201
|
Sandzhieva AV, Sybachin AV, Zaborova OV, Ballauff M, Yaroslavov AA. Cationic colloid–anionic liposome–protein ternary complex: formation, properties, and biomedical importance. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
202
|
Gu M, Wang X, Toh TB, Chow EKH. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today 2018; 23:1043-1052. [DOI: 10.1016/j.drudis.2017.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
|
203
|
Advances and applications of block-copolymer-based nanoformulations. Drug Discov Today 2018; 23:1139-1151. [DOI: 10.1016/j.drudis.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
|
204
|
Yasmin-Karim S, Moreau M, Mueller R, Sinha N, Dabney R, Herman A, Ngwa W. Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids. Front Oncol 2018; 8:114. [PMID: 29740535 PMCID: PMC5928848 DOI: 10.3389/fonc.2018.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation. This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michele Moreau
- Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,University of Massachusetts Lowell, Lowell, MA, United States
| | - Romy Mueller
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States.,University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Neeharika Sinha
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States
| | | | - Allen Herman
- Cannabis Science, Inc., Irvine, CA, United States
| | - Wilfred Ngwa
- Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States.,Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
205
|
Allou NB, Yadav A, Pal M, Goswamee RL. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon–norfloxacin intercalated layered double hydroxides. Carbohydr Polym 2018; 186:282-289. [DOI: 10.1016/j.carbpol.2018.01.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 01/14/2023]
|
206
|
Ramos-Jacques A, Lujan-Montelongo J, Silva-Cuevas C, Cortez-Valadez M, Estevez M, Hernandez-Martínez A. Lead (II) removal by poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
207
|
Cardoso VF, Correia DM, Ribeiro C, Fernandes MM, Lanceros-Méndez S. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers (Basel) 2018; 10:polym10020161. [PMID: 30966197 PMCID: PMC6415094 DOI: 10.3390/polym10020161] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.
Collapse
Affiliation(s)
- Vanessa F Cardoso
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CMEMS-UMinho, Universidade do Minho, DEI, 4800-058 Guimaraes, Portugal.
| | - Daniela M Correia
- Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Margarida M Fernandes
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
208
|
Ferreira N, Ferreira L, Cardoso V, Boni F, Souza A, Gremião M. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
209
|
Shagan A, Croitoru-Sadger T, Corem-Salkmon E, Mizrahi B. Near-Infrared Light Induced Phase Transition of Biodegradable Composites for On-Demand Healing and Drug Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4131-4139. [PMID: 29280624 DOI: 10.1021/acsami.7b17481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Light responsive materials play an important role in many biomedical applications. Despite the great potential, commonly available systems are limited by their toxicity and lack of biodegradability. Here, an efficient light triggered system from safe, biodegradable star-poly(ethylene glycol) (star-PEG) and poly(ε-caprolactone) (PCL) with varying melting points controlled by the length of the CL segments is described. When incorporated with gold nanoshells (GNS) and exposed to near-infrared (NIR) irradiation, matrices temporarily disengage, thus allowing efficient on-demand healing and drug release. The responsiveness of this system to light, with its tailorable physical and healing properties, biocompatibility, biodegradability, and the capability to incorporate drugs and on-demand drug release are all desirable traits for numerous clinical applications.
Collapse
Affiliation(s)
- Alona Shagan
- Faculty of Biotechnology and Food Engineering, Technion , Haifa 32000, Israel
| | | | - Enav Corem-Salkmon
- Faculty of Biotechnology and Food Engineering, Technion , Haifa 32000, Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, Technion , Haifa 32000, Israel
| |
Collapse
|
210
|
Crivelli B, Perteghella S, Bari E, Sorrenti M, Tripodo G, Chlapanidas T, Torre ML. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. SOFT MATTER 2018; 14:546-557. [PMID: 29327746 DOI: 10.1039/c7sm01631j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silk proteins have been studied and employed for the production of drug delivery (nano)systems. They show excellent biocompatibility, controllable biodegradability and non-immunogenicity and, if needed, their properties can be modulated by blending with other polymers. Silk fibroin (SF), which forms the inner core of silk, is a (bio)material officially recognized by the Food and Drug Administration for human applications. Conversely, the potential of silk sericin (SS), which forms the external shell of silk, could still be considered under evaluation. At the best of our knowledge, nanoparticles based on silk sericin "alone" cannot be produced, due to its physicochemical instability influenced by extreme pH, high water solubility and temperature; for these reasons, it almost always needs to be combined with other polymers for the development of drug delivery systems. In this review, we focused on silk proteins as bioactive natural carriers, since they show not only optimal features as inert excipients, but also remarkable intrinsic biological activities. SF has anti-inflammatory properties, while SS presents antioxidant, anti-tyrosine, anti-aging, anti-elastase and anti-bacterial features. Here, we give an overview on SF or SS silk-based nanosystems, with particular attention on the production techniques.
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
Thermal switches are of great importance to thermal management in a wide variety of applications. However, traditional thermal switches suffer from being large and having slow transition rates. To overcome these limitations, we took advantage of abrupt second-order phase transitions in thermoresponsive polymer aqueous solutions to enable fast thermal switching. While thermoresponsive polymers have been widely studied for biomedical applications, their thermal switching capability has not been studied. In this work, we used poly(N-isopropylacrylamide) (PNIPAM) as a model system to demonstrate abrupt thermal conductivity changes of thermoresponsive polymer aqueous solutions across their transition temperatures by using a powerful approach, the transient thermal grating technique, which has high sensitivity. We observed a thermal switching ratio up to 1.15 in dilute PNIPAM aqueous solutions (up to 0.025 g/mL) across the transition. This work may provide new opportunities to engineer thermal switches using second-order phase transitions of thermoresponsive polymer aqueous solutions or abrupt higher-order phase transitions in general.
Collapse
Affiliation(s)
- Chen Li
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yunwei Ma
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhiting Tian
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
212
|
Abstract
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
Collapse
|
213
|
Oliveira I, Carvalho AL, Radhouani H, Gonçalves C, Oliveira JM, Reis RL. Promising Biomolecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:189-205. [PMID: 29736574 DOI: 10.1007/978-3-319-76735-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.
Collapse
Affiliation(s)
- Isabel Oliveira
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L Carvalho
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hajer Radhouani
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Gonçalves
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco/Guimarães, Portugal
| |
Collapse
|
214
|
|
215
|
Reactive Oxygen Species Responsive Naturally Occurring Phenolic-Based Polymeric Prodrug. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:291-301. [PMID: 30357629 DOI: 10.1007/978-981-13-0950-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactive Oxygen Species (ROS) play a vital role in the biological system. Exaggerated, ROS have devastating effects on the human body leading to the pathophysiological condition including the transformation of a normal cell into a cancer phenotype. Nature has blessed us with various biomolecules that we use along with our dietary supplements. Using such therapeutic small molecules covalently incorporated into biodegradable polyoxalate polymer backbone with a responsive group forms an efficient drug delivery vehicle. This chapter "Reactive oxygen species responsive naturally occurring phenolic-based polymeric prodrug" will be focusing on redox-responsive polymers incorporated with naturally occurring phenolics and clinical application.
Collapse
|
216
|
Jha P, Chaturvedi S, Kaul A, Pant P, Anju A, Pal S, Jain N, Mishra AK. Design, physico-chemical and pre-clinical evaluation of a homo-bivalent 99mTc-(BTZ)2DTPA radioligand for targeting dimeric 5-HT1A/5-HT7 receptors. NEW J CHEM 2018. [DOI: 10.1039/c8nj00089a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A 99mTc-labelled bis-benzothiazolone-DTPA radio-complex as a SPECT neuroimaging agent.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- India
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Pradeep Pant
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- India
| | - Anju Anju
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Sunil Pal
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Nidhi Jain
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| |
Collapse
|
217
|
Stimuli-Responsive Hydrogels Based on Polyglycerol Crosslinked with Citric and Fatty Acids. INT J POLYM SCI 2018. [DOI: 10.1155/2018/3267361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyglycerol-based hydrogels from biodegradable raw materials were synthesized by crosslinking reactions of polyglycerol with citric and fatty acids. Three hydrogels were studied varying molar ratios of crosslinking agent. It was found that crosslink amount, type, and size play a crucial role in swelling, thermal, mechanical, and stimuli-responsive properties. The hydrogels absorption capacity changed in response to temperature and pH external stimuli. The hydrogel with the highest swelling capacity absorbed more than 7 times its own weight at room temperature and pH 5. This material increased 14 times its own weight at pH 10. Creep-recovery tests were performed to study the effect of crosslinking agent on mechanical properties. Deformation and percentage of recovery of synthesized hydrogels were obtained. Formation of hydrogels was confirmed using FTIR, and physicochemical properties were analyzed by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetric (DSC), and Dynamic Mechanical Analysis (DMA). This paper aims to give a contribution to biobased hydrogel knowledge from chemical, physicochemical, and mechanical point of view.
Collapse
|
218
|
Parisi OI, Scrivano L, Candamano S, Ruffo M, Vattimo AF, Spanedda MV, Puoci F. Molecularly Imprinted Microrods via Mesophase Polymerization. Molecules 2017; 23:E63. [PMID: 29283366 PMCID: PMC6017483 DOI: 10.3390/molecules23010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Luca Scrivano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Sebastiano Candamano
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy.
| | - Mariarosa Ruffo
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Anna Francesca Vattimo
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
219
|
Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroRAFT Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights. Polymers (Basel) 2017; 9:polym9120668. [PMID: 30965968 PMCID: PMC6418535 DOI: 10.3390/polym9120668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023] Open
Abstract
The combination of reversible addition⁻fragmentation chain transfer (RAFT) and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex stabilizers was impossible in aqueous media due to their hydrophobicity at the usually high polymerization temperatures. In this work, we present a straightforward surfactant-free RAFT emulsion polymerization to obtain thermoresponsive styrenic block copolymers with molecular weights of around 100 kDa and their well-defined latexes. The stability of the aqueous latexes is achieved by adding 20 vol % of the cosolvent 1,4-dioxane (DOX), increasing the phase transition temperature (PTT) of the used thermoresponsive poly(N-acryloylpyrrolidine) (PAPy) macroRAFT agents above the polymerization temperature. Furthermore, this cosolvent approach is combined with the use of poly(N,N-dimethylacrylamide)-block-poly(N-acryloylpiperidine-co-N-acryloylpyrrolidine) (PDMA-b-P(APi-co-APy)) as the macroRAFT agent owning a short stabilizing PDMA end block and a widely adjustable PTT of the P(APi-co-APy) block in between 4 and 47 °C. The temperature-induced collapse of the latter under emulsion polymerization conditions leads to the formation of RAFT nanoreactors, which allows for a very fast chain growth of the polystyrene (PS) block. In dynamic light scattering (DLS), as well as cryo-transmission electron microscopy (cryoTEM), moreover, all created latexes indeed reveal a high (temperature) stability and a reversible collapse of the thermoresponsive coronal block upon heating. Hence, this paper pioneers a versatile way towards amphiphilic thermoresponsive high-molecular-weight block copolymers and their nano-objects with tailored corona switchability.
Collapse
|
220
|
Sofokleous P, Ali S, Wilson P, Buanz A, Gaisford S, Mistry D, Fellows A, Day RM. Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles. Acta Biomater 2017; 64:301-312. [PMID: 28986301 PMCID: PMC5692019 DOI: 10.1016/j.actbio.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 02/04/2023]
Abstract
The spread of antibiotic-resistant pathogens requires new treatments. Small molecule precursor compounds that produce oxidative biocides with well-established antimicrobial properties could provide a range of new therapeutic products to combat resistant infections. The aim of this study was to investigate a novel biomaterials-based approach for the manufacture, targeted delivery and controlled release of a peroxygen donor (sodium percarbonate) combined with an acetyl donor (tetraacetylethylenediamine) to deliver local antimicrobial activity via a dynamic equilibrium mixture of hydrogen peroxide and peracetic acid. Entrapment of the pre-cursor compounds into hierarchically structured degradable microparticles was achieved using an innovative dry manufacturing process involving thermally induced phase separation (TIPS) that circumvented compound decomposition associated with conventional microparticle manufacture. The microparticles provided controlled release of hydrogen peroxide and peracetic acid that led to rapid and sustained killing of multiple drug-resistant organisms (methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli) without associated cytotoxicity in vitro nor intracutaneous reactivity in vivo. The results from this study demonstrate for the first time that microparticles loaded with acetyl and peroxygen donors retain their antimicrobial activity whilst eliciting no host toxicity. In doing so, it overcomes the detrimental effects that have prevented oxidative biocides from being used as alternatives to conventional antibiotics. STATEMENT OF SIGNIFICANCE The manuscript explores a novel approach to utilize the antimicrobial activity of oxidative species for sustained killing of multiple drug-resistant organisms without causing collateral tissue damage. The results demonstrate, for the first time, the ability to load pre-cursor compounds into porous polymeric structures that results in their release and conversion into oxidative species in a controlled manner. Until now, the use of oxidative species has not been considered as a candidate therapeutic replacement for conventional antibiotics due to difficulties associated with handling during manufacture and controlling sustained release without causing undesirable tissue damage. The ultimate impact of the research could be the creation of new materials-based anti-infective chemotherapeutic agents that have minimal potential for giving rise to antimicrobial resistance.
Collapse
Affiliation(s)
| | - Shanom Ali
- Environmental Research Laboratory, University College Hospital, 235 Euston Road, London NW1 2BU, UK
| | - Peter Wilson
- Environmental Research Laboratory, University College Hospital, 235 Euston Road, London NW1 2BU, UK
| | - Asma Buanz
- School of Pharmacy, University College London, Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- School of Pharmacy, University College London, Brunswick Square, London WC1N 1AX, UK
| | | | | | - Richard M Day
- Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
221
|
Taurin S, Almomen AA, Pollak T, Kim SJ, Maxwell J, Peterson CM, Owen SC, Janát-Amsbury MM. Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. J Drug Target 2017; 26:533-550. [PMID: 29096548 DOI: 10.1080/1061186x.2017.1400551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vaginal drug delivery represents an attractive strategy for local and systemic delivery of drugs otherwise poorly absorbed after oral administration. The rather dense vascular network, mucus permeability and the physiological phenomenon of the uterine first-pass effect can all be exploited for therapeutic benefit. However, several physiological factors such as an acidic pH, constant secretion, and turnover of mucus as well as varying thickness of the vaginal epithelium can impact sustained drug delivery. In recent years, polymers have been designed to tackle challenges mentioned above. In particular, thermosensitive hydrogels hold great promise due to their stability, biocompatibility, adhesion properties and adjustable drug release kinetics. Here, we discuss the physiological and anatomical uniqueness of the vaginal environment and how it impacts the safe and efficient vaginal delivery and also reviewed several thermosensitive hydrogels deemed suitable for vaginal drug delivery by addressing specific characteristics, which are essential to engage the vaginal environment successfully.
Collapse
Affiliation(s)
- Sebastien Taurin
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - Aliyah A Almomen
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Tatianna Pollak
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - Sun Jin Kim
- b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - John Maxwell
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA
| | - C Matthew Peterson
- c Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology , University of Utah Health Science Center , Salt Lake City , UT , USA
| | - Shawn C Owen
- b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA.,d Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| | - Margit M Janát-Amsbury
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , University of Utah Health Sciences , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA.,c Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology , University of Utah Health Science Center , Salt Lake City , UT , USA.,d Department of Bioengineering , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
222
|
Fathi M, Sahandi Zangabad P, Majidi S, Barar J, Erfan-Niya H, Omidi Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. ACTA ACUST UNITED AC 2017; 7:269-277. [PMID: 29435435 PMCID: PMC5801539 DOI: 10.15171/bi.2017.32] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 01/14/2023]
Abstract
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Majidi
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Erfan-Niya
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
223
|
Singh P, Medronho B, Alves L, da Silva G, Miguel M, Lindman B. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria. Carbohydr Polym 2017; 175:87-95. [DOI: 10.1016/j.carbpol.2017.06.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/31/2023]
|
224
|
Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
|
225
|
De Souza Ferreira SB, Da Silva JB, Volpato Junqueira M, Belincanta Borghi-Pangoni F, Guttierres Gomes R, Luciano Bruschi M. The importance of the relationship between mechanical analyses and rheometry of mucoadhesive thermoresponsive polymeric materials for biomedical applications. J Mech Behav Biomed Mater 2017; 74:142-153. [DOI: 10.1016/j.jmbbm.2017.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 01/14/2023]
|
226
|
The integration of triggered drug delivery with real time quantification using FRET; creating a super ‘smart’ drug delivery system. J Control Release 2017; 264:136-144. [DOI: 10.1016/j.jconrel.2017.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
227
|
Nasef SM, M TM, Mahmoud GA. Characterization and in vitro drug release properties of core–shell hydrogel prepared by gamma irradiation. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1362642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaimaa M. Nasef
- Department of Polymer chemistry, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt
| | - Tarek M. M
- Department of Polymer chemistry, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt
| | - Ghada A. Mahmoud
- Department of Polymer chemistry, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt
| |
Collapse
|
228
|
Systematic evaluation of pH and thermoresponsive poly(n-isopropylacrylamide-chitosan-fluorescein) microgel. E-POLYMERS 2017. [DOI: 10.1515/epoly-2016-0328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe interesting properties of stimuli-responsive polymers lead to a wide range of possibilities in design and engineering of functional material for the biomedical application. A systematic approach focused on the evaluation of the physical properties of multiresponse (pH and temperature) PNIPAM was reported in this work. The effect of three different molar ratios of poly(n-isopropylacrylamide): chitosan (1:49, 1:99 and 1:198) were evaluated and labeled correspondingly as PC1F, PC2F, and PC3F. An increase in the lower critical solution temperature (LCST) of sample PC1F (34°C) was observed by differential scanning calorimetry (DSC). The presence of low molecular weight chitosan (LMWC) full-interpenetrating polymer (Full-IPN) segments in poly(n-isopropylacrylamide) was confirmed by Fourier-transform infrared spectroscopy (FT-IR). The hydrogel’s water capture was analyzed by two models of swelling, the power law model and a model that considers the relaxation of polymeric chains of the hydrogel, finding good correlations with experimental data in both cases. Sample PC3F resulted with higher swellability, increasing the weight of the hydrogel around seven times. Hydrogel pH-sensibility was confirmed placing the samples at different pH environments, with an apparent increase in swellability for acidic conditions, confirming the highest swellability for sample PC3F, due to hydrogen bonds boosted by chitosan high molar ratio. Based on these results, the hydrogel obtained has potential as a thermo-pH triggered hydrogel in drug delivery applications.
Collapse
|
229
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
230
|
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 2017; 38:611-624. [PMID: 28627697 PMCID: PMC5562049 DOI: 10.3892/or.2017.5718] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/29/2017] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials are increasingly used as drug carriers for cancer therapy. Nanomaterials also appeal to researchers in the areas of cancer diagnosis and biomarker discovery. Several antitumor nanodrugs are currently being tested in preclinical and clinical trials and show promise in therapeutic and other settings. We review the development of nanomaterial drug carriers, including liposomes, polymer nanoparticles, dendritic polymers, and nanomicelles, for the diagnosis and treatment of various cancers. The prospects of nanomaterials as drug carriers for future clinical applications are also discussed.
Collapse
Affiliation(s)
- Zhen Li
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Kunming Digestive Disease Treatment Engineering Technology Center, Kunming, Yunnan, P.R. China
| | - Shirui Tan
- College of Agricultural Sciences, Yunnan University, Kunming, Yunnan, P.R. China
| | - Shuan Li
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Kunming Digestive Disease Treatment Engineering Technology Center, Kunming, Yunnan, P.R. China
| |
Collapse
|
231
|
de Menezes RNL, Camilo APR, Felisberti MI. Thermoresponsive hydrogels based on sucrose 1-O′-methacrylate andN-isopropylacrylamide: Synthesis, properties, and applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.45495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
232
|
Liu Y, Yang F, Feng L, Yang L, Chen L, Wei G, Lu W. In vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models. Acta Pharm Sin B 2017; 7:502-509. [PMID: 28752037 PMCID: PMC5518644 DOI: 10.1016/j.apsb.2017.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study is to evaluate the in vivo retention capabilities of poloxamer-based in situ hydrogels for vaginal application with nonoxinol-9 as the model drug. Two in situ hydrogel formulations, which contained 18% poloxamer 407 plus 1% poloxamer 188 (GEL1, relative hydrophobic) or 6% poloxamer 188 (GEL2, relative hydrophilic), were compared with respect to the rheological properties, in vitro hydrogel erosion and drug release. The vaginal retention capabilities of these hydrogel formulations were further determined in two small animal models, including drug quantitation of vaginal rinsing fluid in mice and isotope tracing with 99mTc in rats. The two formulations exhibited similar phase transition temperatures ranging from 27 to 32 °C. Increasing the content of poloxamer 188 resulted in higher rheological moduli under body temperature, but slightly accelerated hydrogel erosion and drug release. When compared in vivo, GEL1 was eliminated significantly slower in rat vagina than GEL2, while the vaginal retention of these two hydrogel formulations behaved similarly in mice. In conclusion, increases in the hydrophilic content of formulations led to faster hydrogel erosion, drug release and intravaginal elimination. Rats appear to be a better animal model than mice to evaluate the in situ hydrogel for vaginal application.
Collapse
Key Words
- AUC, area under curve
- EO, hydrophilic ethylene oxide
- F127, Poloxamer 407
- F68, poloxamer 188
- GEL1, 1% poloxamer 188 + 18% poloxamer 407
- GEL2, 6% poloxamer 188 + 18% poloxamer 407
- HLB, hydrophile--lipophile balance
- ICR, Institute of Cancer Research
- MRT, mean residence time
- MW, molecular weight
- N-9, Nonoxynol-9
- Nonoxinol-9
- PEO-PPO-PEO, poly(ethylene oxide)a-poly(propylene oxide)b-poly(ethylene oxide)a
- PO, hydrophobic propylene oxide
- Poloxamer
- RP-HPLC, reverse-phase high performance liquid chromatography
- Retention
- SVF, simulated vaginal fluid
- Thermosensitive hydrogel
- Vaginal administration
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fujin Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Linglin Feng
- Shanghai Institute of Planned Parenthood Research, National Population and Family Planning Key Laboratory of Contraceptives Drugs and Devices, Shanghai 200032, China
| | - Long Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Lingyun Chen
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding author Tel.: +86 21 51980091; fax: +86 21 51980090.Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan UniversityShanghai201203China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
233
|
Zhu Z, Su M. Polydopamine Nanoparticles for Combined Chemo- and Photothermal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E160. [PMID: 28661423 PMCID: PMC5535226 DOI: 10.3390/nano7070160] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
Cancer therapy with two different modalities can enhance treatment efficacy and reduce side effects. This paper describes a new method for combined chemo- and photothermal therapy of cancer using poly dopamine nanoparticles (PDA-NPs), where PDA-NPs serve not only as a photothermal agent with strong near infrared absorbance and high energy conversion efficiency, but also as a carrier to deliver cisplatin via interaction between cisplatin and catechol groups on PDA-NPs. Polyethylene glycol (PEG) was introduced through Michael addition reaction to improve the stability of PDA-NPs in physiological condition. A remarkable synergistic therapeutic effect has been achieved compared with respective single treatments. This work suggests that the PDA-based nanoplatform can be a universal scaffold for combined chemo- and photothermal therapy of cancer.
Collapse
Affiliation(s)
- Zhijun Zhu
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Chinese Academy of Science, Wenzhou 325001, China.
| |
Collapse
|
234
|
El-Sherbiny I, Khalil I, Ali I, Yacoub M. Updates on smart polymeric carrier systems for protein delivery. Drug Dev Ind Pharm 2017; 43:1567-1583. [DOI: 10.1080/03639045.2017.1338723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ibrahim El-Sherbiny
- Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Cairo, Egypt
| | - Islam Khalil
- Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Misr University of Science and Technology (MUST), Cairo, Egypt
| | - Isra Ali
- Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Cairo, Egypt
| | - Magdi Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
235
|
Cicotte KN, Reed JA, Nguyen PAH, De Lora JA, Hedberg-Dirk EL, Canavan HE. Optimization of electrospun poly(N-isopropyl acrylamide) mats for the rapid reversible adhesion of mammalian cells. Biointerphases 2017; 12:02C417. [PMID: 28610429 PMCID: PMC5469682 DOI: 10.1116/1.4984933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Poly(N-isopropyl acrylamide) (pNIPAM) is a "smart" polymer that responds to changes in altering temperature near physiologically relevant temperatures, changing its relative hydrophobicity. Mammalian cells attach to pNIPAM at 37 °C and detach spontaneously as a confluent sheet when the temperature is shifted below the lower critical solution temperature (∼32 °C). A variety of methods have been used to create pNIPAM films, including plasma polymerization, self-assembled monolayers, and electron beam ionization. However, detachment of confluent cell sheets from these pNIPAM films can take well over an hour to achieve potentially impacting cellular behavior. In this work, pNIPAM mats were prepared via electrospinning (i.e., espNIPAM) by a previously described technique that the authors optimized for cell attachment and rapid cell detachment. Several electrospinning parameters were varied (needle gauge, collection time, and molecular weight of the polymer) to determine the optimum parameters. The espNIPAM mats were then characterized using Fourier-transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. The espNIPAM mats showing the most promise were seeded with mammalian cells from standard cell lines (MC3T3-E1) as well as cancerous tumor (EMT6) cells. Once confluent, the temperature of the cells and mats was changed to ∼25 °C, resulting in the extremely rapid swelling of the mats. The authors find that espNIPAM mats fabricated using small, dense fibers made of high molecular weight pNIPAM are extremely well-suited as a rapid release method for cell sheet harvesting.
Collapse
Affiliation(s)
- Kirsten N Cicotte
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jamie A Reed
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Phuong Anh H Nguyen
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131 and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jacqueline A De Lora
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Elizabeth L Hedberg-Dirk
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Heather E Canavan
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131; and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
236
|
Yue X, Zhang Q, Dai Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv Drug Deliv Rev 2017; 115:155-170. [PMID: 28455188 DOI: 10.1016/j.addr.2017.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) light allows deep tissue penetration and high spatial resolution due to the reduced scattering of long-wavelength photons. NIR light-activatable polymer nanoparticles are widely exploited for enhanced cancer imaging (diagnosis) and therapy owing to their superior photostability, photothermal conversion efficiency (or high emission rate), and minimal toxicity to cells and tissues. This review surveys the most recent advances in the synthesis of different NIR-absorbing and emissive polymer nanoformulations, and their applications for cancer imaging, photothermal therapy, theranostics and combination therapy by delivering multiple small molecule chemotherapeutics. Photo-responsive drug delivery systems for NIR light-triggered drug release are also discussed with particular emphasis on their molecular designs and formulations as well as photo-reaction mechanisms. Finally, outlook and challenges are presented regarding potential clinical applications of NIR light-activatable nanoformulations.
Collapse
Affiliation(s)
- Xiuli Yue
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, College of Engineering, College of Pharmaceutics, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, College of Engineering, College of Pharmaceutics, Peking University, Beijing 100871, China.
| |
Collapse
|
237
|
Eswaramma S, Reddy NS, Rao KSVK. Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: Development, swelling dynamics and drug release characteristics. Int J Biol Macromol 2017; 103:1162-1172. [PMID: 28576553 DOI: 10.1016/j.ijbiomac.2017.05.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/27/2017] [Indexed: 01/08/2023]
Abstract
Potential dual responsive hydrogel networks (PPAD) are fabricated from pectin, poly((2-dimethylamino)ethyl methacrylate)) and phosphate crosslinker bis[2-methacryloyloxy] ethyl phosphate (BMEP) by a simple free radical polymerization. These hydrogel networks are successfully utilized for encapsulation of an anti-cancer drug, 5-fluorouracil (5-FU) and also employed as versatile platforms for production of silver nanoparticles. Fabricated hydrogel networks and silver nanocomposites were characterized by FTIR, SEM, EDX, TEM, DLS, DSC, TGA and XRD. Different polymer network parameters such as MC¯, χ, ξ and υe and diffusion constant (D) were evaluated to assess the drug release profile. The 5FU loaded PPAD hydrogels were used to perform in vitro release studies in both gastric and intestinal conditions of GIT (pH 1.2 & pH 7.4) at two different temperatures (25 and 37°C). On the other hand various kinetic models (zero, first, Higuchi & Koresmeyer-Peppas) have also been employed to fit drug release profile. In addition, the antibacterial activity of PPAD silver nanocomposites were tested against four bacterial species Escherichia coli (-ve), Klebsiella pneumoniae (-ve), Bacillus cereus (+ve) and Staphylococcus aereus (+ve) using zone of inhibition test.
Collapse
Affiliation(s)
- S Eswaramma
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India
| | - N Sivagangi Reddy
- Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - K S V Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India.
| |
Collapse
|
238
|
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Salatin S, Naderinia A, Jelvehgari M. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery. Adv Pharm Bull 2017; 7:11-20. [PMID: 28507933 PMCID: PMC5426723 DOI: 10.15171/apb.2017.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 01/24/2023] Open
Abstract
Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers) with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems.
Collapse
Affiliation(s)
- Mitra Alami-Milani
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Naderinia
- Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
239
|
Aderibigbe BA, Ndwabu S. Evaluation of whey protein isolate-graft-carbopol-polyacrylamide pH-sensitive composites for controlled release of pamidronate. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2008-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
240
|
Linear correlation between rheological, mechanical and mucoadhesive properties of polycarbophil polymer blends for biomedical applications. J Mech Behav Biomed Mater 2017; 68:265-275. [DOI: 10.1016/j.jmbbm.2017.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/15/2022]
|
241
|
Jabeen S, Islam A, Ghaffar A, Gull N, Hameed A, Bashir A, Jamil T, Hussain T. Development of a novel pH sensitive silane crosslinked injectable hydrogel for controlled release of neomycin sulfate. Int J Biol Macromol 2017; 97:218-227. [DOI: 10.1016/j.ijbiomac.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
|
242
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Antipin IS, Konovalov AI. Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles. SOFT MATTER 2017; 13:2004-2013. [PMID: 28197613 DOI: 10.1039/c7sm00004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - V V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - Ya V Shalaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A M Ermakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - I R Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan National Research Technical University, K. Marx str. 10, 420111 Kazan, Russian Federation
| | - M K Kadirov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - A D Voloshina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - V V Zobov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - I S Antipin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A I Konovalov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| |
Collapse
|
243
|
Honarvarfard E, Gamella M, Channaveerappa D, Darie CC, Poghossian A, Schöning MJ, Katz E. Electrochemically Stimulated Insulin Release from a Modified Graphene‐functionalized Carbon Fiber Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elham Honarvarfard
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Devika Channaveerappa
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences Campus Jülich Heinrich-Mußmann-Str. 1 D-52428 Jülich Germany
- Peter Grünberg Institute (PGI-8) Research Centre Jülich GmbH D-52425 Jülich Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences Campus Jülich Heinrich-Mußmann-Str. 1 D-52428 Jülich Germany
- Peter Grünberg Institute (PGI-8) Research Centre Jülich GmbH D-52425 Jülich Germany
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
244
|
Ionov L, Stoychev G, Jehnichen D, Sommer JU. Reversibly Actuating Solid Janus Polymeric Fibers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4873-4881. [PMID: 27991772 DOI: 10.1021/acsami.6b13084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is commonly assumed that the substantial element of reversibly actuating soft polymeric materials is chemical cross-linking, which is needed to provide elasticity required for the reversible actuation. On the example of melt spun and three-dimensional printed Janus fibers, we demonstrate here for the first time that cross-linking is not an obligatory prerequisite for reversible actuation of solid entangled polymers, since the entanglement network itself can build elasticity during crystallization. Indeed, we show that not-cross-linked polymers, which typically demonstrate plastic deformation in melt, possess enough elastic behavior to actuate reversibly. The Janus polymeric structure bends because of contraction of the polymer and due to entanglements and formation of nanocrystallites upon cooling. Actuation upon melting is simply due to relaxation of the stressed nonfusible component. This approach opens perspectives for design of solid active materials and actuator for robotics, biotechnology, and smart textile applications. The great advantage of our principle is that it allows design of non-cross-linked self-moving materials, which are able to actuate in both water and air, which are not cross-linked. We demonstrate application of actuating fibers for design of walkers, structures with switchable length, width, and thickness, which can be used for smart textile applications.
Collapse
Affiliation(s)
- Leonid Ionov
- College of Engineering, College of Family and Consumer Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Georgi Stoychev
- College of Engineering, College of Family and Consumer Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Dieter Jehnichen
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6, 01069 Dresden, Germany
| | - Jens Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
245
|
Ding X, Wang Y. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications. J Mater Chem B 2017; 5:887-906. [PMID: 29062484 PMCID: PMC5650238 DOI: 10.1039/c6tb03052a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Xiaochu Ding
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yadong Wang
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
246
|
Ng WS, Connal LA, Forbes E, Mohanarangam K, Franks GV. In situ investigation of aggregate sizes formed using thermo-responsive polymers: Effect of temperature and shear. J Colloid Interface Sci 2017; 494:139-152. [PMID: 28157632 DOI: 10.1016/j.jcis.2017.01.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 01/30/2023]
Abstract
Temperature-responsive flocculants, such as poly(N-isopropylacrylamide) (PNIPAM), induce reversible particle aggregation upon heating above a lower critical solution temperature (LCST). The aim of this work is to investigate the aggregation of ground iron ore using PNIPAM and conventional polyacrylamide (PAM) flocculants in a continuously-sheared suspension, through in situ chord length measurements using Focused Beam Reflectance Measurement techniques and real-time imaging of the particle aggregates. In the presence of uncharged PNIPAM, particle aggregation occurs only upon heating to the LCST, and the aggregates continue to grow with further heating. Subsequent cooling re-disperses the aggregates, and repeated heating causes reformation. Unlike uncharged PNIPAM, anionic PNIPAM produces aggregates at temperatures below the LCST due to the polymer chains binding to two different particles via attractive interactions between the acrylic acid groups and the hematite surfaces, and can be added at temperatures above the LCST due to the formation of charge-stabilised micelles. Under continuous shear, the flocculant most able to resist aggregate size reduction was anionic PAM, followed by PAM, anionic PNIPAM, PNIPAM (6MDa), and PNIPAM (122kDa). Reversible aggregate breakage was found with all samples, except with PNIPAM (6MDa) after being subjected to shear rates above 550s-1. Furthermore, heating of the PNIPAM-dosed suspensions at shear rates below 200s-1 produced larger and more breakage-resistant aggregates.
Collapse
Affiliation(s)
- Wei Sung Ng
- Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia; CSIRO Mineral Resources, Clayton, VIC 3168, Australia.
| | - Luke A Connal
- Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | - George V Franks
- Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
247
|
Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive Gels. Gels 2017; 3:E4. [PMID: 30920501 PMCID: PMC6318636 DOI: 10.3390/gels3010004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology-for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)-provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.
Collapse
Affiliation(s)
- M Joan Taylor
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Paul Tomlins
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Tarsem S Sahota
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
248
|
Pattanashetti NA, Heggannavar GB, Kariduraganavar MY. Smart Biopolymers and their Biomedical Applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.promfg.2017.08.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
249
|
Kannan R, Muthuvijayan V, Prasad E. In vitro study of a glucose attached poly(aryl ether) dendron based gel as a drug carrier for a local anaesthetic. NEW J CHEM 2017. [DOI: 10.1039/c7nj01420a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly(aryl ether) dendron based gelator as an efficient transdermal drug carrier for the controlled release of prilocaine hydrochloride.
Collapse
Affiliation(s)
- Ramya Kannan
- Department of Chemistry
- Indian Institute of Technology
- Chennai
- India
- Department of Biotechnology
| | - Vignesh Muthuvijayan
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Chennai
- India
| | - Edamana Prasad
- Department of Chemistry
- Indian Institute of Technology
- Chennai
- India
| |
Collapse
|
250
|
Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Adv Colloid Interface Sci 2017; 239:136-145. [PMID: 27296302 DOI: 10.1016/j.cis.2016.05.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Polysaccharide-protein complex coacervates are amongst the leading pair of biopolymer systems that has been used over the past decades for encapsulation of numerous active ingredients. Complex coacervation of polysaccharides and proteins has received increasing research interest for the practical application in encapsulation industry since the pioneering work of complex coacervation by Bungenburg de Jong and co-workers on the system of gelatin-acacia, a protein-polysaccharide system. Because of the versatility and numerous potential applications of these systems essentially in the fields of food, pharmaceutical, cosmetics and agriculture, there has been intense interest in recent years for both fundamental and applied studies. Precisely, the designing of the micronscale and nanoscale capsules for encapsulation and control over their properties for practical applications garners renewed interest. This review discusses on the overview of polysaccharide-protein complex coacervates and their use for the encapsulation of diverse active ingredients, designing and controlling of the capsules for delivery systems and developments in the area.
Collapse
|