201
|
Krauss S, Korzh V, Fjose A, Johansen T. Expression of four zebrafish wnt-related genes during embryogenesis. Development 1992; 116:249-59. [PMID: 1483391 DOI: 10.1242/dev.116.1.249] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The wnt gene family codes for a group of cysteine-rich, secreted proteins, which are differentially expressed in the developing embryo and are possibly involved in cellular communication. Here, we describe the polymerase chain reaction based cloning and embryonic expression patterns of four zebrafish wnt-related sequences; wnt[a], wnt[b], wnt[c] and wnt[d]. One of these genes, wnt[a], is a potential homologue of murine Wnt-3, while the other three genes most likely represent new members of the vertebrate wnt gene family. In zebrafish embryos, transcripts of wnt[a] are confined to the dorsal diencephalon, the dorsal midbrain, the rhombic lips and the dorsal portions of the spinal cord. wnt[b] is expressed in the tail bud and at considerably lower levels in the mesoderm of the head. wnt[c] transcripts are present within the diencephalon and the posterior midbrain whereas wnt[d] shows a surprisingly similar expression pattern to zebrafish wnt-1. By analogy to wnt-1, it is likely that the members of the zebrafish wnt gene family play an important role in cell-to-cell signalling during pattern formation in the neural tube and the tail bud.
Collapse
Affiliation(s)
- S Krauss
- Department of Microbiology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
202
|
Hart CP, Compton JG, Langley SH, Hunihan L, LeClair KP, Zelent A, Roderick TH, Ruddle FH. Genetic linkage analysis of the murine developmental mutant velvet coat (Ve) and the distal chromosome 15 developmental genes Hox-3.1, Rar-g, Wnt-1, and Krt-2. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 263:83-95. [PMID: 1379621 DOI: 10.1002/jez.1402630109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have identified restriction fragment length polymorphisms between Mus musculus and Mus spretus for the Chromosome 15 loci Hox-3, Wnt-1, Krt-2, Rar-g, and Ly-6. We followed the inheritance of these alleles in interspecific genetic test crosses between velvet coat (Ve) heterozygotes and M. spretus. The results suggest a gene order and recombination distances (in cM) of Ly-6-22-Wnt-1-2-Ve/Krt-2/Rar-g-3-Hox-3. No recombination was found between Ve, Krt-2, and Rar-g. The data also provide evidence for the hypothesis of a large-scale genomic duplication involving homologous gene pairs on mouse Chromosomes 15 and 11.
Collapse
Affiliation(s)
- C P Hart
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | | | | | | | | | | | |
Collapse
|
203
|
|
204
|
Affiliation(s)
- R Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
205
|
Abstract
Publications in mammalian developmental genetics during the past year reflect a shift of emphasis from the phenotypic level to the primary level of gene expression and the nature of the gene product. A result of this, the developmental role of a considerable number of regulatory genes and specific gene sequences have been identified. The cell type-specific effects of several mutations analyzed in the past have been correlated with effects on growth factors and signal transduction pathways. Specific gene sequences such as those containing the homeobox domains and paired-box sequences have recently been implicated in the control of pattern formation and positional information.
Collapse
Affiliation(s)
- S Gluecksohn-Waelsch
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
206
|
Sidow A. Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proc Natl Acad Sci U S A 1992; 89:5098-102. [PMID: 1534411 PMCID: PMC49236 DOI: 10.1073/pnas.89.11.5098] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diversification of the Wnt genes, a family of powerful developmental regulator molecules, is inferred by molecular evolutionary analyses. Fifty-five recently determined partial sequences from a variety of vertebrates and invertebrates, together with 17 published sequences, mostly from the mouse and Drosophila melanogaster, are analyzed. Wnt-1 through -7 originated before the last common ancestor of arthropods and deuterostomes lived. Another round of gene duplication, involving Wnt-3, -5, -7, and -10, occurred after the echinoderm lineage arose, on the ancestral lineage of jawed vertebrates. Increased constraints were imposed on the Wnt genes when jawed vertebrates originated, as indicated by an overall 4-fold lower rate of amino acid replacements in jawed vertebrates compared with invertebrates and jawless vertebrates. The Wnt genes are thus inferred to have undergone a disproportionately high amount of structural and functional evolution in the relatively short time (approximately 100 million years) between the origin of the echinoderm lineage and the first diversification of jawed vertebrates. A model is presented for the relationship of functional diversification of developmental regulators and their rates of amino acid replacement.
Collapse
Affiliation(s)
- A Sidow
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| |
Collapse
|
207
|
Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol Cell Biol 1992. [PMID: 1373817 DOI: 10.1128/mcb.12.5.2418] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse Wnt family comprises at least 10 members sharing substantial amino acid identity with the secreted glycoprotein Wnt-1/int-1. Two of these, Wnt-1 and Wnt-3, are implicated in mouse mammary tumor virus-associated adenocarcinomas, although neither member is normally expressed in the mammary gland. These results suggest the presence of active cellular pathways which mediate the action of Wnt-1 and Wnt-3 signals. An understanding of the normal role of these signalling pathways is clearly necessary to comprehend the involvement of Wnt-1 and Wnt-3 in mammary tumorigenesis. We demonstrate here that five Wnt family members are expressed and differentially regulated in the normal mouse mammary gland. In addition, some of these genes are also expressed in both Wnt-1-responsive and nonresponsive mammary epithelial cell lines. We propose that Wnt-mediated signalling is involved in normal regulation of mammary development and that inappropriate expression of Wnt-1, Wnt-3, and possibly other family members can interfere with these signalling pathways.
Collapse
|
208
|
Gavin BJ, McMahon AP. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol Cell Biol 1992; 12:2418-23. [PMID: 1373817 PMCID: PMC364414 DOI: 10.1128/mcb.12.5.2418-2423.1992] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mouse Wnt family comprises at least 10 members sharing substantial amino acid identity with the secreted glycoprotein Wnt-1/int-1. Two of these, Wnt-1 and Wnt-3, are implicated in mouse mammary tumor virus-associated adenocarcinomas, although neither member is normally expressed in the mammary gland. These results suggest the presence of active cellular pathways which mediate the action of Wnt-1 and Wnt-3 signals. An understanding of the normal role of these signalling pathways is clearly necessary to comprehend the involvement of Wnt-1 and Wnt-3 in mammary tumorigenesis. We demonstrate here that five Wnt family members are expressed and differentially regulated in the normal mouse mammary gland. In addition, some of these genes are also expressed in both Wnt-1-responsive and nonresponsive mammary epithelial cell lines. We propose that Wnt-mediated signalling is involved in normal regulation of mammary development and that inappropriate expression of Wnt-1, Wnt-3, and possibly other family members can interfere with these signalling pathways.
Collapse
Affiliation(s)
- B J Gavin
- Department of Cell and Developmental Biology, Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | |
Collapse
|
209
|
Abstract
DNA sequences coding for protein may be represented by counts of nucleotides or codons. A complete reading frame may be abbreviated by its base count, e.g. A76C158G121T74, or with the corresponding codon table, e.g. (AAA)0(AAC)1(AAG)9 ... (TTT)0. We propose that these numerical designations be used to augment current methods of sequence annotation. Because base counts and codon tables do not require revision as knowledge of function evolves, they are well-suited to act as cross-references, for example to identify redundant GenBank entries. These descriptors may be compared, in place of DNA sequences, to extract homologous genes from large databases. This approach permits rapid searching with good selectivity.
Collapse
Affiliation(s)
- D W Collins
- Space Sciences Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
210
|
The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol Cell Biol 1992. [PMID: 1530877 DOI: 10.1128/mcb.12.1.321] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse Wnt-1 gene plays an essential role in fetal brain development and can contribute to tumorigenesis when activated aberrantly in the mammary gland. The gene encodes secretory glycoproteins associated with the extracellular or pericellular matrix, and it has been proposed that Wnt-1, as well as its Drosophila homolog wingless, may function in intercellular signalling. We show here that fibroblasts expressing Wnt-1 protein, although not transformed themselves, are able to elicit morphological transformation of neighboring C57MG mammary epithelial cells in coculture experiments. Heparin inhibits this effect, possibly by displacing Wnt-1 protein from its normal site of action. Our results indicate that the Wnt-1 gene can act via a paracrine mechanism in cell culture and strongly support the notion that in vivo the gene may function in cell-to-cell communication.
Collapse
|
211
|
Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol 1992. [PMID: 1530875 DOI: 10.1128/mcb.12.1.147] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene.
Collapse
|
212
|
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | |
Collapse
|
213
|
Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, Muller WJ, Lee FS, Leder P, Varmus HE. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol 1992; 12:147-54. [PMID: 1530875 PMCID: PMC364078 DOI: 10.1128/mcb.12.1.147-154.1992] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene.
Collapse
Affiliation(s)
- H Kwan
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Affiliation(s)
- B A Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
215
|
Jue SF, Bradley RS, Rudnicki JA, Varmus HE, Brown AM. The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol Cell Biol 1992; 12:321-8. [PMID: 1530877 PMCID: PMC364112 DOI: 10.1128/mcb.12.1.321-328.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mouse Wnt-1 gene plays an essential role in fetal brain development and can contribute to tumorigenesis when activated aberrantly in the mammary gland. The gene encodes secretory glycoproteins associated with the extracellular or pericellular matrix, and it has been proposed that Wnt-1, as well as its Drosophila homolog wingless, may function in intercellular signalling. We show here that fibroblasts expressing Wnt-1 protein, although not transformed themselves, are able to elicit morphological transformation of neighboring C57MG mammary epithelial cells in coculture experiments. Heparin inhibits this effect, possibly by displacing Wnt-1 protein from its normal site of action. Our results indicate that the Wnt-1 gene can act via a paracrine mechanism in cell culture and strongly support the notion that in vivo the gene may function in cell-to-cell communication.
Collapse
Affiliation(s)
- S F Jue
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | | | | | |
Collapse
|
216
|
Affiliation(s)
- A M Buchberg
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5541
| | | | | |
Collapse
|
217
|
Affiliation(s)
- R W Elliott
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
218
|
The Int-2/Fgf-3 oncogene product is secreted and associates with extracellular matrix: implications for cell transformation. Mol Cell Biol 1991. [PMID: 1944270 DOI: 10.1128/mcb.11.12.5929] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NIH3T3 cells transformed by mouse Int-2/Fgf-3 cDNA express a series of Int-2-related products representing discrete stages of processing and glycosylation. We confirm that in at least two highly transformed clonal lines, Int-2 products acquire further modifications and are efficiently secreted into the culture medium. Secreted proteins become associated with the cell surface and extracellular matrix and can be displaced by addition of soluble glycosaminoglycans, specifically heparin, heparan sulfate, and dermatan sulfate. Increasing concentrations of heparin not only compete for Int-2 binding in a dose-dependent manner but also inhibit the growth of these cells and revert the transformed phenotype. These findings reaffirm the notion that extracellular or surface-bound Int-2 protein is instrumental in the morphological transformation of these cells.
Collapse
|
219
|
Kiefer P, Peters G, Dickson C. The Int-2/Fgf-3 oncogene product is secreted and associates with extracellular matrix: implications for cell transformation. Mol Cell Biol 1991; 11:5929-36. [PMID: 1944270 PMCID: PMC361743 DOI: 10.1128/mcb.11.12.5929-5936.1991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NIH3T3 cells transformed by mouse Int-2/Fgf-3 cDNA express a series of Int-2-related products representing discrete stages of processing and glycosylation. We confirm that in at least two highly transformed clonal lines, Int-2 products acquire further modifications and are efficiently secreted into the culture medium. Secreted proteins become associated with the cell surface and extracellular matrix and can be displaced by addition of soluble glycosaminoglycans, specifically heparin, heparan sulfate, and dermatan sulfate. Increasing concentrations of heparin not only compete for Int-2 binding in a dose-dependent manner but also inhibit the growth of these cells and revert the transformed phenotype. These findings reaffirm the notion that extracellular or surface-bound Int-2 protein is instrumental in the morphological transformation of these cells.
Collapse
Affiliation(s)
- P Kiefer
- Imperial Cancer Research Fund Laboratories, London, United Kingdom
| | | | | |
Collapse
|
220
|
|
221
|
Abstract
Mice homozygous for the recessive mutation swaying (sw) are characterized by ataxia and hypertonia, attributed to the malformation of anterior regions of the cerebellum. We show that sw is a deletion of a single base pair from the proto-oncogene Wnt-1. The deletion is predicted to cause premature termination of translation, eliminating the carboxy-terminal half of the Wnt-1 protein. Histological examination shows that sw is phenotypically identical to a previously described wnt-1 mutation introduced into mice by gene targeting. Although both mutations in Wnt-1 disrupt primarily the development of the anterior cerebellum, they also exhibit a variability in expressivity such that rostrally adjacent structures in the midbrain and caudally adjacent structures in the posterior cerebellum can also be affected.
Collapse
Affiliation(s)
- K R Thomas
- Howard Hughes Medical Institute, Eccles Institute of Human Genetics, University of Utah, Salt Lake City 84112
| | | | | | | |
Collapse
|
222
|
Abstract
Studies in Xenopus have shown that growth factors of the TGF beta and Wnt oncogene families can mimic aspects of dorsal axis formation. Here we directly compare the inductive properties of two Wnt proteins by injecting synthetic mRNA into developing embryos. The results show that Wnt-1 and Xwnt-8 can induce a new and complete dorsal axis and can rescue the development of axis-deficient, UV-irradiated embryos. In contrast, activin mRNA injection induces only a partial dorsal axis that lacks anterior structures. These studies demonstrate that the mechanism of Wnt-induced axis duplication results from the creation of an independent Spemann organizer. The relationship between the properties of the endogenous dorsal inducer and the effects of Wnts and activins is discussed.
Collapse
Affiliation(s)
- S Sokol
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
223
|
Muller WJ. Expression of activated oncogenes in the murine mammary gland: transgenic models for human breast cancer. Cancer Metastasis Rev 1991; 10:217-27. [PMID: 1662559 DOI: 10.1007/bf00050793] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer is the leading cause of death among non-smoking women and thus has been the focus of intensive research. It has been generally accepted that the deregulation of oncogenes or their regulators play a pivotal role in progression of this prevalent disease. For example, amplification and overexpression of a number of oncogenes has been observed in a proportion of primary breast cancer biopsies. More recently, there has also been reports of inactivation tumor suppressor genes in human breast cancer. While there is compelling evidence for a role of these genes in breast cancer tumor progression due to limitations inherent in these studies it is difficult to establish a direct causal association between expression of a certain oncogene and tumor progression. For this reason many groups have employed the transgenic mouse as a model system to directly study effects of oncogene expression in the murine mammary gland. This review will attempt to highlight some of the important lessons and potential applications that have emerged from the study of oncogene expression in the mammary epithelium of transgenic mice. The utility of the transgenic system to assess the transforming potential of oncogenes, to investigate the multi-step nature of malignant progression, and to be used as models for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- W J Muller
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
224
|
Affiliation(s)
- B Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|