analysis of DNA from pooled (500-2000 independent colonies) transformants of each mutant. UV survival and UV-induced UDS showed that only mutants belonging to complementation group 2 and no mutants of other groups were corrected by the ERCC-1 gene. This demonstrates that ERCC-1 does not provide an aspecific bypass of excision-repair defects in CHO mutants and supports the assumption that the complementation analysis is based on mutations in different repair genes.
Collapse
Affiliation(s)
- M van Duin
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
226
|
Teitz T, Naiman T, Avissar SS, Bar S, Okayama H, Canaani D. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library. Proc Natl Acad Sci U S A 1987; 84:8801-4. [PMID: 3480511 PMCID: PMC299638 DOI: 10.1073/pnas.84.24.8801] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion.
Collapse
Affiliation(s)
- T Teitz
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
227
|
van Duin M, Koken MH, van den Tol J, ten Dijke P, Odijk H, Westerveld A, Bootsma D, Hoeijmakers JH. Genomic characterization of the human DNA excision repair gene ERCC-1. Nucleic Acids Res 1987; 15:9195-213. [PMID: 3684592 PMCID: PMC306462 DOI: 10.1093/nar/15.22.9195] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this report the genomic characterization of the human excision repair gene ERCC-1 is presented. The gene consists of 10 exons spread over approximately 15 kb. By means of a transfection assay the ERCC-1 promoter was confined to a region of +/- 170 bp upstream of the transcriptional start site. Classical promoter elements like CAAT, TATA and GC-boxes are absent from this region. Furthermore, ERCC-1 transcription is not UV-inducible. A possible explanation is provided for the previously reported alternative splicing of exon VIII. Analysis of ERCC-1 cDNA clones revealed the occurrence of differential polyadenylation which gives ERCC-1 transcripts of 3.4 and 3.8 kb in addition to the major 1.1 kb mRNA. Apparent evolutionary conservation of differential polyadenylation of ERCC-1 transcripts suggests a possible role for this mode of RNA processing in the ERCC-1 repair function.
Collapse
Affiliation(s)
- M van Duin
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Buchwald M, Ng J, Clarke C, Duckworth-Rysiecki G. Studies of gene transfer and reversion to mitomycin C resistance in Fanconi anemia cells. Mutat Res 1987; 184:153-9. [PMID: 3114627 DOI: 10.1016/0167-8817(87)90072-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a first step to the cloning of the Fanconi anemia (FA) gene, we have attempted to correct the sensitivity of FA cells to DNA crosslinking agents by the introduction of wild-type DNA. The protocol involved the introduction of both genomic and pRSVneo DNA, selection for G418-resistant colonies and the subsequent selection of mitomycin C-resistant cells from the latter. Preliminary experiments indicated that untransformed FA cells were not suitable recipients for the introduction of foreign DNA, so all experiments were performed with an SV40-transformed FA cell line. Approximately 40,000 G418-resistant colonies were obtained in 5 separate experiments at an overall frequency of about 5 X 10(-4). These were then selected in mitomycin C and 15 colonies were recovered. Colonies were obtained with wild-type DNA (both human and rodent) and with FA DNA at about the same frequency of 2 X 10(-7). Colonies were isolated and shown to have a stable, partial (from 25 to 90% of wild-type) resistance to mitomycin C. One colony was also shown to be partially resistant to two other DNA crosslinking agents, diepoxybutane and nitrogen mustard. This clone also had an intermediate level of spontaneous and MMC-induced chromosome aberrations. pRSVneo, but not rodent, DNA could be demonstrated in the high molecular weight fraction of several colonies. Thus, it is likely that these colonies represent partial revertants rather than transfectants. These mitomycin C-resistant FA cells should be useful for the biochemical analysis of the FA mutation.
Collapse
|
229
|
Thompson LH, Carrano AV, Sato K, Salazar EP, White BF, Stewart SA, Minkler JL, Siciliano MJ. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids. SOMATIC CELL AND MOLECULAR GENETICS 1987; 13:539-51. [PMID: 3477874 DOI: 10.1007/bf01534495] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The CHO UV-sensitive mutants UV24 and UV135 (complementation groups 3 and 5, respectively) are defective in nucleotide excision repair. After fusing each mutant with human lymphocytes, resistant hybrid clones showing genetic complementation were isolated by repeated exposure to UV radiation. Using a combination of isozyme markers, DNA probes, and cytogenetic methods to analyze the primary hybrids and their subclones, correction of the repair defect was shown to be correlated with the presence of a specific human chromosome in each case. Chromosome 2 corrected UV24, and the gene responsible was designated ERCC3. Line UV135 was corrected by human chromosome 13 and the gene designated ERCC5. The UV-sensitive mouse cell line, Q31, was shown not to complement UV135 and thus appears to be mutated in the same genetic locus (homologous to ERCC5) as UV135. Breakage of complementing chromosomes with retention of the genes correcting repair defects allowed the following provisional assignments: regional localization of ERCC5 to 13q14-q34, exclusion of ERCC3 from the region of chromosome 2 distal to p23, and relief of the ambiguity of ACP1 assignment (2p23 or 2p25) to 2p23 proximal to MDH1.
Collapse
Affiliation(s)
- L H Thompson
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, California 94550
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Ohtsubo M, Kai R, Furuno N, Sekiguchi T, Sekiguchi M, Hayashida H, Kuma K, Miyata T, Fukushige S, Murotsu T. Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev 1987; 1:585-93. [PMID: 3678831 DOI: 10.1101/gad.1.6.585] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human RCC1 gene was cloned after DNA-mediated gene transfer into the tsBN2 cell line, which shows premature chromosome condensation at nonpermissive temperatures (39.5-40 degrees C). This gene codes for a 2.5-kb poly(A)+ RNA that is well conserved in hamsters and humans. We isolated 15 cDNA clones from the Okayama-Berg human cDNA library, and found two that can complement the tsBN2 mutation with an efficiency comparable to that of the genomic DNA clone. The base sequences of these two active cDNA clones differ at the 5' proximal end, yet both have a common open reading frame, encoding a protein of 421 amino acids with a calculated molecular weight of 44,847 and with seven homologous repeated domains of about 60 amino acids. This human RCC1 gene was located to human chromosome 1 using sorted chromosomal fractions.
Collapse
Affiliation(s)
- M Ohtsubo
- Laboratory of Molecular Genetics, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol Cell Biol 1987. [PMID: 3550428 DOI: 10.1128/mcb.7.3.1012] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAD1 gene of Saccharomyces cerevisiae is involved in excision repair of damaged DNA. The nucleotide sequence of the RAD1 gene presented here shows an open reading frame of 3,300 nucleotides. Two ATG codons occur in the open reading frame at positions +1 and +334, respectively. Since a deletion of about 2.7 kilobases of DNA from the 5' region of the RAD1 gene, which also deletes the +1 ATG and 11 additional codons in the RAD1 open reading frame, partially complements UV sensitivity of a rad1 delta mutant, we examined the role of the +1 ATG and +334 ATG codons in translation initiation of RAD1 protein. Mutation of the +1 ATG codon to ATC affected the complementation ability of the RAD1 gene, whereas mutation of the +334 ATG codon to ATC showed no discernible effect on RAD1 function. These results indicate that translation of RAD1 protein is initiated from the +1 ATG codon. Productive in-frame RAD1-lacZ fusions showed that the RAD1 open reading frame is expressed in yeasts. The RAD1-encoded protein contains 1,100 amino acids with a molecular weight of 126,360.
Collapse
|
232
|
Keijzer W, Stefanini M, Bootsma D, Verkerk A, Geurts van Kessel AH, Jongkind JF, Westerveld A. Localization of a gene involved in complementation of the defect in xeroderma pigmentosum group A cells on human chromosome 1. Exp Cell Res 1987; 169:490-501. [PMID: 3556430 DOI: 10.1016/0014-4827(87)90209-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human, Chinese hamster or Chinese hamster/human hybrid cytoplasts were fused with UV-irradiated xeroderma pigmentosum group A (XP-A) cells. Unscheduled DNA synthesis (UDS) of the XP-A nucleus was measured 0-2 and 2-4 h after seeding of the fused population. Human cytoplasts did correct the defect in the XP-A nucleus immediately after fusion, whereas the chinese hamster cytoplasts did not show this rapid increase in excision repair. The results obtained after fusion of cytoplasts isolated from a panel of 26 Chinese hamster-human hybrids showed that chromosome 1 bears genetic information that is necessary for the rapid correction of the XP-A defect. Furthermore, this genetic information was regionally assigned to 1q42-qter by analysing hybrid cell lines having retained various segments of chromosome 1. Cytoplasts from a Chinese hamster/XP-A hybrid containing chromosome 1 of XP-A origin corrected also the defect with fast kinetics. This result indicate that the correcting factor consists of human and Chinese hamster components. As a consequence, the gene mapped on chromosome 1 may not be the gene which is mutated in XP-A cells.
Collapse
|
233
|
Reynolds P, Prakash L, Prakash S. Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:1012-20. [PMID: 3550428 PMCID: PMC365171 DOI: 10.1128/mcb.7.3.1012-1020.1987] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The RAD1 gene of Saccharomyces cerevisiae is involved in excision repair of damaged DNA. The nucleotide sequence of the RAD1 gene presented here shows an open reading frame of 3,300 nucleotides. Two ATG codons occur in the open reading frame at positions +1 and +334, respectively. Since a deletion of about 2.7 kilobases of DNA from the 5' region of the RAD1 gene, which also deletes the +1 ATG and 11 additional codons in the RAD1 open reading frame, partially complements UV sensitivity of a rad1 delta mutant, we examined the role of the +1 ATG and +334 ATG codons in translation initiation of RAD1 protein. Mutation of the +1 ATG codon to ATC affected the complementation ability of the RAD1 gene, whereas mutation of the +334 ATG codon to ATC showed no discernible effect on RAD1 function. These results indicate that translation of RAD1 protein is initiated from the +1 ATG codon. Productive in-frame RAD1-lacZ fusions showed that the RAD1 open reading frame is expressed in yeasts. The RAD1-encoded protein contains 1,100 amino acids with a molecular weight of 126,360.
Collapse
|
234
|
|
235
|
DNA Repair in Yeast: Genetic Control and Biological Consequences. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-035413-9.50005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
236
|
Shankel DM, Hartman PE, Kada T, Hollaender A. Synopsis of the first International Conference on Antimutagenesis and Anticarcinogenesis: mechanisms. ENVIRONMENTAL MUTAGENESIS 1987; 9:87-103. [PMID: 3100291 DOI: 10.1002/em.2860090110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
237
|
Summary of the Workshop on DNA Repair Defects. Hum Genet 1987. [DOI: 10.1007/978-3-642-71635-5_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
238
|
Zdzienicka MZ, Roza L, Westerveld A, Bootsma D, Simons JW. Biological and biochemical consequences of the human ERCC-1 repair gene after transfection into a repair-deficient CHO cell line. Mutat Res 1987; 183:69-74. [PMID: 3025723 DOI: 10.1016/0167-8817(87)90047-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The consequences of the presence of the human gene ERCC1 in repair-deficient 43-3B cells were examined. The gene restores the sensitivity of this mutant not only to UV but also to 4NQO, N-Ac-AAF and alkylating agents to the normal level. Also, the frequency of mutation induction by UV at the Na+/K+-ATPase locus returns to the level of CHO wild-type cells. Additionally, the rate of cyclobutane pyrimidine dimer removal approaches that in wild-type CHO cells. The results obtained indicate that the human gene ERCC-1 restores the impaired functions in 43-3B, and that the gene is probably functionally homologous to the defective one in the 43-3B cell line. Some evidence was found for a difference between the human gene product and its rodent counterpart, as the restoration of normal sensitivity to 4NQO, ENU and N-Ac-AAF was complete whereas it was not for UV.
Collapse
|
239
|
Cleaver JE. DNA repair in human xeroderma pigmentosum group C cells involves a different distribution of damaged sites in confluent and growing cells. Nucleic Acids Res 1986; 14:8155-65. [PMID: 3774554 PMCID: PMC311841 DOI: 10.1093/nar/14.20.8155] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Xeroderma pigmentosum is a human disease consisting of several complementation groups that are deficient in excision repair. Group C is one in which excision repair occurs at about 20-30% of normal levels. The distribution of mended sites in relation to unrepaired sites has been determined by cutting remaining unrepaired pyrimidine dimers with Microccocus luteus UV endonuclease. The mended sites have been found clustered together in a fashion that depended on cell proliferation. In confluent group C cells, the mended sites were clustered in regions where dimer excision was as efficient as excision in the DNA of normal cells. In proliferating group C cells, however, mended sites were randomly dispersed. The total amount of repair replication was the same in confluent and proliferating cells. Since previous work has shown that confluent group C cells show more extensive recovery from the lethal effects of UV irradiation than some other groups, clustered repair may correlate with a more efficient mechanism of restoring cell viability. The different distribution of repaired sites during DNA replication may be the result of changes in the state of the substrate for repair or changes in the metabolic priorities of DNA polymerases.
Collapse
|
240
|
Doolittle RF, Johnson MS, Husain I, Van Houten B, Thomas DC, Sancar A. Domainal evolution of a prokaryotic DNA repair protein and its relationship to active-transport proteins. Nature 1986; 323:451-3. [PMID: 3762695 DOI: 10.1038/323451a0] [Citation(s) in RCA: 152] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ABC excision nuclease of Escherichia coli is an ATP-dependent DNA repair enzyme composed of three protein subunits, UvrA, UvrB and UvrC. The DNA sequences of all three genes have been reported. UvrA, the component that binds directly to the DNA, and UvrB, which attaches itself to the UvrA-DNA complex, both contain consensus sequences though to be diagnostic of ATP-binding sites, although the UvrC sequence does not. We now report that a computer analysis of the UvrA sequence has revealed an unusual series of internal duplications centering around putative metal-binding sites which may be involved in the interaction with DNA. We also find a strong evolutionary relationship to a family of prokaryotic membrane-associated active-transport proteins.
Collapse
|