201
|
Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, Lombardo Y, Frampton AE, Green AR, Ellis IO, Ali S, Lenz HJ, Thanou M, Stebbing J, Giamas G. The kinase LMTK3 promotes invasion in breast cancer through GRB2-mediated induction of integrin β₁. Sci Signal 2014; 7:ra58. [PMID: 24939894 DOI: 10.1126/scisignal.2005170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Hua Zhang
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Lei C Lit
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK. Department of Physiology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arnhild Grothey
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Maria Athanasiadou
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK. Institute of Pharmaceutical Science, Kings College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Marianna Kiritsi
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Adam E Frampton
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
| | - Simak Ali
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Heinz-Josef Lenz
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Maya Thanou
- Institute of Pharmaceutical Science, Kings College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Georgios Giamas
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
202
|
Tong J, Taylor P, Moran MF. Proteomic analysis of the epidermal growth factor receptor (EGFR) interactome and post-translational modifications associated with receptor endocytosis in response to EGF and stress. Mol Cell Proteomics 2014; 13:1644-58. [PMID: 24797263 DOI: 10.1074/mcp.m114.038596] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S(1104). Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y(998) or in the S(1039) region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation.
Collapse
Affiliation(s)
- Jiefei Tong
- From the ‡The Hospital For Sick Children, Program in Molecular Structure and Function, Princess Margaret Cancer Centre, and Department of Molecular Genetics, University of Toronto. Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Canada
| | - Paul Taylor
- From the ‡The Hospital For Sick Children, Program in Molecular Structure and Function, Princess Margaret Cancer Centre, and Department of Molecular Genetics, University of Toronto. Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Canada
| | - Michael F Moran
- From the ‡The Hospital For Sick Children, Program in Molecular Structure and Function, Princess Margaret Cancer Centre, and Department of Molecular Genetics, University of Toronto. Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Canada
| |
Collapse
|
203
|
Qu Y, Chen Q, Lai X, Zhu C, Chen C, Zhao X, Deng R, Xu M, Yuan H, Wang Y, Yu J, Huang J. SUMOylation of Grb2 enhances the ERK activity by increasing its binding with Sos1. Mol Cancer 2014; 13:95. [PMID: 24775912 PMCID: PMC4021559 DOI: 10.1186/1476-4598-13-95] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/21/2014] [Indexed: 02/02/2023] Open
Abstract
Background Grb2 (Growth factor receptor-bound protein 2) is a key adaptor protein in maintaining the ERK activity via linking Sos1 (Son of sevenless homolog 1) or other proteins to activated RTKs, such as EGFR. Currently, little knowledge is available concerning the post-translational modification (PTM) of Grb2 except for its phosphorylation. Since emerging evidences have highlighted the importance of SUMOylation (Small ubiquitin-related modifier), a reversible PTM, in modulating protein functions, we wondered if Grb2 could be SUMOylated and thereby influences its functions especially involved in the Ras/MEK/ERK pathway. Methods SUMOylation of Grb2 was analyzed with the in vivo SUMOylation assay using the Ni2+-NTA affinity pulldown and the in vitro E.coli-based SUMOylation assay. To test the ERK activity and cell transformation, the murine fibroblast cell line NIH/3T3 and the murine colon cancer cell line CMT-93 were used for the experiments including Grb2 knockdown, ectopic re-expression, cell transformation and migration. Immunoprecipitation (IP) was employed for seeking proteins that interact with SUMO modified Grb2. Xenograft tumor model in mice was conducted to verify that Grb2 SUMOylation regulated tumorigenesis in vivo. Results Grb2 can be SUMOylated by SUMO1 at lysine 56 (K56), which is located in the linker region between the N-terminal SH3 domain and the SH2 domain. Knockdown of Grb2 reduced the ERK activity and suppressed cell motility and tumorigenesis in vitro and in vivo, which were all rescued by stable ectopic re-expression of wild-type Grb2 but not the mutant Grb2K56R. Furthermore, Grb2 SUMOylation at K56 increased the formation of Grb2-Sos1 complex, which sequentially leads to the activation of Ras/MEK/MAPK pathway. Conclusions Our results provide evidences that Grb2 is SUMOylated in vivo and this modification enhances ERK activities via increasing the formation of Grb2-Sos1 complex, and may consequently promote cell motility, transformation and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| | | |
Collapse
|
204
|
Kozer N, Barua D, Henderson C, Nice EC, Burgess AW, Hlavacek WS, Clayton AHA. Recruitment of the adaptor protein Grb2 to EGFR tetramers. Biochemistry 2014; 53:2594-604. [PMID: 24697349 PMCID: PMC4010257 DOI: 10.1021/bi500182x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Adaptor
protein Grb2 binds phosphotyrosines in the epidermal growth
factor (EGF) receptor (EGFR) and thereby links receptor activation
to intracellular signaling cascades. Here, we investigated how recruitment
of Grb2 to EGFR is affected by the spatial organization and quaternary
state of activated EGFR. We used the techniques of image correlation
spectroscopy (ICS) and lifetime-detected Förster resonance
energy transfer (also known as FLIM-based FRET or FLIM–FRET)
to measure ligand-induced receptor clustering and Grb2 binding to
activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected
with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR
(EGFR–eGFP). Following stimulation of the cells with EGF, we
detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP
clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP
per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP
had an average cluster size of 1 ± 0.3 EGFR molecules per punctum.
In the absence of EGF, there was no association between EGFR–eGFP
and Grb2–mRFP. To interpret these data, we extended our recently
developed model for EGFR activation, which considers EGFR oligomerization
up to tetramers, to include recruitment of Grb2 to phosphorylated
EGFR. The extended model, with adjustment of one new parameter (the
ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster
size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1%
of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2.
Together, our experimental and modeling results further implicate
tetrameric EGFR as the key signaling unit and call into question the
widely held view that dimeric EGFR is the predominant signaling unit.
Collapse
Affiliation(s)
- Noga Kozer
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | | | | | | | | | | |
Collapse
|
205
|
Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 2014; 9:e92151. [PMID: 24658383 PMCID: PMC3962377 DOI: 10.1371/journal.pone.0092151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022] Open
Abstract
The identification of the epidermal growth factor receptor (EGFR) as an oncogene has led to the development of several anticancer therapeutics directed against this receptor tyrosine kinase. However, drug resistance and low efficacy remain a severe challenge, and have led to a demand for novel systems for an efficient identification and characterization of new substances. Here we report on a technique which combines micro-patterned surfaces and total internal reflection fluorescence (TIRF) microscopy (μ-patterning assay) for the quantitative analysis of EGFR activity. It does not simply measure the phosphorylation of the receptor, but instead quantifies the interaction of the key signal transmitting protein Grb2 (growth factor receptor-bound protein 2) with the EGFR in a live cell context. It was possible to demonstrate an EGF dependent recruitment of Grb2 to the EGFR, which was significantly inhibited in the presence of clinically tested EGFR inhibitors, including small tyrosine kinase inhibitors and monoclonal antibodies targeting the EGF binding site. Importantly, in addition to its potential use as a screening tool, our experimental setup offers the possibility to provide insight into the molecular mechanisms of bait-prey interaction. Recruitment of the EGFR together with Grb2 to clathrin coated pits (CCPs) was found to be a key feature in our assay. Application of bleaching experiments enabled calculation of the Grb2 exchange rate, which significantly changed upon stimulation or the presence of EGFR activity inhibiting drugs.
Collapse
|
206
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
207
|
Hwang HS, Hwang SG, Yoon KW, Yoon JH, Roh KH, Choi EJ. CIIA negatively regulates the Ras-Erk1/2 signaling pathway through inhibiting the Ras-specific GEF activity of SOS1. J Cell Sci 2014; 127:1640-6. [PMID: 24522193 DOI: 10.1242/jcs.139931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Son of sevenless 1 (SOS1) is a Ras-specific guanine-nucleotide-exchange factor (GEF) that mediates intracellular signaling processes induced by receptor tyrosine kinases. In this study, we show that CIIA (also known as VPS28) physically associates with SOS1 and thereby inhibits the GEF activity of SOS1 on Ras, which prevents the epidermal growth factor (EGF)-induced activation of the Ras-Erk1/2 pathway. Furthermore, CIIA inhibited cyclin D1 expression, as well as DNA, synthesis in response to EGF. Intriguingly, CIIA failed to inhibit the Ras-specific GEF activity of Noonan-syndrome-associated SOS1 mutants (M269R, R552G, W729L and E846K). Taken together, our results suggest that CIIA functions as a negative modulator of the SOS1-Ras signaling events initiated by peptide growth factors including EGF.
Collapse
Affiliation(s)
- Hyun Sub Hwang
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
208
|
Higo K, Oda M, Morii H, Takahashi J, Harada Y, Ogawa S, Abe R. Quantitative analysis by surface plasmon resonance of CD28 interaction with cytoplasmic adaptor molecules Grb2, Gads and p85 PI3K. Immunol Invest 2014; 43:278-91. [DOI: 10.3109/08820139.2013.875039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
209
|
Kudelka MR, Grossniklaus HE, Mandell KJ. Emergence of dual VEGF and PDGF antagonists in the treatment of exudative age-related macular degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 8:475-484. [PMID: 30613209 DOI: 10.1586/17469899.2013.840095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neovascular ('wet') age-related macular degeneration (AMD) is the leading cause of blindness among Caucasians over the age of 55 in the USA and is an important cause of ocular morbidity worldwide. Progress in oncology, and more recently ophthalmology, led to the development of VEGF antagonists, three of which are now approved for the treatment of wet AMD. Recent discoveries in ophthalmology and vascular biology, however, suggest that combined inhibition of VEGF and platelet-derived growth factor (PDGF) may be more beneficial than inhibition of VEGF alone. Accordingly, numerous studies are underway to evaluate the role of anti-VEGF/PDGF combination therapies for the treatment of wet AMD. This review discusses the biology of VEGF and PDGF and current preclinical and clinical data exploring the use of combined VEGF/PDGF inhibitors in the treatment of neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd NE, Rollins Research Center - Room #4086, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
210
|
Haines E, Saucier C, Claing A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J Biol Chem 2014; 289:5687-703. [PMID: 24407288 DOI: 10.1074/jbc.m113.516047] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells.
Collapse
Affiliation(s)
- Eric Haines
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | | | | |
Collapse
|
211
|
Ras. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
212
|
Li CY, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2013; 102:1-13. [DOI: 10.1007/s10266-013-0142-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
|
213
|
Zhang YJ, Tian ZL, Yu XY, Zhao XX, Yao L. Activation of integrin β1-focal adhesion kinase-RasGTP pathway plays a critical role in TGF beta1-induced podocyte injury. Cell Signal 2013; 25:2769-79. [DOI: 10.1016/j.cellsig.2013.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/31/2013] [Indexed: 12/22/2022]
|
214
|
Dütting S, Vögtle T, Morowski M, Schiessl S, Schäfer CM, Watson SK, Hughes CE, Ackermann JA, Radtke D, Hermanns HM, Watson SP, Nitschke L, Nieswandt B. Growth factor receptor-bound protein 2 contributes to (hem)immunoreceptor tyrosine-based activation motif-mediated signaling in platelets. Circ Res 2013; 114:444-453. [PMID: 24265393 DOI: 10.1161/circresaha.114.302670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. OBJECTIVE We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. METHODS AND RESULTS Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI-mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2-mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein-coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2-induced G protein-coupled receptor signaling pathways. CONCLUSIONS These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.
Collapse
Affiliation(s)
- Sebastian Dütting
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Timo Vögtle
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Sarah Schiessl
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Carmen M Schäfer
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Stephanie K Watson
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Craig E Hughes
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Jochen A Ackermann
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Daniel Radtke
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Heike M Hermanns
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Steve P Watson
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Lars Nitschke
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| |
Collapse
|
215
|
Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2013; 79:34-74. [PMID: 24269963 DOI: 10.1016/j.phrs.2013.11.002] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
The human epidermal growth factor receptor (EGFR) family consists of four members that belong to the ErbB lineage of proteins (ErbB1-4). These receptors consist of a glycosylated extracellular domain, a single hydrophobic transmembrane segment, and an intracellular portion with a juxtamembrane segment, a protein kinase domain, and a carboxyterminal tail. Seven ligands bind to EGFR including epidermal growth factor and transforming growth factor α, none bind to ErbB2, two bind to ErbB3, and seven ligands bind to ErbB4. The ErbB proteins function as homo and heterodimers. The heterodimer consisting of ErbB2, which lacks a ligand, and ErbB3, which is kinase impaired, is surprisingly the most robust signaling complex of the ErbB family. Growth factor binding to EGFR induces a large conformational change in the extracellular domain, which leads to the exposure of a dimerization arm in domain II of the extracellular segment. Two ligand-EGFR complexes unite to form a back-to-back dimer in which the ligands are on opposite sides of the aggregate. Following ligand binding, EGFR intracellular kinase domains form an asymmetric homodimer that resembles the heterodimer formed by cyclin and cyclin-dependent kinase. The carboxyterminal lobe of the activator kinase of the dimer interacts with the amino-terminal lobe of the receiver kinase thereby leading to its allosteric stimulation. Downstream ErbB signaling modules include the phosphatidylinositol 3-kinase/Akt (PKB) pathway, the Ras/Raf/MEK/ERK1/2 pathway, and the phospholipase C (PLCγ) pathway. Several malignancies are associated with the mutation or increased expression of members of the ErbB family including lung, breast, stomach, colorectal, head and neck, and pancreatic carcinomas and glioblastoma (a brain tumor). Gefitinib, erlotinib, and afatinib are orally effective protein-kinase targeted quinazoline derivatives that are used in the treatment of ERBB1-mutant lung cancer. Lapatinib is an orally effective quinazoline derivative used in the treatment of ErbB2-overexpressing breast cancer. Trastuzumab, pertuzumab, and ado-trastuzumab emtansine, which are given intravenously, are monoclonal antibodies that target the extracellular domain and are used for the treatment of ErbB2-positive breast cancer; ado-trastuzumab emtansine is an antibody-drug conjugate that delivers a cytotoxic drug to cells overexpressing ErbB2. Cetuximab and panitumumab are monoclonal antibodies that target ErbB1 and are used in the treatment of colorectal cancer. Cancers treated with these targeted drugs eventually become resistant to them. The role of combinations of targeted drugs or targeted drugs with cytotoxic therapies is being explored in an effort to prevent or delay drug resistance in the treatment of these malignancies.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742, USA.
| |
Collapse
|
216
|
Fortian A, Sorkin A. Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding to the EGF receptor sustained during endocytosis. J Cell Sci 2013; 127:432-44. [PMID: 24259669 DOI: 10.1242/jcs.137786] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of epidermal growth factor (EGF) receptor (EGFR) leads to its interaction with Grb2, a dual-function adapter mediating both signaling through Ras and receptor endocytosis. We used time-lapse three-dimensional imaging by spinning disk confocal microscopy to analyze trafficking of EGFR and Grb2 in living HeLa cells stimulated with low, physiological concentrations of EGFR ligands. Endogenous Grb2 was replaced in these cells by Grb2 fused to yellow fluorescent protein (YFP). After transient residence in the plasma membrane, Rhodamine-conjugated EGF (EGF-Rh) and Grb2-YFP were rapidly internalized and accumulated in endosomes. Quantitative image analysis revealed that on average two Grb2-YFP molecules were colocalized with one EGF-Rh in cells stimulated with 2 ng/ml EGF-Rh, and the excess of Grb2-YFP over EGF-Rh was even higher when a receptor-saturating concentration of EGF-Rh was used. Therefore, we hypothesize that a single EGFR molecule can be simultaneously associated with functionally distinct Grb2 interaction partners during and after endocytosis. Continuous presence of Grb2-YFP in endosomes was also observed when EGFR was activated by transforming growth factor-α and amphiregulin, suggesting that endosomal EGFRs remain ligand occupied and signaling competent, despite the fact that these growth factors are thought to dissociate from the receptor at acidic pH. The prolonged localization and activity of EGFR-Grb2 complexes in endosomes correlated with the sustained activation of extracellular stimulus-regulated kinase 1/2, suggesting that endosomal EGFRs contribute significantly to this signaling pathway. We propose that endosomal EGFRs function to extend signaling in time and space to compensate for rapid downregulation of surface EGFRs in cells with low receptor expression levels.
Collapse
Affiliation(s)
- Arola Fortian
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
217
|
McDonald CB, El Hokayem J, Zafar N, Balke JE, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Farooq A. Allostery mediates ligand binding to Grb2 adaptor in a mutually exclusive manner. J Mol Recognit 2013; 26:92-103. [PMID: 23334917 DOI: 10.1002/jmr.2256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/01/2012] [Accepted: 11/12/2012] [Indexed: 01/10/2023]
Abstract
Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Ogura K, Okamura H. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR. Sci Rep 2013; 3:2913. [PMID: 24105423 PMCID: PMC6505672 DOI: 10.1038/srep02913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.
Collapse
Affiliation(s)
- Kenji Ogura
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | | |
Collapse
|
219
|
Higo K, Ikura T, Oda M, Morii H, Takahashi J, Abe R, Ito N. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28. PLoS One 2013; 8:e74482. [PMID: 24098653 PMCID: PMC3787023 DOI: 10.1371/journal.pone.0074482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.
Collapse
Affiliation(s)
- Kunitake Higo
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Teikichi Ikura
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto-shi, Kyoto, Japan
| | - Hisayuki Morii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki, Japan
| | - Jun Takahashi
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
220
|
The function of human epidermal growth factor receptor-3 and its role in tumors (Review). Oncol Rep 2013; 30:2563-70. [DOI: 10.3892/or.2013.2754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/06/2013] [Indexed: 11/05/2022] Open
|
221
|
Jennings EM, Morris JS, Carroll RJ, Manyam GC, Baladandayuthapani V. Bayesian methods for expression-based integration of various types of genomics data. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2013; 2013:13. [PMID: 24053265 PMCID: PMC3849593 DOI: 10.1186/1687-4153-2013-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
: We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis framework that incorporates the biological relationships among the platforms to identify genes whose expression is related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to increased statistical power in finding these predictive genes, and further provides mechanistic information about the manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and identify several genes potentially associated with the patients' survival. We find 12 positive prognostic markers associated with nine genes and 13 negative prognostic markers associated with nine genes.
Collapse
Affiliation(s)
| | - Jeffrey S Morris
- Department of Biostatistics, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Raymond J Carroll
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
222
|
Fearnley LG, Davis MJ, Ragan MA, Nielsen LK. Extracting reaction networks from databases-opening Pandora's box. Brief Bioinform 2013; 15:973-83. [PMID: 23946492 PMCID: PMC4239801 DOI: 10.1093/bib/bbt058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Large quantities of information describing the mechanisms of biological pathways continue to be collected in publicly available databases. At the same time, experiments have increased in scale, and biologists increasingly use pathways defined in online databases to interpret the results of experiments and generate hypotheses. Emerging computational techniques that exploit the rich biological information captured in reaction systems require formal standardized descriptions of pathways to extract these reaction networks and avoid the alternative: time-consuming and largely manual literature-based network reconstruction. Here, we systematically evaluate the effects of commonly used knowledge representations on the seemingly simple task of extracting a reaction network describing signal transduction from a pathway database. We show that this process is in fact surprisingly difficult, and the pathway representations adopted by various knowledge bases have dramatic consequences for reaction network extraction, connectivity, capture of pathway crosstalk and in the modelling of cell-cell interactions. Researchers constructing computational models built from automatically extracted reaction networks must therefore consider the issues we outline in this review to maximize the value of existing pathway knowledge.
Collapse
|
223
|
Iwaki J, Kikuchi K, Mizuguchi Y, Kawahigashi Y, Yoshida H, Uchida E, Takizawa T. MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line. PLoS One 2013; 8:e69496. [PMID: 23922722 PMCID: PMC3724868 DOI: 10.1371/journal.pone.0069496] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/10/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNA miR-376c was expressed in normal intrahepatic biliary epithelial cells (HIBEpiC), but was significantly suppressed in the HuCCT1 intrahepatic cholangiocarcinoma (ICC) cell line. The biological significance of the down-regulation of miR-376c in HuCCT1 cells is unknown. We hypothesized that miR-376c could function as a tumor suppressor in these cells. To test this hypothesis, we sought the targets of miR-376c, and characterized the effect of its down-regulation on HuCCT1 cells. We performed proteomic analysis of miR-376c-overexpressing HuCCT1 cells to identify candidate targets of miR-376c, and validated these targets by 3′-UTR reporter assay. Transwell migration assays were performed to study the migratory response of HuCCT1 cells to miR-376c overexpression. Furthermore, microarrays were used to identify the signaling that were potentially involved in the miR-376c-modulated migration of HuCCT1. Finally, we assessed epigenetic changes within the potential promoter region of the miR-376c gene in these cells. Proteomic analysis and subsequent validation assays showed that growth factor receptor-bound protein 2 (GRB2) was a direct target of miR-376c. The transwell migration assay revealed that miR-376c significantly reduced epidermal growth factor (EGF)-dependent cell migration in HuCCT1 cells. DNA microarray and subsequent pathway analysis showed that interleukin 1 beta and matrix metallopeptidase 9 were possible participants in EGF-dependent migration of HuCCT1 cells. Bisulfite sequencing showed higher methylation levels of CpG sites upstream of the miR-376c gene in HuCCT1 relative to HIBEpiC cells. Combined treatment with the DNA-demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor trichostatin A significantly upregulated the expression of miR-376c in HuCCT1 cells. We revealed that epigenetic repression of miR-376c accelerated EGF-dependent cell migration through its target GRB2 in HuCCT1 cells. These findings suggest that miR-376c functions as a tumor suppressor. Since metastasis is the major cause of death in ICC, microRNA manipulation could lead to the development of novel anti-cancer therapy strategies for ICC.
Collapse
Affiliation(s)
- Jun Iwaki
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Kunio Kikuchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Mizuguchi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Yutaka Kawahigashi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Eiji Uchida
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
- * E-mail:
| |
Collapse
|
224
|
Liu Y, Liu Q, Jia W, Chen J, Wang J, Ye D, Guo X, Chen W, Li G, Wang G, Deng A, Kang J. MicroRNA-200a regulates Grb2 and suppresses differentiation of mouse embryonic stem cells into endoderm and mesoderm. PLoS One 2013; 8:e68990. [PMID: 23874841 PMCID: PMC3715486 DOI: 10.1371/journal.pone.0068990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/03/2013] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which microRNAs (miRNAs) affect cell fate decisions remain poorly understood. Herein, we report that miR-200a can suppress the differentiation of mouse embryonic stem (ES) cells into endoderm and mesoderm. Interestingly, miR-200a directly targets growth factor receptor-bound protein 2 (Grb2), which is a key adaptor in the Erk signaling pathway. Furthermore, high levels of miR-200a dramatically decrease Grb2 levels and suppress the appearance of mesoderm and endoderm lineages in embryoid body formation, as well as suppressing the activation of Erk. Finally, Grb2 supplementation significantly rescues the miR-200a-induced layer-formation bias and the Erk suppression. Collectively, our results demonstrate that miR-200a plays critical roles in ES cell lineage commitment by directly regulating Grb2 expression and Erk signaling.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine and Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Jie Chen
- Department of Laboratory Medicine and Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jianmin Wang
- Department of Laboratory Medicine and Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Anmei Deng
- Department of Laboratory Medicine and Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
- * E-mail: (JK); (AD)
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- * E-mail: (JK); (AD)
| |
Collapse
|
225
|
Tong L, Yang XX, Liu MF, Yao GY, Dong JY, Ye CS, Li M. Mutational analysis of key EGFR pathway genes in Chinese breast cancer patients. Asian Pac J Cancer Prev 2013; 13:5599-603. [PMID: 23317280 DOI: 10.7314/apjcp.2012.13.11.5599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) is a potential therapeutic target for breast cancer; however, its use does not lead to a marked clinical response. Studies of non-small cell lung cancer and colorectal cancer showed that mutations of genes in the PIK3CA/AKT and RAS/RAF/MEK pathways, two major signalling cascades downstream of EGFR, might predict resistance to EGFR-targeted agents. Therefore, we examined the frequencies of mutations in these key EGFR pathway genes in Chinese breast cancer patients. METHODS We used a high-throughput mass-spectrometric based cancer gene mutation profiling platform to detect 22 mutations of the PIK3CA, AKT1, BRAF, EGFR, HRAS, and KRAS genes in 120 Chinese women with breast cancer. RESULTS Thirteen mutations were detected in 12 (10%) of the samples, all of which were invasive ductal carcinomas (two stage I, six stage II, three stage III, and one stage IV). These included one mutation (0.83%) in the EGFR gene (rs121913445-rs121913432), three (2.5%) in the KRAS gene (rs121913530, rs112445441), and nine (7.5%) in the PIK3CA gene (rs121913273, rs104886003, and rs121913279). No mutations were found in the AKT1, BRAF, and HRAS genes. Six (27.3%) of the 22 genotyping assays caused mutations in at least one sample and three (50%) of the six assays queried were found to be mutated more than once. CONCLUSIONS Mutations in the EGFR pathway occurred in a small fraction of Chinese breast cancers. However, therapeutics targeting these potential predictive markers should be investigated in depth, especially in Oriental populations.
Collapse
Affiliation(s)
- Lin Tong
- School of Biotechnology, Breast Center Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
226
|
Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol 2013; 5:a009209. [PMID: 23818496 PMCID: PMC3685898 DOI: 10.1101/cshperspect.a009209] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its discovery more than 25 years ago, numerous studies have established that the MET receptor is unique among tyrosine kinases. Signaling through MET is necessary for normal development and for the progression of a wide range of human cancers. MET activation has been shown to drive numerous signaling pathways; however, it is not clear how MET signaling mediates diverse cellular responses such as motility, invasion, growth, and angiogenesis. Great strides have been made in understanding the pleotropic aspects of MET signaling using three-dimensional molecular structures, cell culture systems, human tumors, and animal models. These combined approaches have driven the development of MET-targeted therapeutics that have shown promising results in the clinic. Here we examine the unique features of MET and hepatocyte growth factor/scatter factor (HGF/SF) structure and signaling, mutational activation, genetic mouse models of MET and HGF/SF, and MET-targeted therapeutics.
Collapse
Affiliation(s)
- Carrie R Graveel
- Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | |
Collapse
|
227
|
Odin (ANKS1A) modulates EGF receptor recycling and stability. PLoS One 2013; 8:e64817. [PMID: 23825523 PMCID: PMC3692516 DOI: 10.1371/journal.pone.0064817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/18/2013] [Indexed: 12/22/2022] Open
Abstract
The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.
Collapse
|
228
|
Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS. Mol Cell Biol 2013; 33:2470-84. [DOI: 10.1128/mcb.01593-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.
Collapse
|
229
|
Kessler T, Hache H, Wierling C. Integrative analysis of cancer-related signaling pathways. Front Physiol 2013; 4:124. [PMID: 23760067 PMCID: PMC3671203 DOI: 10.3389/fphys.2013.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 05/12/2013] [Indexed: 12/11/2022] Open
Abstract
Identification and classification of cancer types and subtypes is a major issue in current cancer research. Whole genome expression profiling of cancer tissues is often the basis for such subtype classifications of tumors and different signatures for individual cancer types have been described. However, the search for best performing discriminatory gene-expression signatures covering more than one cancer type remains a relevant topic in cancer research as such a signature would help understanding the common changes in signaling networks in these disease types. In this work, we explore the idea of a top down approach for sample stratification based on a module-based network of cancer relevant signaling pathways. For assembly of this network, we consider several of the most established cancer pathways. We evaluate our sample stratification approach using expression data of human breast and ovarian cancer signatures. We show that our approach performs equally well to previously reported methods besides providing the advantage to classify different cancer types. Furthermore, it allows to identify common changes in network module activity of those cancer samples.
Collapse
Affiliation(s)
- Thomas Kessler
- Systems Biology Group, Department Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hendrik Hache
- Systems Biology Group, Department Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christoph Wierling
- Systems Biology Group, Department Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
230
|
Ahmed Z, Lin CC, Suen KM, Melo FA, Levitt JA, Suhling K, Ladbury JE. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. ACTA ACUST UNITED AC 2013; 200:493-504. [PMID: 23420874 PMCID: PMC3575544 DOI: 10.1083/jcb.201204106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Constitutive receptor tyrosine kinase phosphorylation requires regulation of kinase and phosphatase activity to prevent aberrant signal transduction. A dynamic mechanism is described here in which the adaptor protein, growth factor receptor-bound protein 2 (Grb2), controls fibroblast growth factor receptor 2 (FGFR2) signaling by regulating receptor kinase and SH2 domain-containing protein tyrosine phosphatase 2 (Shp2) phosphatase activity in the absence of extracellular stimulation. FGFR2 cycles between its kinase-active, partially phosphorylated, nonsignaling state and its Shp2-dephosphorylated state. Concurrently, Shp2 cycles between its FGFR2-phosphorylated and dephosphorylated forms. Both reciprocal activities of FGFR2 and Shp2 were inhibited by binding of Grb2 to the receptor. Phosphorylation of Grb2 by FGFR2 abrogated its binding to the receptor, resulting in up-regulation of both FGFR2's kinase and Shp2's phosphatase activity. Dephosphorylation of Grb2 by Shp2 rescued the FGFR2-Grb2 complex. This cycling of enzymatic activity results in a homeostatic, signaling-incompetent state. Growth factor binding perturbs this background cycling, promoting increased FGFR2 phosphorylation and kinase activity, Grb2 dissociation, and downstream signaling. Grb2 therefore exerts constitutive control over the mutually dependent activities of FGFR2 and Shp2.
Collapse
Affiliation(s)
- Zamal Ahmed
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
231
|
Hong Y, Sun A, Zhang M, Gao F, Han Y, Fu Z, Shi Y, Lin J. Proteomics analysis of differentially expressed proteins in schistosomula and adult worms of Schistosoma japonicum. Acta Trop 2013; 126:1-10. [PMID: 23270889 DOI: 10.1016/j.actatropica.2012.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 12/10/2012] [Accepted: 12/15/2012] [Indexed: 12/17/2022]
Abstract
Schistosoma japonicum has a complex lifecycle and exhibits dramatic changes in its biology and morphology at different developmental stages. The schistosomulum and adult worm are two stages of this complex lifecycle and differentially expressed proteins in these two stages should be important for survival, development, and reproduction of the parasites. In this study, soluble and hydrophobic proteins were extracted from eggs, cercariae, schistosomula (8d and 19d), and male and female adult worms (42d) of Schistosoma japonicum, and separated by two-dimensional (2D) gel electrophoresis. A total of 1376±52, 928±61, 1465±41, 1230±30, 904±34, and 1080±26 soluble proteins and 1437±44, 845±53, 986±22, 1145±35, 1066±39, and 1123±45 hydrophobic proteins were separated from eggs, cercariae, schistosomula (8d and 19d), and male and female adult worms (42d), respectively. There were 65±14, 27±7, 37±17 and 48±9 soluble protein spots only present in schistosomula (8d and/or 19d) and adult schistosomes (male and/or female). We successfully identified 22 spots from schistosomula and 11 spots from adult schistosomes by mass spectrometry. Quantitative real-time RT-PCR was used to examine six differentially expressed proteins at the transcription level. These proteins only found in schistosomula or adults stage by the proteomics analysis were highly expressed in the corresponding stage at mRNA level. Bioinformatics analysis showed that the differentially expressed proteins from schistosomula were mainly involved in cellular metabolic processes, stress response and developmental process. Differentially expressed proteins from adult schistosomes were involved with gene expression and protein metabolism processes. The results of this study might provide new insights to stimulate further exploration of the mechanism of growth and development in schistosomes and help identify candidate molecules for developing new vaccines or drugs.
Collapse
|
232
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
233
|
Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 2013; 288:11216-32. [PMID: 23447532 DOI: 10.1074/jbc.m112.442384] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the regulation of cardiomyocyte growth is crucial for the management of adverse ventricular remodeling and heart failure. MicroRNA-378 (miR-378) is a newly described member of the cardiac-enriched miRNAs, which is expressed only in cardiac myocytes and not in cardiac fibroblasts. We have previously shown that miR-378 regulates cardiac growth during the postnatal period by direct targeting of IGF1R (Knezevic, I., Patel, A., Sundaresan, N. R., Gupta, M. P., Solaro, R. J., Nagalingam, R. S., and Gupta, M. (2012) J. Biol. Chem. 287, 12913-12926). Here, we report that miR-378 is an endogenous negative regulator of cardiac hypertrophy, and its levels are down-regulated during hypertrophic growth of the heart and during heart failure. In primary cultures of cardiomyocytes, overexpression of miR-378 blocked phenylephrine (PE)-stimulated Ras activity and also prevented activation of two major growth-promoting signaling pathways, PI3K-AKT and Raf1-MEK1-ERK1/2, acting downstream of Ras signaling. Overexpression of miR-378 suppressed PE-induced phosphorylation of S6 ribosomal kinase, pERK1/2, pAKT, pGSK-3β, and nuclear accumulation of NFAT. There was also suppression of the fetal gene program that was induced by PE. Experiments carried out to delineate the mechanism behind the suppression of Ras, led us to identify Grb2, an upstream component of Ras signaling, as a bona fide direct target of miR-378-mediated regulation. Deficiency of miR-378 alone was sufficient to induce fetal gene expression, which was prevented by knocking down Grb2 expression and blocking Ras activation, thus suggesting that miR-378 interferes with Ras activation by targeting Grb2. Our study demonstrates that miR-378 is an endogenous negative regulator of Ras signaling and cardiac hypertrophy and its deficiency contributes to the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Raghu S Nagalingam
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
234
|
Gillis LC, Berry DM, Minden MD, McGlade CJ, Barber DL. Gads (Grb2-related adaptor downstream of Shc) is required for BCR-ABL-mediated lymphoid leukemia. Leukemia 2013; 27:1666-76. [PMID: 23399893 PMCID: PMC4981500 DOI: 10.1038/leu.2013.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/29/2022]
Abstract
Philadelphia chromosome-positive leukemias, including chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (B-ALL), are driven by the oncogenic BCR-ABL fusion protein. Animal modeling experiments utilizing retroviral transduction and subsequent bone marrow transplantation have demonstrated that BCR-ABL generates both myeloid and lymphoid disease in mice receiving whole bone marrow transduced with BCR-ABL. Y177 of BCR-ABL is critical to the development of myeloid disease, and phosphorylation of Y177 has been shown to induce GRB2 binding to BCR-ABL, followed by activation of the Ras and phosphoinositide 3 kinase signaling pathways. We show that the GRB2-related adapter protein, GADS, also associates with BCR-ABL, specifically through Y177 and demonstrate that BCR-ABL-driven lymphoid disease requires Gads. BCR-ABL transduction of Gads(−/−) bone marrow results in short latency myeloid disease within 3–4 weeks of transplant, while wild-type mice succumb to both a longer latency lymphoid and myeloid diseases. We report that GADS mediates a unique BCR-ABL complex with SLP-76 in BCR-ABL-positive cell lines and B-ALL patient samples. These data suggest that GADS mediates lymphoid disease downstream of BCR-ABL through the recruitment of specific signaling intermediates.
Collapse
Affiliation(s)
- L C Gillis
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
235
|
Abstract
The protein kinase B-Raf is a critical component of the Ras/MAPK signaling pathway. An oncogenic B-Raf mutation that constitutively activates the kinase was identified in z50% of melanoma patients and in other cancers. A structure-guided drug discovery approach enabled the development of Zelboraf, a targeted inhibitor of oncogenic B-Raf. This drug has been used successfully in the clinic to treat metastatic melanoma patients harboring B-Raf mutations.
Collapse
Affiliation(s)
- Matthew J Davis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
236
|
Kwan DHT, Yung LY, Ye RD, Wong YH. Activation of Ras-dependent signaling pathways by G(14) -coupled receptors requires the adaptor protein TPR1. J Cell Biochem 2013; 113:3486-97. [PMID: 22711498 DOI: 10.1002/jcb.24225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many G(q) -coupled receptors mediate mitogenic signals by stimulating extracellular signal-regulated protein kinases (ERKs) that are typically regulated by the small GTPase Ras. Recent studies have revealed that members of the Gα(q) family may possess the ability to activate Ras/ERK by interacting with the adaptor protein tetratricopeptide repeat 1 (TPR1). Within the Gα(q) family, the highly promiscuous Gα(14) can relay signals from numerous receptors. Here, we examined if Gα(14) interacts with TPR1 to stimulate Ras signaling pathways. Expression of the constitutively active Gα(14) QL mutant in HEK293 cells led to the formation of GTP-bound Ras as well as increased phosphorylations of downstream signaling molecules including ERK and IκB kinase. Stimulation of endogenous G(14) -coupled somatostatin type 2 and α(2) -adrenergic receptors produced similar responses in human hepatocellular HepG2 carcinoma cells. Co-immunoprecipitation assays using HEK293 cells demonstrated a stronger association of TPR1 for Gα(14) QL than Gα(14) , suggesting that TPR1 preferentially binds to the GTP-bound form of Gα(14) . Activated Gα(14) also interacted with the Ras guanine nucleotide exchange factors SOS1 and SOS2. Expression of a dominant negative mutant of TPR1 or siRNA-mediated knockdown of TPR1 effectively abolished the ability of Gα(14) to induce Ras signaling in native HepG2 or transfected HEK293 cells. Although expression of the dominant negative mutant of TPR1 suppressed Gα(14) QL-induced phosphorylations of ERK and IκB kinase, it did not affect Gα(14) QL-induced stimulation of phospholipase Cβ or c-Jun N-terminal kinase. Our results suggest that TPR1 is required for Gα(14) to stimulate Ras-dependent signaling pathways, but not for the propagation of signals along Ras-independent pathways.
Collapse
Affiliation(s)
- Dawna H T Kwan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
237
|
Croucher DR, Hochgräfe F, Zhang L, Liu L, Lyons RJ, Rickwood D, Tactacan CM, Browne BC, Ali N, Chan H, Shearer R, Gallego-Ortega D, Saunders DN, Swarbrick A, Daly RJ. Involvement of Lyn and the atypical kinase SgK269/PEAK1 in a basal breast cancer signaling pathway. Cancer Res 2013; 73:1969-80. [PMID: 23378338 DOI: 10.1158/0008-5472.can-12-1472] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal breast cancer cells feature high expression of the Src family kinase Lyn that has been implicated in the pathogenicity of this disease. In this study, we identified novel Lyn kinase substrates, the most prominent of which was the atypical kinase SgK269 (PEAK1). In breast cancer cells, SgK269 expression associated with the basal phenotype. In primary breast tumors, SgK269 overexpression was detected in a subset of basal, HER2-positive, and luminal cancers. In immortalized MCF-10A mammary epithelial cells, SgK269 promoted transition to a mesenchymal phenotype and increased cell motility and invasion. Growth of MCF-10A acini in three-dimensional (3D) culture was enhanced upon SgK269 overexpression, which induced an abnormal, multilobular acinar morphology and promoted extracellular signal-regulated kinase (Erk) and Stat3 activation. SgK269 Y635F, mutated at a major Lyn phosphorylation site, did not enhance acinar size or cellular invasion. We show that Y635 represents a Grb2-binding site that promotes both Stat3 and Erk activation in 3D culture. RNA interference-mediated attenuation of SgK269 in basal breast cancer cells promoted acquisition of epithelial characteristics and decreased anchorage-independent growth. Together, our results define a novel signaling pathway in basal breast cancer involving Lyn and SgK269 that offers clinical opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- David R Croucher
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Jin L, Craven RJ. The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor. Oncogene 2013; 33:326-35. [PMID: 23318459 DOI: 10.1038/onc.2012.589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/17/2022]
Abstract
Src is the founding member of a diverse family of intracellular tyrosine kinases, and Src has a key role in promoting cancer growth, in part, through its association with receptor tyrosine kinases. However, some Src-related proteins have widely divergent physiological roles, and these proteins include the Rak/Frk tyrosine kinase (Frk stands for Fyn-related kinase), which inhibits cancer cell growth and suppresses tumorigenesis. Rak/Frk phosphorylates and stabilizes the Pten tumor suppressor, protecting it from degradation, and Rak/Frk associates with the retinoblastoma (Rb) tumor suppressor. However, the role of Rak/Frk in receptor-mediated signaling is largely unknown. Here, we demonstrate that Rak/Frk associates with epidermal growth factor receptor (EGFR), increasing in activity and EGFR binding after EGF stimulation, when it decreases the pool of EGFR present at the plasma membrane. EGFR-Rak binding is direct, requires the SH2 and SH3 domains of Rak/Frk for efficient complex formation and is not dependent on the Grb2 adaptor protein. EGFR mutations are associated with increased EGFR activity and tumorigenicity, and we found that Rak/Frk associates preferentially with an EGFR exon 19 mutant, EGFRΔ747-749/A750P, compared with wild-type EGFR. Furthermore, Rak/Frk inhibited mutant EGFR phosphorylation at an activating site and dramatically decreased the levels of EGFRΔ747-749/A750P from the plasma membrane. Taken together, the results suggest that Rak/Frk inhibits EGFR signaling in cancer cells and has elevated activity against EGFR exon 19 mutants.
Collapse
Affiliation(s)
- L Jin
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - R J Craven
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
239
|
Iwata T, Tanaka K, Tahara T, Nozaki S, Onoe H, Watanabe Y, Fukase K. A conformationally fixed analog of the peptide mimic Grb2–SH2 domain: synthesis and evaluation against the A431 cancer cell. MOLECULAR BIOSYSTEMS 2013; 9:1019-25. [DOI: 10.1039/c3mb25462c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
240
|
Gianchecchi E, Palombi M, Fierabracci A. The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev 2012; 12:717-25. [PMID: 23261816 DOI: 10.1016/j.autrev.2012.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases represent a heterogeneous group of conditions whose incidence is increasing worldwide. This has stimulated studies on their etiopathogenesis, derived from a complex interaction between genetic and environmental factors, in order to improve prevention and treatment of these diseases. An increasing amount of epidemiologic investigations has associated the presence of the C1858T polymorphism in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene to the onset of several autoimmune diseases including insulin-dependent diabetes mellitus (Type 1 diabetes). PTPN22 encodes for the lymphoid tyrosine phosphatase Lyp. This belongs to non-receptor-type protein tyrosine phosphatases involved in lymphocyte activation and differentiation. In humans, Lyp may have a role in the negative regulation of T cell receptor signaling. The single nucleotide polymorphism C1858T encodes for a more active phosphatase Lyp R620W. This has the ability to induce a higher negative regulation of T cell receptor signaling. Thus, C1858T could play an important role at the level of thymocyte polarization and escape of autoreactive T lymphocytes, through the positive selection of otherwise negatively selected autoimmune T cells. In this review we discuss the physiological role exerted by the PTPN22 gene and its encoded Lyp product in lymphocyte processes. We highlight the pathogenic significance of the C1858T PTPN22 polymorphism in human autoimmunity with special reference to Type 1 diabetes. Recently the genetic variation in PTPN22 was shown to induce altered function of T and B-lymphocytes. In particular BCR signaling defects and alterations in the B cell compartment were reported in T1D patients. We finally speculate on the possible development of novel therapeutic treatments in human autoimmunity aiming to selectively target the variant Lyp protein in autoreactive T and B lymphocytes.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Autoimmunity Laboratory, Immunology Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | |
Collapse
|
241
|
Jin J, Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 2012; 367:2540-55. [PMID: 22889906 DOI: 10.1098/rstb.2012.0106] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.
Collapse
Affiliation(s)
- Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|
242
|
Secondary structure, a missing component of sequence-based minimotif definitions. PLoS One 2012; 7:e49957. [PMID: 23236358 PMCID: PMC3517595 DOI: 10.1371/journal.pone.0049957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022] Open
Abstract
Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis of occurrences of minimotifs in structured and disordered regions of proteins, and review of the literature support a new model for minimotif definitions that includes sequence, structure, and function.
Collapse
|
243
|
Abstract
Receptor tyrosine kinases (RTKs) exhibit basal tyrosine phosphorylation and activity in the absence of ligand stimulation, which has been attributed to the "leaky" nature of tyrosine kinase autoinhibition and stochastic collisions of receptors in the membrane bilayer. This basal phosphorylation does not produce a signal of sufficient amplitude and intensity to manifest in a biological response and hence is considered to be a passive, futile process that does not have any biological function. This paradigm has now been challenged by a study showing that the basal phosphorylation of RTKs is a physiologically relevant process that is actively inhibited by the intracellular adaptor protein growth factor receptor-bound 2 (Grb2) and serves to "prime" receptors for a rapid response to ligand stimulation. Grb2 is conventionally known for playing positive roles in RTK signaling. The discovery of a negative regulatory role for Grb2 reveals that this adaptor acts as a double-edged sword in the regulation of RTK signaling.
Collapse
Affiliation(s)
- Artur A Belov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
244
|
Simister PC, Luccarelli J, Thompson S, Appella DH, Feller SM, Hamilton AD. Novel inhibitors of a Grb2 SH3C domain interaction identified by a virtual screen. Bioorg Med Chem 2012. [PMID: 23182216 DOI: 10.1016/j.bmc.2012.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The adaptor protein Grb2 links cell-surface receptors, such as Her2, to the multisite docking proteins Gab1 and 2, leading to cell growth and proliferation in breast and other cancers. Gab2 interacts with the C-terminal SH3 domain (SH3C) of Grb2 through atypical RxxK motifs within polyproline II or 310 helices. A virtual screen was conducted for putative binders of the Grb2 SH3C domain. Of the top hits, 34 were validated experimentally by surface plasmon resonance spectroscopy and isothermal titration calorimetry. A subset of these molecules was found to inhibit the Grb2-Gab2 interaction in a competition assay, with moderate to low affinities (5: IC50 320μM). The most promising binders were based on a dihydro-s-triazine scaffold, and are the first small molecules reported to target the Grb2 SH3C protein-interaction surface.
Collapse
Affiliation(s)
- Philip C Simister
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
245
|
Hindriksen S, Bijlsma MF. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors. Cancers (Basel) 2012; 4:989-1035. [PMID: 24213498 PMCID: PMC3712732 DOI: 10.3390/cancers4040989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
246
|
Beas AO, Taupin V, Teodorof C, Nguyen LT, Garcia-Marcos M, Farquhar MG. Gαs promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with GIV (Girdin). Mol Biol Cell 2012; 23:4623-34. [PMID: 23051738 PMCID: PMC3510023 DOI: 10.1091/mbc.e12-02-0133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
EEA1 endosomes are believed to function mainly in down-regulating EGFR signaling, and APPL endosomes are regarded as signaling endosomes. Evidence is given that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by interaction between the signal-transducing protein GIV and the trimeric G protein Gαs. The organization of the endocytic system into biochemically distinct subcompartments allows for spatial and temporal control of the strength and duration of signaling. Recent work has established that Akt cell survival signaling via the epidermal growth factor receptor (EGFR) occurs from APPL early endosomes that mature into early EEA1 endosomes. Less is known about receptor signaling from EEA1 endosomes. We show here that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by the heterotrimeric G protein Gαs through interaction with the signal transducing protein GIV (also known as Girdin). When Gαs or GIV is depleted, activated EGFR and its adaptors accumulate in EEA1 endosomes, and EGFR signaling is prolonged, EGFR down-regulation is delayed, and cell proliferation is greatly enhanced. Our findings define EEA1 endosomes as major sites for proliferative signaling and establish that Gαs and GIV regulate EEA1 but not APPL endosome maturation and determine the duration and strength of proliferative signaling from this compartment.
Collapse
Affiliation(s)
- Anthony O Beas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
247
|
Stein E, Schoecklmann H, Daniel TO. Eph family receptors and ligands in vascular cell targeting and assembly. Trends Cardiovasc Med 2012; 7:329-34. [PMID: 21235905 DOI: 10.1016/s1050-1738(97)00095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Members of the Eph family of receptor tyrosine kinases determine neural cell aggregation and targeting behavior, functions that are also critical in vascular assembly and remodeling. Among this class of diverse receptors, EphA2 (Eck) and EphB1 (ELK) represent prototypes for two receptor subfamilies distinguished by high-affinity interaction with either glycerophosphatidylinositol (GPI)-linked or transmembrane ligands, respectively. EphA2 participates in angiogenic responses to tumor necrosis factor (TNF) through an autocrine loop affecting endothelial cell migration. EphB1 and its ligand Ephrin-B1 (LERK-2) are important determinants of assembly of endothelial cells from the microvasculature of the kidney, where both are expressed in endothelial progenitors and in glomerular microvascular endothelial cells. Ephrin-B1 activation of EphB1 promotes assembly of these cells into capillary-like structures. Interaction trap approaches have identified downstream signaling proteins that complex with ligand-activated EphA2 or EphB1, including nonreceptor tyrosine kinases and SH2 domain-containing adapter proteins. The Grb 10 adapter is one of a subset that binds activated EphB1, but not EphA2, defining distinct signaling mechanisms for these related endothelial receptors. On the basis of observations in vascular endothelial cells and recent results defining Eph receptor and ligand roles in neural cell targeting, we propose that these receptors direct cell-cell recognition events that are critical in vasculogenesis and angiogenesis. (Trends Cardiovasc Med 1997;7:329-334). © 1997, Elsevier Science Inc.
Collapse
Affiliation(s)
- E Stein
- Department of Pharmacology, Nashville, Tennessee, USA
| | | | | |
Collapse
|
248
|
Wu Y, Feng ZJ, Gao SB, Matkar S, Xu B, Duan HB, Lin X, Li SH, Hua X, Jin GH. Interplay between menin and K-Ras in regulating lung adenocarcinoma. J Biol Chem 2012; 287:40003-11. [PMID: 23027861 DOI: 10.1074/jbc.m112.382416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MEN1, which encodes the nuclear protein menin, acts as a tumor suppressor in lung cancer and is often inactivated in human primary lung adenocarcinoma. Here, we show that the inactivation of MEN1 is associated with increased DNA methylation at the MEN1 promoter by K-Ras. On one hand, the activated K-Ras up-regulates the expression of DNA methyltransferases and enhances the binding of DNA methyltransferase 1 to the MEN1 promoter, leading to increased DNA methylation at the MEN1 gene in lung cancer cells; on the other hand, menin reduces the level of active Ras-GTP at least partly by preventing GRB2 and SOS1 from binding to Ras, without affecting the expression of GRB2 and SOS1. In human lung adenocarcinoma samples, we further demonstrate that reduced menin expression is associated with the enhanced expression of Ras (p < 0.05). Finally, excision of the Men1 gene markedly accelerates the K-Ras(G12D)-induced tumor formation in the Men1(f/f);K-Ras(G12D/+);Cre ER mouse model. Together, these findings uncover a previously unknown link between activated K-Ras and menin, an important interplay governing tumor activation and suppression in the development of lung cancer.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Basic Medical Sciences, Medical College, Zhongshan Hospital, Xiamen University, 361005 Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Tirado-González I, Freitag N, Barrientos G, Shaikly V, Nagaeva O, Strand M, Kjellberg L, Klapp BF, Mincheva-Nilsson L, Cohen M, Blois SM. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol Hum Reprod 2012; 19:43-53. [PMID: 23002109 DOI: 10.1093/molehr/gas043] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Galectin-1 (gal-1) is expressed at the feto-maternal interface and plays a role in regulating the maternal immune response against placental alloantigens, contributing to pregnancy maintenance. Both decidua and placenta contribute to gal-1 expression and may be important for the maternal immune regulation. The expression of gal-1 within the placenta is considered relevant to cell-adhesion and invasion of trophoblasts, but the role of gal-1 in the immune evasion machinery exhibited by trophoblast cells remains to be elucidated. In this study, we analyzed gal-1 expression in preimplantation human embryos and first-trimester decidua-placenta specimens and serum gal-1 levels to investigate the physiological role played by this lectin during pregnancy. The effect on human leukocyte antigen G (HLA-G) expression in response to stimulation or silencing of gal-1 was also determined in the human invasive, proliferative extravillous cytotrophoblast 65 (HIPEC65) cell line. Compared with normal pregnant women, circulating gal-1 levels were significantly decreased in patients who subsequently suffered a miscarriage. Human embryos undergoing preimplantation development expressed gal-1 on the trophectoderm and inner cell mass. Furthermore, our in vitro experiments showed that exogenous gal-1 positively regulated the membrane-bound HLA-G isoforms (HLA-G1 and G2) in HIPEC65 cells, whereas endogenous gal-1 also induced expression of the soluble isoforms (HLA-G5 and -G6). Our results suggest that gal-1 plays a key role in pregnancy maternal immune regulation by modulating HLA-G expression on trophoblast cells. Circulating gal-1 levels could serve as a predictive factor for pregnancy success in early human gestation.
Collapse
Affiliation(s)
- Irene Tirado-González
- Charité Center 12 Internal Medicine and Dermatology, Reproductive Medicine Research Group, Medicine University Berlin, BMFZ, Raum 2.0547, AugustenburgerPlatz 1, D-13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Stautz D, Leyme A, Grandal MV, Albrechtsen R, van Deurs B, Wewer U, Kveiborg M. Cell-surface metalloprotease ADAM12 is internalized by a clathrin- and Grb2-dependent mechanism. Traffic 2012; 13:1532-46. [PMID: 22882974 DOI: 10.1111/j.1600-0854.2012.01405.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
ADAM12 (A Disintegrin And Metalloprotease 12), a member of the ADAMs family of transmembrane proteins, is involved in ectodomain shedding, cell-adhesion and signaling, with important implications in cancer. Therefore, mechanisms that regulate the levels and activity of ADAM12 at the cell-surface are possibly crucial in these contexts. We here investigated internalization and subsequent recycling or degradation of ADAM12 as a potentially important regulatory mechanism. Our results show that ADAM12 is constitutively internalized primarily via the clathrin-dependent pathway and is subsequently detected in both early and recycling endosomes. The protease activity of ADAM12 does not influence this internalization mechanism. Analysis of essential elements for internalization established that proline-rich regions in the cytoplasmic domain of ADAM12, previously shown to interact with Src-homology 3 domains, were necessary for proper internalization. These sites in the ADAM12 cytoplasmic domain interacted with the adaptor protein growth factor receptor-bound protein 2 (Grb2) and knockdown of Grb2 markedly reduced ADAM12 internalization. These studies establish that internalization is indeed a mechanism that regulates ADAM cell surface levels and show that ADAM12 internalization involves the clathrin-dependent pathway and Grb2.
Collapse
Affiliation(s)
- Dorte Stautz
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|