201
|
Quigley DA, Tahiri A, Lüders T, Riis MH, Balmain A, Børresen-Dale AL, Bukholm I, Kristensen V. Age, estrogen, and immune response in breast adenocarcinoma and adjacent normal tissue. Oncoimmunology 2017; 6:e1356142. [PMID: 29147603 PMCID: PMC5674948 DOI: 10.1080/2162402x.2017.1356142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation promotes breast tumor growth and invasion by accelerating angiogenesis and tissue remodeling in the tumor microenvironment. There is a complex relationship between inflammation and estrogen, which drives the growth of 70 percent of breast tumors. While low levels of estrogen exposure stimulate macrophages and other inflammatory cell populations, very high levels are immune suppressive. Breast tumor incidence is increased by obesity and age, which interact to influence inflammatory cell populations in normal breast tissue. To characterize the impact of these factors on tumors and the tumor microenvironment, we measured gene expression in 195 breast adenocarcinomas and matched adjacent normal breast tissue samples collected at Akershus University Hospital (AHUS). Age and Body Mass Index (BMI) were independently associated with inflammation in adjacent normal tissue but not tumors. Estrogen Receptor (ER)-negative tumors had elevated macrophage expression compared with matched normal tissue, but ER-positive tumors showed an unexpected decrease in macrophage expression. We found an inverse relationship between the increase in tumor estrogen pathway expression compared with adjacent normal tissue and tumor macrophage score. We validated this finding in 126 breast tumor-normal pairs from the previously published METABRIC cohort. We developed a novel statistic, the Rewiring Coefficient, to quantify the rewiring of gene co-expression networks at the level of individual genes. Differential correlation analysis demonstrated distinct pathways were rewired during tumorigenesis. Our data support an immune suppressive effect of high doses of estrogen signaling in breast tumor microenvironment, suggesting that this effect contributes to the greater presence of prognostic and therapeutically relevant immune cells in ER-negative tumors.
Collapse
Affiliation(s)
- David A Quigley
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California, USA.,Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, USA
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torben Lüders
- Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Margit H Riis
- Department of Surgery, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California, USA
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Bukholm
- Department of Surgery, Oslo University Hospital, Ullevål, Oslo, Norway.,Department of Breast-Endocrine Surgery, Surgical Division, Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
202
|
Chawla H, Urs AB, Augustine J. Association of Macrophages With Angiogenesis in Oral Epithelial Dysplasia, Oral Verrucous Carcinoma, and Oral Squamous Cell Carcinoma: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2017; 25:203-208. [PMID: 26657870 DOI: 10.1097/pai.0000000000000284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study aimed to elucidate the role of tumor-associated macrophages (TAMs) and angiogenesis in tumor progression by assessing their immunohistochemical expression in oral epithelial dysplasia (OED), oral verrucous carcinoma (OVC), and oral squamous cell carcinoma (OSCC). About 20 histopathologically confirmed cases of OED, OVC, and OSCC each and 10 cases of normal oral mucosa taken as controls were stained immunohistochemically using CD68 and CD31 antibodies. The average TAM count and the microvessel density (MVD) were calculated for each group and expressed as mean±SD and compared using the Mann-Whitney U Test. Pearson correlation was applied to assess the correlation between TAM and MVD in different groups. The CD68 count was found to be significantly higher in all the groups as compared with controls, with the highest counts in OSCC, followed by OED and OVC. MVD was significantly higher in all the test groups as compared with controls. The increase in MVD was highly significant in OSCC as compared with OVC, and in OVC as compared with OED. No association could be determined between TAM and MVD. There does not seem to be any direct influence of macrophages on angiogenesis in the microenvironment of OED, OVC, and OSCC.
Collapse
Affiliation(s)
- Himanshi Chawla
- Department of Oral & Maxillofacial Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | | | | |
Collapse
|
203
|
Maghsudlu M, Farashahi Yazd E. Heat-induced inflammation and its role in esophageal cancer. J Dig Dis 2017; 18:431-444. [PMID: 28749599 DOI: 10.1111/1751-2980.12511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Esophageal cancer, the sixth most common cause of death from cancer worldwide, consists of different histological types and displays various patterns of incidence. Esophageal adenocarcinoma and esophageal squamous cell carcinoma are the most prevalent types. As epidemiological studies report that ingesting hot substances is one major risk factor for squamous cell carcinoma, evaluating the effect of this external stress on esophagus cells seems desirable. This specific kind of stress brings about cellular changes and stabilizes them by affecting different cellular features such as genetic stability, membrane integrity and the regulation of signaling pathways. It also causes tissue injury by affecting the extracellular matrix and cell viability. Thus, one of the main consequences of thermal injury is the activation of the immune system, which can result in chronic inflammation. The genetic alteration that has occurred during thermal injury and the consequent reduction in the function of repair systems is further strengthened by chronic inflammation, thereby increasing the probability that mutated cell lines may appear. The molecules that present in this circumstance, such as heat shock proteins, cytokines, chemokines and other inflammatory factors, affect intercellular signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells, signal transducer activator of transcription-3 and hypoxia-inducible factor 1α in supporting the survival and emergence of mutant phenotypes and the consequent malignant progression in altered cell lines. This investigation of these effective factors and their probable role in the tumorigenic path may improve current understanding.
Collapse
Affiliation(s)
- Mohaddese Maghsudlu
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
204
|
Fan HH, Li L, Zhang YM, Yang J, Li MC, Zeng FY, Deng F. PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumour Biol 2017. [PMID: 28631559 DOI: 10.1177/1010428317701442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages are key regulators of the complex interplay between tumor and tumor microenvironment. M2 Macrophages, one type of tumor-associated macrophages, are involved in prostate cancer growth and progression. Protein kinase C zeta has been shown to suppress prostate cancer cell growth, invasion, and metastasis as a tumor suppressor; however, its role in chemotaxis and activation of tumor-associated macrophages remains unclear. Here, we investigated the role of protein kinase C zeta of prostate cancer cells in regulation of macrophage chemotaxis and M2 phenotype activation. Immunohistochemistry was performed to analyze the expression of protein kinase C zeta and the number of CD206+ M2 macrophages in human prostate tissue. Macrophage chemotaxis and polarization were examined using Transwell migration assays and a co-culture system. Quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were used to detect M2 markers, protein kinase C zeta, interleukin-4, and interleukin-10 expression. We found the expression of protein kinase C zeta increased in prostate cancer tissues, especially in the early stage, and was negatively associated with tumor grade and the number of CD206+ macrophages. Inhibition of protein kinase C zeta expression in prostate cancer cells promoted chemotaxis of peripheral macrophages and acquisition of M2 phenotypic features. These results were further supported by the finding that silencing of endogenous protein kinase C zeta promoted the expression of prostate cancer cell-derived interleukin-4 and interleukin-10. These results suggest that protein kinase C zeta plays an important role in reducing infiltration of tumor-associated macrophages and activation of a pro-tumor M2 phenotype, which may constitute an important mechanism by which protein kinase C zeta represses cancer progression.
Collapse
Affiliation(s)
- Hui-Hui Fan
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Li
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Ming Zhang
- 3 Department of Clinical Laboratory, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jie Yang
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mao-Cheng Li
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang-Yin Zeng
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- 4 Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
205
|
Foster H, Ulasov IV, Cobbs CS. Human cytomegalovirus-mediated immunomodulation: Effects on glioblastoma progression. Biochim Biophys Acta Rev Cancer 2017; 1868:273-276. [PMID: 28554666 DOI: 10.1016/j.bbcan.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 12/25/2022]
Abstract
The presence of human cytomegalovirus (HCMV) and glioblastoma multiforme (GBM), first established in 2002, has developed into an area of considerable interest and controversy. Numerous studies have found evidence of possible HCMV infection of GBM tumor cells as well as myriad onco- and immunomodulatory properties exhibited by HCMV antigens and transcripts, while recent reports have failed to detect HCMV particles in GBM and question the virus' role in tumor progression. This review highlights the known immunomodulatory properties of HCMV, independent of GBM infection status, that help drive the virus from peripheral blood into the vital tissues and subsequently dampen local immune response, assisting GBM tumors in evading immune surveillance and contributing to the disease's poor prognosis. Emerging antiviral approaches to treating GBM, including antiviral drugs and immunotherapies directed against HCMV, are also examined.
Collapse
Affiliation(s)
- Haidn Foster
- Swedish Neuroscience Institute, Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Ilya V Ulasov
- Swedish Neuroscience Institute, Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA; Institute of Molecular Medicine, I.M. Sechenov 1st Moscow State Medical University, Troubetskaja str. 8, Building 2, Moscow, 119991, Russia.
| | - Charles S Cobbs
- Swedish Neuroscience Institute, Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA.
| |
Collapse
|
206
|
Zhou Q, Xian M, Xiang S, Xiang D, Shao X, Wang J, Cao J, Yang X, Yang B, Ying M, He Q. All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunol Res 2017; 5:547-559. [PMID: 28515123 DOI: 10.1158/2326-6066.cir-16-0259] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
M2-polarized tumor-associated macrophages (TAM) play a critical role in cancer invasion and metastasis. Here, we report that M2 macrophages enhanced metastasis of K7M2 WT osteosarcoma cells to the lungs in mice, thus establishing M2 TAMs as a therapeutic target for blocking osteosarcoma metastasis. We found that all-trans retinoic acid (ATRA) inhibited osteosarcoma metastasis via inhibiting the M2 polarization of TAMs. ATRA suppressed IL13- or IL4-induced M2-type macrophages, and then inhibited migration of osteosarcoma cells as promoted by M2-type macrophages in vitro ATRA reduced the number of pulmonary metastatic nodes of osteosarcoma and decreased expression of M2-type macrophages in metastatic nodes both in intravenous injection and orthotopic transplantation models. ATRA's effect was independent of conventional STAT3/6 or C/EBPβ signaling, which regulate M2-like polarization of macrophages. Quantitative genomic and functional analyses revealed that MMP12, a macrophage-secreted elastase, was elevated in IL13-skewed TAM polarization, whereas ATRA treatment downregulated IL13-induced secretion of MMP12. This downregulation correlates with the antimetastasis effect of ATRA. Our results show the role of TAM polarization in osteosarcoma metastasis, identify a therapeutic opportunity for antimetastasis treatment, and indicate ATRA treatment as an approach for preventing osteosarcoma metastasis via M2-type polarization intervention. Cancer Immunol Res; 5(7); 547-59. ©2017 AACR.
Collapse
Affiliation(s)
- Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Danyan Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
207
|
The prognostic role of CD68 and FoxP3 expression in patients with primary central nervous system lymphoma. Ann Hematol 2017; 96:1163-1173. [PMID: 28508176 DOI: 10.1007/s00277-017-3014-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/02/2017] [Indexed: 01/20/2023]
Abstract
The prognostic role of CD68 and FoxP3 in primary central nervous system lymphoma (PCNSL) has not been evaluated. Thus, we examined the prognostic significance of CD68 and FoxP3 expression in tumor samples of 76 newly diagnosed immunocompetent PCNSL patients. All patients were treated initially with high-dose methotrexate (HD-MTX)-based chemotherapy, and 16 (21.1%) patients received upfront autologous stem cell transplantation (ASCT) consolidation. High expression of CD68 (>55 cells/high-power field) or FoxP3 (>15 cells/high-power field) was observed in 10 patients, respectively. High CD68 expression was associated with inferior overall survival (OS) and progression-free survival (PFS) in multivariate analysis (P = 0.023 and P = 0.021, respectively). In addition, we performed subgroup analysis based on upfront ASCT. High CD68 expression was also associated with inferior OS and PFS in multivariate analysis (P = 0.013 and P < 0.001, respectively) among patients who did not receive upfront ASCT (n = 60), but not in patients who received upfront ASCT. The expression of FoxP3 was not significantly associated with survival. Therefore, we identified a prognostic significance of high CD68 expression in PCNSL, which suggests a need for further clinical trials and biological studies on the role of PCNSL tumor microenvironment.
Collapse
|
208
|
Lindsten T, Hedbrant A, Ramberg A, Wijkander J, Solterbeck A, Eriksson M, Delbro D, Erlandsson A. Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int J Oncol 2017; 51:104-114. [PMID: 28498427 PMCID: PMC5467790 DOI: 10.3892/ijo.2017.3996] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors, including breast cancers, are frequently infiltrated with innate immune cells and tumor-associated macrophages (TAMs) represent the major inflammatory component in stroma of many tumors. In this study, we examined the immunoreactivity of the macrophage markers CD68 and CD163 as well as the hormone receptors estrogen receptor α (ERα), progesterone receptor (PR), estrogen receptor β1 (ERβ1), human epidermal growth factor receptor 2 (HER-2), matrix metalloproteinase 9 (MMP‑9), urokinase-type plasminogen activator receptor (uPAR) and the proliferations marker Ki67 in 17 breast cancer biopsies. The quantitative score for CD68+ and CD163+ strongly indicate M2 phenotype dominance in the currently investigated biopsies. We found that an increasing level of macrophages was negatively associated with ERα or PR, whereas a positive association was observed for Ki-67 or uPAR. No significant association could be seen between the level of macrophage and HER-2, ERβ1 or MMP-9 expression. Effect of conditioned media (CM) generated from cultured human M1 and M2 macrophage phenotypes were investigated on the proliferation and expression of selected markers in the T47D breast cancer cell line. We found that in contrast to the in vivo situation, in particularly the CM from M1 macrophages decreased the growth and Ki67 expression in T47D, and significantly increased ERβ1 mRNA levels. Moreover, in accordance to the in vivo situation the CM from the macrophages decreased the expression of ERα protein as well as ERα or PR mRNA. In conclusion our results show that macrophages alone have the capability to decrease the tumor cell expression of ERα and PR in vitro. In the tumor environment in vivo macrophages also contribute to an increase in tumor cell expression of uPAR and Ki67, suggesting that macrophages are involved in impairing the prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Therése Lindsten
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | | | - Anna Ramberg
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Anja Solterbeck
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | - Margareta Eriksson
- Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad, Sweden
| | - Dick Delbro
- School of Medical Sciences, Örebro University, SE-702 81 Örebro, Sweden
| | - Ann Erlandsson
- Department of Environmental and Life Sciences/Biology, Karlstad University, SE-651 88 Karlstad, Sweden
| |
Collapse
|
209
|
Binnemars-Postma K, Storm G, Prakash J. Nanomedicine Strategies to Target Tumor-Associated Macrophages. Int J Mol Sci 2017; 18:E979. [PMID: 28471401 PMCID: PMC5454892 DOI: 10.3390/ijms18050979] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail.
Collapse
Affiliation(s)
- Karin Binnemars-Postma
- Targeted Therapeutics, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522NB Enschede, The Netherlands.
| | - Gert Storm
- Targeted Therapeutics, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522NB Enschede, The Netherlands.
- Department of Pharmaceutics, Utrecht University, 3584CS Utrecht, The Netherlands.
| | - Jai Prakash
- Targeted Therapeutics, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522NB Enschede, The Netherlands.
| |
Collapse
|
210
|
Kung WH, Yu CF, Lee ACL, Yang CD, Liu YC, Chen FH, Huang HD. Gene expression profiling of tumor-associated macrophages after exposure to single-dose irradiation. Comput Biol Chem 2017; 69:138-146. [PMID: 28539271 DOI: 10.1016/j.compbiolchem.2017.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
Radiotherapy (RT) is a common cancer treatment approach that accounts for nearly 50% of patient treatment; however, tumor relapse after radiotherapy is still a major issue. To study the crucial role of tumor-associated macrophages (TAMs) in the regulation of tumor progression post-RT, microarray experiments comparing TAM gene expression profiles between unirradiated and irradiated tumors were conducted to discover possible roles of TAMs in initiation or contribution to tumor recurrence following RT, taking into account the relationships among gene expression, tumor microenvironment, and immunology. A single dose of 25Gy was given to TRAMP C-1 prostate tumors established in C57/B6 mice. CD11b-positive macrophages were extracted from the tumors at one, two and three weeks post-RT. Gene ontology (GO) term analysis using the DAVID database revealed that genes that were differentially expressed at one and two weeks after irradiation were associated with biological processes such as morphogenesis of a branching structure, tube development, and cell proliferation. Analysis using Short Time-Series Expression Miner (STEM) revealed the temporal gene expression profiles and identified 13 significant patterns in four main groups of profiles. The genes in the upregulated temporal profile have diverse functions involved in the intracellular signaling cascade, cell proliferation, and cytokine-mediated signaling pathway. We show that tumor irradiation with a single 25-Gy dose can initiate a time-series of differentially expressed genes in TAMs, which are associated with the immune response, DNA repair, cell cycle arrest, and apoptosis. Our study helps to improve our understanding of the function of the group of genes whose expression changes temporally in an irradiated tumor microenvironment.
Collapse
Affiliation(s)
- Wei-Hsiang Kung
- Department of Medical Imaging and Radiology, Shu-Zen Junior Colledge of Medicine and Management, Kaohsiung, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hisnchu, Taiwan.
| | - Ching-Fang Yu
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Andy Chi-Lung Lee
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Chi-Dung Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hisnchu, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chen Liu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hisnchu, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hisnchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hisnchu, Taiwan.
| |
Collapse
|
211
|
Andersen MN, Ludvigsen M, Abildgaard N, Petruskevicius I, Hjortebjerg R, Bjerre M, Honoré B, Møller HJ, Andersen NF. Serum galectin-1 in patients with multiple myeloma: associations with survival, angiogenesis, and biomarkers of macrophage activation. Onco Targets Ther 2017; 10:1977-1982. [PMID: 28435287 PMCID: PMC5388249 DOI: 10.2147/ott.s124321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-1 (Gal-1) is known to regulate cell signaling within the immune system and may be a target for new anticancer immune therapy. In patients with chronic lymphocytic leukemia (CLL) and classical Hodgkin lymphoma (cHL), high levels of Gal-1 within the tumor microenvironment were associated with worse disease state or poor outcome. Gal-1 can be secreted from cells by an unknown mechanism, and levels in blood samples were associated with high tumor burden and worse disease state in cHL and CLL patients. However, serum levels of Gal-1 have never been investigated in patients with multiple myeloma (MM). We measured serum Gal-1 levels in samples from patients with treatment demanding MM at the time of diagnosis (n=102) and after treatment (n=24) and examined associations of serum Gal-1 with clinicopathological information obtained from patient medical records, as well as data on bone marrow angiogenesis and the macrophage activation biomarkers soluble CD163 (sCD163) and soluble mannose receptor. Serum Gal-1 levels were not elevated in patients with MM at diagnosis compared with healthy donors (median values 8.48 vs 11.93 ng/mL, P=0.05), which is in contrast to results in cHL and CLL. Furthermore, Gal-1 levels did not show association with bone marrow angiogenesis, clinicopathological parameters, overall survival, or response to treatment. There was a statically significant association between Gal-1 and sCD163 levels (R=0.24, P=0.02), but not with soluble mannose receptor (P=0.92). In conclusion, our results indicate that Gal-1 is not an important serum biomarker in MM, which is in contrast to data from patients with cHL and CLL. However, the association with sCD163 is in line with previous data showing that Gal-1 may be involved in alternative (M2-like) activation of macrophages.
Collapse
Affiliation(s)
- Morten Nørgaard Andersen
- Department of Biomedicine, Faculty of Health, Aarhus University.,Department of Clinical Biochemistry.,Department of Hematology, Aarhus University Hospital, Aarhus
| | - Maja Ludvigsen
- Department of Biomedicine, Faculty of Health, Aarhus University.,Department of Hematology, Aarhus University Hospital, Aarhus
| | | | | | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Bent Honoré
- Department of Biomedicine, Faculty of Health, Aarhus University
| | | | | |
Collapse
|
212
|
Zhao S, Ma L, Cao C, Yu Q, Chen L, Liu J. Curcumin-loaded redox response of self-assembled micelles for enhanced antitumor and anti-inflammation efficacy. Int J Nanomedicine 2017; 12:2489-2504. [PMID: 28408820 PMCID: PMC5383081 DOI: 10.2147/ijn.s123190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
At present, it has become evident that inflammation plays a critical role in tumor growth; meanwhile, chemotherapeutic agents using nanocarriers have been suggested as a promising strategy in cancer treatment. In this study, novel redox-responsive micelles were prepared from monomethoxy-poly(ethylene glycol)-chitosan-S-S-hexadecyl (C16-SS-CS-mPEG). These micelles were able to carry and deliver drugs into tumor cells. To serve as a control, monomethoxy-poly(ethylene glycol)-chitosan-C-C-hexadecyl (C16-CC-CS-mPEG) was developed in a similar fashion to that used to yield C16-CC-CS-mPEG without a redox-responsive disulfide bond. The cellular uptake mechanisms of both micelles were determined. The efficient intracellular drug release from micelles in MCF-7 cells was further confirmed. Results indicated that curcumin (Cur) could rapidly form C16-SS-CS-mPEG@ Cur micelles when exposed to reducing agents and efficaciously enhance intracellular accumulation. The cytotoxicity assay demonstrated that C16-SS-CS-mPEG@Cur exhibited satisfactory cytotoxicity against MCF-7 cells. Anti-inflammation assay results indicated that C16-SS-CS-mPEG@Cur treatment significantly downregulated tumor necrosis factor (TNF-α) expression and showed good anti-inflammatory effects in tumor microenvironment. Most importantly, antitumor effects in vivo showed satisfactory therapeutic effects with C16-SS-CS-mPEG@Cur. Hence, C16-SS-CS-mPEG@Cur micelles can be useful in tumor therapy.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Chemistry, Jinan University, Guangzhou
| | - Litao Ma
- Department of Chemistry, Jinan University, Guangzhou
| | - Chengwen Cao
- Department of Chemistry, Jinan University, Guangzhou
| | - Qianqian Yu
- Department of Chemistry, Jinan University, Guangzhou
| | - Lanmei Chen
- Department of Chemistry, Jinan University, Guangzhou.,Department of Chemistry, School of Pharmacy, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jie Liu
- Department of Chemistry, Jinan University, Guangzhou
| |
Collapse
|
213
|
Li GJ, Ji JJ, Yang F, Xu HW, Bai Y. Preoperative lymphocyte-to-monocyte ratio predicts survival in primary hepatitis B virus-positive hepatocellular carcinoma after curative resection. Onco Targets Ther 2017; 10:1181-1189. [PMID: 28260933 PMCID: PMC5328305 DOI: 10.2147/ott.s110411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Both inflammation and immunity are associated with the development of malignancy. The lymphocyte-to-monocyte ratio (LMR) has been confirmed as a prognostic factor for several malignant diseases. The purpose of our study was to analyze prognostic significance of preoperative LMR in hepatitis B virus (HBV)-related hepatocellular carcinoma after curative resection. Patients and methods A total of 253 patients with primary HBV-positive hepatocellular carcinoma who underwent a curative operation were enrolled in this retrospective study. The relationship between preoperative LMR and survival outcomes was analyzed through Kaplan–Meier curves and multivariate Cox regression analyses. Results Patients with a high LMR had a significantly higher mean overall survival than those with a low LMR (67 months vs 55 months, P=0.023), and high LMR remained significant for longer survival in the multivariate analysis (hazard ratio, 0.147; 95% confidence interval [CI]: 0.085–0.253; P=0.021). Furthermore, patients with a high LMR also had a higher median recurrence-free survival than those with a low LMR in univariate analyses (60 months vs 48 months, P=0.026) and multivariate analyses (hazard ratio, 0.317; 95% CI: 0.042–1.023; P=0.032). However, the survival benefit was limited to patients with advanced cancer. Conclusion LMR was confirmed as an independent prognostic biomarker for primary HBV-positive hepatocellular carcinoma after curative resection.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- Department of Pathology, The First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| |
Collapse
|
214
|
Xia HF, Zhu JY, Wang JN, Ren JG, Cai Y, Wang FQ, Zhang W, Chen G, Zhao YF, Zhao JH. Association of ATF4 Expression With Tissue Hypoxia and M2 Macrophage Infiltration in Infantile Hemangioma. J Histochem Cytochem 2017; 65:285-294. [PMID: 28438094 DOI: 10.1369/0022155417694872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating studies have revealed the hypoxic condition and its crucial role in the distinctive progression of infantile hemangioma (IH), the most common benign tumor in infancy. Activating transcription factor 4 (ATF4), an important gene mediating cellular adaptation to various stress signals, could confer a survival advantage for tumor cells under hypoxia and regulate tumor progression. However, the potential role of ATF4 in IH was still unknown. In this study, the expression of hypoxia inducible factor (HIF)-1α, ATF4, and macrophage colony-stimulating factor (M-CSF) in 27 specimens of IH was measured by immunochemistry and double-labeling immunofluorescence, followed by the Spearman rank correlation test. Our results showed that the expression of HIF-1α, ATF4, and M-CSF was significantly upregulated in proliferating IH compared with involuting IH. Meanwhile, HIF-1α and ATF4, in parallel with ATF4 and M-CSF, exhibited positive correlation and synchronous expression. In addition, our in vitro studies demonstrated that hypoxia obviously upregulated the expression of HIF-1α, ATF4, and M-CSF in hemangioma stem cells. Most importantly, their expression was uniformly correlated with the percentage of M2-polarized macrophages in IH. All those results and established evidence indicated that hypoxia-induced ATF4 expression may promote progression of proliferating IH through M-CSF-induced M2-polarized macrophages infiltration.
Collapse
Affiliation(s)
- Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun-Yi Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing-Nan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery (J-GR, YC, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery (J-GR, YC, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Feng-Qin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery (J-GR, YC, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery (J-GR, YC, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery (J-GR, YC, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji-Hong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education (H-FX, J-YZ, J-NW, J-GR, YC, F-QW, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery (J-GR, YC, WZ, GC, Y-FZ, J-HZ), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
215
|
Nelson DJ, Clark B, Munyard K, Williams V, Groth D, Gill J, Preston H, Chan A. A review of the importance of immune responses in luminal B breast cancer. Oncoimmunology 2017; 6:e1282590. [PMID: 28405507 DOI: 10.1080/2162402x.2017.1282590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Historically, the immune environment was not considered an important target for breast cancer treatment. However, the association of lymphocytic infiltrates in triple negative and HER-2 over-amplified breast cancer subtypes with better outcomes, has provoked interest in evaluating the role of the immune system in the luminal B subtype that accounts for 39% of breast cancers and has a poor patient prognosis. It is unknown which immunosuppressive cell types or molecules (e.g., checkpoint molecules) are relevant, or where measurement is most informative. We hypothesize that a profound immunosuppressive tumor and/or lymph node milieu is prognostic and impacts on responses to therapies.
Collapse
Affiliation(s)
- Delia J Nelson
- School of Biomedical Sciences, Curtin University, Bentley, Perth, WA, Australia; CHIRI Biosciences, Curtin University, Perth, WA, Australia
| | - Briony Clark
- School of Biomedical Sciences, Curtin University, Bentley, Perth, WA, Australia; CHIRI Biosciences, Curtin University, Perth, WA, Australia
| | - Kylie Munyard
- School of Biomedical Sciences, Curtin University, Bentley, Perth, WA, Australia; CHIRI Biosciences, Curtin University, Perth, WA, Australia
| | - Vincent Williams
- School of Biomedical Sciences, Curtin University , Bentley, Perth, WA, Australia
| | - David Groth
- School of Biomedical Sciences, Curtin University, Bentley, Perth, WA, Australia; CHIRI Biosciences, Curtin University, Perth, WA, Australia
| | - Jespal Gill
- Western Diagnostics Pathology , Myaree, Perth, WA, Australia
| | - Henry Preston
- Western Diagnostics Pathology , Myaree, Perth, WA, Australia
| | - Arlene Chan
- Breast Cancer Research Centre-WA, Hollywood Private Hospital, Nedlands, WA, Australia; Curtin Medical School, Curtin University, Perth, WA, Australia
| |
Collapse
|
216
|
Stephen B, Hajjar J. Overview of Basic Immunology for Clinical Investigators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 995:1-31. [PMID: 28321810 DOI: 10.1007/978-3-319-53156-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells are found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the cross talk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
Affiliation(s)
- Bettzy Stephen
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
217
|
Chen T, Yang C, Li M, Tan X. Alveolar Hypoxia-Induced Pulmonary Inflammation: From Local Initiation to Secondary Promotion by Activated Systemic Inflammation. J Vasc Res 2016; 53:317-329. [PMID: 27974708 DOI: 10.1159/000452800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with high mortality and morbidity. Hypoxic PH (HPH) is a common form of PH occurring mainly due to lung disease and/or hypoxia. Most causes of HPH are associated with persistent or intermittent alveolar hypoxia, including exposure to high altitude and chronic obstructive respiratory disease. Recent evidence suggests that inflammation is a critical step for HPH initiation and development. A detailed understanding of the initiation and progression of pulmonary inflammation would help in exploring potential clinical treatments for HPH. In this review, the mechanism for alveolar hypoxia-induced local lung inflammation and its progression are discussed as follows: (1) low alveolar PO2 levels activate resident lung cells, mainly the alveolar macrophages, which initiate pulmonary inflammation; (2) systemic inflammation is induced by alveolar hypoxia through alveolar macrophage activation; (3) monocytes are recruited into the pulmonary circulation by alveolar hypoxia-induced macrophage activation, which then contributes to the progression of pulmonary inflammation during the chronic phase of alveolar hypoxia, and (4) alveolar hypoxia-induced systemic inflammation contributes to the development of HPH. We hypothesize that a combination of alveolar hypoxia-induced local lung inflammation and the initiation of systemic inflammation ("second hit") is essential for HPH progression.
Collapse
Affiliation(s)
- Ting Chen
- Department of High Altitude Physiology and Biology, College of High Altitude Medicine, Third Military Medical University, Ministry of Education, Chongqing, China
| | | | | | | |
Collapse
|
218
|
Zhao Y, Wang D, Xu T, Liu P, Cao Y, Wang Y, Yang X, Xu X, Wang X, Niu H. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Oncotarget 2016; 6:39196-210. [PMID: 26474279 PMCID: PMC4770766 DOI: 10.18632/oncotarget.5538] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/02/2015] [Indexed: 01/19/2023] Open
Abstract
Background In the present study, we aimed to investigate the influence of lactate shuttling on the functional polarization and spatial distribution of transitional cell carcinoma of the bladder (TCCB) cells and macrophages. Methods We designed a microfluidic coculture chip for real-time integrative assays. The effect of lactate shuttling on the re-education of macrophages by TCCB cells was explored by measuring the levels of NO using a total NO assay kit and by evaluating the protein expression of iNOS, p-NFkB-p65, Arg-1 and HIF-1α via cell immunofluorescence and western blotting. Additionally, we examined TCCB cell viability using acridine orange/ethidium bromide (AO/EB) and MitoTracker staining. Moreover, the concentration distributions of lactate and large signaling proteins in the culture chambers were measured using 4′,6-diamidino-2-phenylindole (DAPI) and fluorescein isothiocyanate-dextran (FITC-dextran). Furthermore, the recruitment of macrophages and the influence of macrophages on BC metastasis were observed via light microscopy. Results We confirmed that TCCB cells reprogrammed macrophages into an M2 phenotype. Moreover, lactate inhibited M1 polarization and induced M2 polarization of macrophages, but blockade of cancer cell-macrophage lactate flux significantly inhibited the re-education of macrophages by TCCB cells. In addition, lactate diffused faster and deeper than large signaling proteins in the microfluidic tumor microenvironment. Furthermore, lactate alone induced the migration of macrophages, and M1, but not M2, macrophages reduced the motility of TCCB cells. Conclusions TCCB cells reprogrammed macrophages into an M2 phenotype in a manner that depended on cancer cell-TAM lactate flux. Furthermore, the lactate shuttle may be a determinant of the density of TAMs in tumor tissue.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Degui Wang
- Department of Anatomy, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Xu
- Department of Geratology, The 401st Hospital of PLA, Qingdao, China
| | - Pengfei Liu
- Department of Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanwei Cao
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Yonghua Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Xiaodong Xu
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Xinsheng Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Key Laboratory of Urinary System Diseases, Qingdao, China
| |
Collapse
|
219
|
Munn LL. Cancer and inflammation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27943646 DOI: 10.1002/wsbm.1370] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Abstract
The relationship between inflammation and cancer has been recognized since the 17th century,1 and we now know much about the cells, cytokines and physiological processes that are central to both inflammation and cancer.2-9 Chronic inflammation can induce certain cancers,10-17 and solid tumors, in turn, can initiate and perpetuate local inflammatory processes that foster tumor growth and dissemination.5 ,18-20 Consequently, inflammatory pathways have been targeted in attempts to control cancer.21-23 Inflammation is a central aspect of the innate immune system's response to tissue damage or infection, and also facilitates the recruitment of circulating cells and antibodies of the adaptive immune response to the tissue. Components of the innate immune response carry out a robust, but sometimes overly-conservative response, sacrificing specificity for the sake of preservation. Thus, when innate immunity goes awry, it can have profound implications. How the innate and adaptive immune systems cooperate to neutralize pathogens and repair damaged tissues is still an area of intense investigation. Further, how these systems can respond to cancer, which arises from normal 'self' cells that undergo an oncogenic transformation, has profound implications for cancer therapy. Recently, immunotherapies that activate adaptive immunity have shown unprecedented promise in the clinic, producing durable responses and dramatic increases in survival rate in patients with advanced stage melanoma.24-26 Consequently, the relationship between cancer and inflammation has now returned to the forefront of clinical oncology. WIREs Syst Biol Med 2017, 9:e1370. doi: 10.1002/wsbm.1370 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
220
|
Guttman O, Freixo-Lima GS, Kaner Z, Lior Y, Rider P, Lewis EC. Context-Specific and Immune Cell-Dependent Antitumor Activities of α1-Antitrypsin. Front Immunol 2016; 7:559. [PMID: 28003813 PMCID: PMC5141363 DOI: 10.3389/fimmu.2016.00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
α1-antitrypsin (AAT), a circulating glycoprotein that rises during acute phase responses and healthy pregnancies, exhibits immunomodulatory properties in several T-cell-dependent immune pathologies. However, AAT does not directly interfere with T-cell responses; instead, it facilitates polarization of macrophages and dendritic cells towards M2-like and tolerogenic cells, respectively. AAT also allows NK cell responses against tumor cells, while attenuating DC-dependent induction of autoimmune NK cell activities. Since AAT-treated macrophages bear resemblance to cancer-promoting tumor-associated macrophages (TAMs), it became imperative to examine the possible induction of tumor permissive conditions by AAT. Here, AAT treatment is examined for its effect on tumor development, metastatic spread, and tumor immunology. Systemic AAT treatment of mice inoculated with B16-F10 melanoma cells resulted in significant inhibition of tumor growth and metastatic spread. Using NK cell-resistant RMA cells, we show that AAT interferes with tumor development in a CD8+ T-cell-dependent manner. Unexpectedly, upon analysis of tumor cellular composition, we identified functional tumor-infiltrating CD8+ T-cells alongside M1-like TAMs in AAT-treated mice. Based on the ability of AAT to undergo chemical modifications, we emulated conditions of elevated reactive nitrogen and oxygen species. Indeed, macrophages were stimulated by treatment with nitrosylated AAT, and IFNγ transcripts were significantly elevated in tumors extracted soon after ischemia-reperfusion challenge. These context-specific changes may explain the differential effects of AAT on immune responses towards tumor cells versus benign antigenic targets. These data suggest that systemically elevated levels of AAT may accommodate its physiological function in inflammatory resolution, without compromising tumor-targeting immune responses.
Collapse
Affiliation(s)
- Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Gabriella S Freixo-Lima
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Ziv Kaner
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
221
|
Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Yang L, Chen YZ, Liu CX, Li SG, Cui XB, Zou H, Pang LJ, Zhao J, Qi Y, Liang WH, Yuan XL, Li F. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Exp Mol Pathol 2016; 102:15-21. [PMID: 27939650 DOI: 10.1016/j.yexmp.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/19/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Tumor associated macrophages (TAMs) play an important role in the growth, progression, and metastasis of tumors. The distribution of TAMs in Kazakh esophageal squamous cell carcinoma (ESCC) is not determined. We aimed to investigate the role of TAMs in the occurrence and progression of Kazakh ESCC. CD163 was used as the TAM marker, and immunohistochemistry (IHC) counts were used to quantify the density of TAMs in tumor nest and surrounding stroma. IHC staining was used to evaluate the expression of vascular endothelial growth factor C (VEGF-C) in Kazakh ESCC and cancer adjacent normal (CAN) tissues. The density of TAMs in Kazakh ESCCs tumor nest and stromal was significantly higher than that in CAN tissues. The increased number of CD163-positive TAMs in tumor nest and tumor stromal was positively associated with Kazakh ESCC lymph node metastasis and clinical stage progression. Meanwhile, the expression of VEGF-C in Kazakh ESCCs was significantly higher than that in CAN tissues. Overexpression of VEGF-C in Kazakh ESCCs was significantly associated with gender, depth of tumor invasion, lymph node metastasis and tumor clinical stage. The increased number of TAMs, either in the tumor nests or tumor stroma was positively correlated with the overexpression of VEGF-C, which may promote lymphangiogenesis and play an important role in the invasion and metastasis of Kazakh ESCC.
Collapse
Affiliation(s)
- Jian Ming Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Kai Liu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Ji Hong Liu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Xian Li Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Xue Li Wang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Lan Yang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yun Zhao Chen
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Chun Xia Liu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Shu Gang Li
- Department of Preventive Medicine, Shihezi University School of Medicine, Shihezi 832003, China
| | - Xiao Bin Cui
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Hong Zou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Li Juan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Jin Zhao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Yan Qi
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Wei Hua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China
| | - Xiang Lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832003, China.
| |
Collapse
|
222
|
Smith RW, Coleman JD, Thompson JT, Vanden Heuvel JP. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor β/δ and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells. Biochem Biophys Rep 2016; 8:395-402. [PMID: 28955982 PMCID: PMC5614479 DOI: 10.1016/j.bbrep.2016.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - John P. Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, United States
| |
Collapse
|
223
|
Takakura K, Ito Z, Suka M, Kanai T, Matsumoto Y, Odahara S, Matsudaira H, Haruki K, Fujiwara Y, Saito R, Gocho T, Nakashiro KI, Hamakawa H, Okamoto M, Kajihara M, Misawa T, Ohkusa T, Koido S. Comprehensive assessment of the prognosis of pancreatic cancer: peripheral blood neutrophil-lymphocyte ratio and immunohistochemical analyses of the tumour site. Scand J Gastroenterol 2016; 51:610-7. [PMID: 26679084 DOI: 10.3109/00365521.2015.1121515] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Several studies have suggested that an elevated neutrophil-lymphocyte ratio (NLR) is associated with a poorer prognosis in patients with pancreatic cancer (PC). The correlations between the NLR and immunohistochemical (IHC) analysis with regard to the prognosis of patients with PC remain to be elucidated. By using IHC findings, we determined the value of the NLR as a prognostic factor in patients with PC. MATERIAL AND METHODS We collected the clinico-pathological data of 28 consecutive patients who underwent surgical resection for PC between January 2008 and December 2012 at The Jikei University Kashiwa Hospital. We investigated whether the NLR and IHC results were related and ensured the consistency of the prognosis of patients with PC. RESULTS The Kaplan-Meier curves for the disease-free survival (DFS) and the overall survival (OS) revealed that an NLR ≥ 5 is an implicit factor for decreased DFS and OS in patients with PC (p = 0.003, p < 0.001, log-rank test). The density of CD163(+) macrophages and CD66b(+) neutrophils was significantly higher in the high NLR group; on the contrary, the density of CD20(+) lymphocytes was significantly higher in the low NLR group. Moreover, a Mann-Whitney U test showed that the NLR was significantly correlated with a high density of CD20(+) lymphocytes (p = 0.031) and CD163(+) macrophages (p = 0.023), while the NLR was not significantly correlated with CD66b(+) neutrophils (p = 0.397). CONCLUSIONS Our results demonstrated the validity of the NLR by IHC analyses and we determined that a higher value of NLR is a trustworthy prognostic factor for patients with PC.
Collapse
Affiliation(s)
- Kazuki Takakura
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Zensho Ito
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Machi Suka
- b Department of Public Health and Environmental Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Tomoya Kanai
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Yoshihiro Matsumoto
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Shunichi Odahara
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Hiroshi Matsudaira
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Koichiro Haruki
- c Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Yuki Fujiwara
- c Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Ryota Saito
- c Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Takeshi Gocho
- c Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Koh-Ichi Nakashiro
- d Department of Oral and Maxillofacial Surgery , Ehime University Graduate School of Medicine , Ehime , Japan
| | - Hiroyuki Hamakawa
- d Department of Oral and Maxillofacial Surgery , Ehime University Graduate School of Medicine , Ehime , Japan
| | - Masato Okamoto
- e Department of Advanced Immunotherapeutics , Kitasato University School of Pharmacy , Tokyo , Japan
| | - Mikio Kajihara
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Takeyuki Misawa
- c Department of Surgery , Jikei University School of Medicine , Tokyo , Japan
| | - Toshifumi Ohkusa
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| | - Shigeo Koido
- a Division of Gastroenterology and Hepatology, Department of Internal Medicine , Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
224
|
Park MH, Yoon DY, Ban JO, Kim DH, Lee DH, Song S, Kim Y, Han SB, Lee HP, Hong JT. Decreased severity of collagen antibody and lipopolysaccharide-induced arthritis in human IL-32β overexpressed transgenic mice. Oncotarget 2016; 6:38566-77. [PMID: 26497686 PMCID: PMC4770721 DOI: 10.18632/oncotarget.6160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/01/2015] [Indexed: 12/19/2022] Open
Abstract
Interleukin (IL)-32, mainly produced by T-lymphocytes, natural killer cells, epithelial cells, and blood monocytes, is dominantly known as a pro-inflammatory cytokine. However, the role of IL-32 on inflammatory disease has been doubtful according to diverse conflicting results. This study was designed to examine the role of IL-32β on the development of collagen antibody (CAIA) and lipopolysaccharide (LPS)-induced inflammatory arthritis. Our data showed that the paw swelling volume and clinical score were significantly reduced in the CAIA and LPS-treated IL-32β transgenic mice compared with non-transgenic mice. The populations of cytotoxic T, NK and dendritic cells was inhibited and NF-κB and STAT3 activities were significantly lowered in the CAIA and LPS-treated IL-32β transgenic mice. The expression of pro-inflammatory proteins was prevented in the paw tissues of CAIA and LPS-treated IL-32β transgenic mice. In addition, IL-32β altered several cytokine levels in the blood, spleen and paw joint. Our data indicates that IL-32β comprehensively inhibits the inflammation responses in the CAIA and LPS-induced inflammatory arthritis model.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Laboratory of Cell Biology and Immunobiochemistry, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong 1, Gwangjin-gu, Seoul, Republic of Korea
| | - Jung Ok Ban
- Osong Medical Innovation Foundation, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Sukgil Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Cheong-ju, Chungbuk, Republic of Korea
| |
Collapse
|
225
|
Sun BS, Pei BX, Zhang K, Zhang LC, Zhang GJ, Liu JK, Cui HW, Pan F, Zhang ZF. Significance of interstitial tumor-associated macrophages in the progression of lung adenocarcinoma. Oncol Lett 2016; 12:4467-4476. [PMID: 28101209 PMCID: PMC5228206 DOI: 10.3892/ol.2016.5270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
Stepwise progression from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) to lepidic predominant adenocarcinoma (LPA) was proposed by various scholars. Interstitial tumor-associated macrophages (TAMs) and various potential chemokines involved in the progression from AIS/MIA to LPA were hypothesized. In the present study, immunohistochemistry or immunofluorescent double staining was used to detect the expression of the TAMs marker cluster of differentiation (CD) 68, tumor-derived colony-stimulating factor (CSF)-1, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, E-cadherin and Snail in lung adenocarcinoma specimens, including AIS/MIA, LPA and other types. It was observed that infiltrating TAMs were negatively associated with the prognosis of patients, and that the infiltration degree of interstitial TAMs was higher in LPA than that in AIS/MIA. In addition, E-cadherin, Snail and MMP-2 expression were significantly correlated with the infiltration degree of TAMs. Survival analysis revealed that co-expression of CD68, CSF-1 and IL-6 was an independent prognostic factor. Stratified analysis demonstrated that, in AIS/MIA patients, there was a statistically significant difference between the number of TAMs (TAMs ≤25 and TAMs >25) in the CD68+CSF-1+IL-6+ group compared with other groups (including CD68+CSF-1-IL-6-, CD68+CSF-1+IL-6-, CD68+CSF-1-IL-6+ and CD68- groups). By contrast, in patients with TAMs >25 and in patients with positive CD68, CSF-1 and IL-6 expression, the survival rates were not significantly different between AIS/MIA and LPA. These results suggested that co-expression of TAMs marker CD68, CSF-1 and IL-6 may be a valuable independent prognostic predictor in lung adenocarcinoma. TAMs may facilitate AIS/MIA progression to LPA, which may be closely associated with the induction of the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Lung Cancer Center, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Bao-Xiang Pei
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Kang Zhang
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lu-Chang Zhang
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Guang-Jing Zhang
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ji-Kuan Liu
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hong-Wei Cui
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Fen Pan
- Department of Thoracic Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Lung Cancer Center, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
226
|
Heme oxygenase-1 in macrophages controls prostate cancer progression. Oncotarget 2016; 6:33675-88. [PMID: 26418896 PMCID: PMC4741794 DOI: 10.18632/oncotarget.5284] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023] Open
Abstract
Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression. We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells. In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression.
Collapse
|
227
|
Mao H, Pan F, Guo H, Bu F, Xin T, Chen S, Guo Y. Feedback mechanisms between M2 macrophages and Th17 cells in colorectal cancer patients. Tumour Biol 2016; 37:12223-12230. [PMID: 27235120 DOI: 10.1007/s13277-016-5085-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/15/2016] [Indexed: 12/28/2022] Open
Abstract
IL-17 and IL-22 are linked to the development of intestinal inflammation and colorectal cancer (CRC). However, the maintenance of IL-17 and IL-22 production, as well as the cell type (Th17) that mediates these cytokines in CRC patients, remains unknown. To examine this, untreated CRC patients and healthy controls were recruited in this study. We first observed that CRC patients contained significantly elevated levels of IL-17- and IL-22-producing CD4+ T cells. The vast majority of IL-22-expressing CD4+ T cells also expressed IL-17. We then found that the production of both IL-17 and IL-22 required support from autologous monocytes, since the depletion of monocytes significantly downregulated IL-17 and IL-22 secretion. Naive T cells from CRC patients did not secrete IL-17 or IL-22 initially, but long-term coculture with autologous monocytes significantly upregulated IL-17 and IL-22 production in an IL-6-dependent manner. Blockade of IL-6 significantly reduced the levels of both IL-17 and IL-22. We then observed that CD163+ M2 macrophages were the main contributor of IL-6. Interestingly, incubation of monocytes with CCR4+CCR6+ Th17 cells resulted in significantly higher levels of CD163+ macrophages as well as higher IL-6 secretion, than incubation with non-Th17 CD4+ T cells. Together, our study discovered a positive feedback mechanism between Th17 and M2 macrophages in CRC patients.
Collapse
Affiliation(s)
- Hui Mao
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing, China
| | - Hongxia Guo
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Fangfang Bu
- Cancer Center Key Lab, Chinese PLA General Hospital, 28 Fuxing Road, Bejing, 100853, China
| | - Tong Xin
- Cancer Center Key Lab, Chinese PLA General Hospital, 28 Fuxing Road, Bejing, 100853, China
| | - Shukun Chen
- Cancer Center Key Lab, Chinese PLA General Hospital, 28 Fuxing Road, Bejing, 100853, China
| | - Yajun Guo
- Cancer Center Key Lab, Chinese PLA General Hospital, 28 Fuxing Road, Bejing, 100853, China.
| |
Collapse
|
228
|
Prakash H, Nadella V, Singh S, Schmitz-Winnenthal H. CD14/TLR4 priming potentially recalibrates and exerts anti-tumor efficacy in tumor associated macrophages in a mouse model of pancreatic carcinoma. Sci Rep 2016; 6:31490. [PMID: 27511884 PMCID: PMC4980608 DOI: 10.1038/srep31490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is the fourth major cause of cancer related deaths in the world and 5 year survival is below 5%. Among various tumor directed therapies, stimulation of Toll-like receptors (TLR) has shown promising effects in various tumor models. However, pancreatic cancer cells frequently express these receptors themselves and their stimulation (TLR 2 and/or 4 particularly) within tumor microenvironment is known to potentially enhance tumor cell proliferation and cancer progression. Consistent stimulation of tumor associated macrophages (TAMs), in particular with tumor derived TLR ligand within the tumor microenvironment promotes cancer related inflammation, which is sterile, non-immunogenic and carcinogenic in nature. In view of this, recalibrating of TAM has the potential to induce immunogenic inflammation. Consistent with this, we provide experimental evidence for the first time in this study that priming of TAMs with TLR4 ligend (LPS) alone or in combination with IFN-γ not only recalibrates pancreatic tumor cells induced M2 polarization, but also confers anti-tumor potential in TAMs. Most interestingly, reduced tumor growth in macrophage depleted animals suggests that macrophage directed approaches are important for the management of pancreatic tumors.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Translational Immunology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center of Tumor diseases (NCT), Heidelberg, Germany
- Translational medicine Laboratory, School of life sciences, University of Hyderabad, Hyderabad, India
| | - Vinod Nadella
- Translational medicine Laboratory, School of life sciences, University of Hyderabad, Hyderabad, India
| | - Sandhya Singh
- Department of Animal Biology, School of Life sciences, University of Hyderabad, 500046, India
| | | |
Collapse
|
229
|
Pretreatment Lymphocyte Monocyte Ratio Predicts Long-Term Outcomes in Patients with Digestive System Tumor: A Meta-Analysis. Gastroenterol Res Pract 2016; 2016:9801063. [PMID: 27594882 PMCID: PMC4993921 DOI: 10.1155/2016/9801063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/13/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose. The prognostic value of pretreatment lymphocyte monocyte ratio (LMR) in digestive system cancer patients remains controversial. The aim of this study was to quantify the prognostic impact of this biomarker and assess its consistency in digestive system tumors. Methods. We searched "PubMed," "Embase," and "CBM" for published eligible studies before June 2016 and conducted a meta-analysis to estimate the pooled hazard ratios (HRs) for disease recurrence and mortality focusing on LMR. Subgroup analyses, meta-regression, and sensitivity analyses were also performed. Results. A total of 22 cohort studies enrolling 12829 patients with digestive system cancer were included. The summary results showed that lower LMR was significantly associated with worse overall survival (OS), cancer-specific survival (CSS), and tumor disease or recurrence-free survival (DFS/RFS) in analyses using the studies reporting HRs either by the univariate analyses (HR = 1.32, HR = 1.35, and HR = 1.26 for OS, CSS, and DFS/RFS, resp.) or by multivariate analyses (HR = 1.21, HR = 1.18, and HR = 1.26 for OS, CSS, and DFS/RFS, resp.). Conclusion. Our results support the fact that decreased LMR indicates worse prognosis in multiple digestive system tumors.
Collapse
|
230
|
Gätjen M, Brand F, Grau M, Gerlach K, Kettritz R, Westermann J, Anagnostopoulos I, Lenz P, Lenz G, Höpken UE, Rehm A. Splenic Marginal Zone Granulocytes Acquire an Accentuated Neutrophil B-Cell Helper Phenotype in Chronic Lymphocytic Leukemia. Cancer Res 2016; 76:5253-65. [PMID: 27488528 DOI: 10.1158/0008-5472.can-15-3486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Recruitment of tumor-associated macrophages and neutrophils (TAM and TAN) to solid tumors contributes to immunosuppression in the tumor microenvironment; however, their contributions to lymphoid neoplasms are less clear. In human chronic lymphocytic leukemia (CLL), tumor B cells lodge in lymph nodes where interactions with the microenvironment occur. Tumor cell homing stimulates proliferation, such that engagement of the B-cell receptor is important for malignant progression. In the Eμ-Tcl1 murine model of CLL, we identified gene expression signatures indicative of a skewed polarization in the phenotype of monocytes and neutrophils. Selective ablation of either of these cell populations in mice delayed leukemia growth. Despite tumor infiltration of these immune cells, a systemic inflammation was not detected. Notably, in progressive CLL, splenic neutrophils were observed to differentiate toward a B-cell helper phenotype, a process promoted by the induction of leukemia-associated IL10 and TGFβ. Our results suggest that targeting aberrant neutrophil differentiation and restoring myeloid cell homeostasis could limit the formation of survival niches for CLL cells. Cancer Res; 76(18); 5253-65. ©2016 AACR.
Collapse
Affiliation(s)
- Marcel Gätjen
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Franziska Brand
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Grau
- Department of Physics, Philipps-University Marburg, Marburg, Germany. Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Kerstin Gerlach
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Intensive Care Medicine, Experimental and Clinical Research Center, Charité-University Medicine Berlin, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Peter Lenz
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Georg Lenz
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany. Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Uta E Höpken
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Armin Rehm
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
231
|
Interleukin (IL)-4 -590C>T polymorphism is not associated with the susceptibility of gastric cancer: An updated meta-analysis. Ann Med Surg (Lond) 2016; 9:1-5. [PMID: 27284401 PMCID: PMC4887560 DOI: 10.1016/j.amsu.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a common cancer affecting patients around the world. The pathogenesis of gastric cancer has not been understood completely. Genetic mutations and the inflammation induced by Helicobacter pylori (HP) seem to play important roles. The cytokine Interleukin-4 (IL-4) has effects in inflammation, allergies and cancer including GC. The association of IL-4 -590 C>T polymorphism and gastric cancer has been studied in different populations with inconsistent results. Here, we report this meta-analysis showing that the polymorphism of IL-4 -590C>T might not be associated with the GC susceptibility in both Asian and Caucasian populations.
Collapse
|
232
|
Benvenuto M, Mattera R, Taffera G, Giganti MG, Lido P, Masuelli L, Modesti A, Bei R. The Potential Protective Effects of Polyphenols in Asbestos-Mediated Inflammation and Carcinogenesis of Mesothelium. Nutrients 2016; 8:nu8050275. [PMID: 27171110 PMCID: PMC4882688 DOI: 10.3390/nu8050275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
Malignant Mesothelioma (MM) is a tumor of the serous membranes linked to exposure to asbestos. A chronic inflammatory response orchestrated by mesothelial cells contributes to the development and progression of MM. The evidence that: (a) multiple signaling pathways are aberrantly activated in MM cells; (b) asbestos mediated-chronic inflammation has a key role in MM carcinogenesis; (c) the deregulation of the immune system might favor the development of MM; and (d) a drug might have a better efficacy when injected into a serous cavity thus bypassing biotransformation and reaching an effective dose has prompted investigations to evaluate the effects of polyphenols for the therapy and prevention of MM. Dietary polyphenols are able to inhibit cancer cell growth by targeting multiple signaling pathways, reducing inflammation, and modulating immune response. The ability of polyphenols to modulate the production of pro-inflammatory molecules by targeting signaling pathways or ROS might represent a key mechanism to prevent and/or to contrast the development of MM. In this review, we will report the current knowledge on the ability of polyphenols to modulate the immune system and production of mediators of inflammation, thus revealing an important tool in preventing and/or counteracting the growth of MM.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Gloria Taffera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Paolo Lido
- Internal Medicine Residency Program, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Rome 00164, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome 00133, Italy.
| |
Collapse
|
233
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
234
|
Westerhof TM, Li GP, Bachman M, Nelson EL. Multicolor Immunofluorescent Imaging of Complex Cellular Mixtures on Micropallet Arrays Enables the Identification of Single Cells of Defined Phenotype. Adv Healthc Mater 2016; 5:767-71. [PMID: 26924570 PMCID: PMC5629097 DOI: 10.1002/adhm.201500859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/13/2016] [Indexed: 01/13/2023]
Abstract
A Micropallet-Array-based strategy allowing the identification of cells of defined phenotype in complex mixtures, such as would be obtained from a tissue biopsy, is presented. Following the distribution of single adherent cells from the mixture on individual pedestals, termed "micropallets", immunofluorescent confocal imaging is applied to interrogate the expression of five cell surface molecules.
Collapse
Affiliation(s)
- Trisha M Westerhof
- Department of Molecular Biology and Biochemistry, Ayala School of Biological Sciences, University of California at Irvine, 839 Medical Sciences Ct., b100c Sprague Hall, Irvine, CA, 92697, USA
| | - Guann-Pyng Li
- Department of Electrical Engineering and Computer Science, Samueli School of Engineering, Department of Biomedical Engineering, Samueli School of Engineering, Department of Chemical Engineering and Materials Science, Samueli School of Engineering, University of California at Irvine, 4100 Calit2 building, Irvine, CA, 92697, USA
| | - Mark Bachman
- Department of Electrical Engineering and Computer Science, Samueli School of Engineering, Department of Biomedical Engineering, Samueli School of Engineering, University of California at Irvine, 2300 Engineering Gateway, Irvine, CA, 92697, USA
| | - Edward L Nelson
- Department of Molecular Biology and Biochemistry, Ayala School of Biological Sciences, University of California at Irvine, 839 Medical Sciences Ct., b100c Sprague Hall, Irvine, CA, 92697, USA
- Department of Medicine, School of Medicine, University of California, Irvine Medical Center, 101 The City Drive, Building 56, Room 247, Orange, CA, 92868, USA
| |
Collapse
|
235
|
Choi YJ, Oh SG, Singh TD, Ha JH, Kim DW, Lee SW, Jeong SY, Ahn BC, Lee J, Jeon YH. Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging. Neoplasia 2016; 18:133-41. [PMID: 26992914 PMCID: PMC4796806 DOI: 10.1016/j.neo.2016.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
Abstract
We sought to visualize the migration of tumor-associated macrophages (TAMs) to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc) and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM) were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI) and fluorescence imaging (FLI) was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX), a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Seul-Gi Oh
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | | | - Jeoung-Hee Ha
- Department of Pharmacology, Kyungpook National University, Daegu, Korea
| | - Dong Wook Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Sang Woo Lee
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea; Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea.
| | - Young Hyun Jeon
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea; Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
236
|
Achyut BR, Arbab AS. Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. Onco Targets Ther 2016; 9:1047-55. [PMID: 27042097 PMCID: PMC4780185 DOI: 10.2147/ott.s102907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor microenvironment (TME) consists of several immune and nonimmune cell populations including tumor cells. For many decades, experimental studies have depicted profound contribution of TME toward cancer progression and metastasis development. Several therapeutic strategies have been tested against TME through preclinical studies and clinical trials. Unfortunately, most of them have shown transient effect, and have largely failed due to aggressive tumor growth and without improving survival. Solid tumors are known to have a strong myeloid component (eg, tumor-associated macrophages) in tumor development. Recent data suggest that therapeutic responses in tumor are characterized by alterations in immune cell signatures, including tumor-associated myeloid cells. Polarized tumor-associated myeloid cells (M1–M2) are critical in impairing therapeutic effect and promoting tumor growth. The present review is intended to compile all the literatures related to the emerging contribution of different populations of myeloid cells in the development of tumor and therapeutic failures. Finally, we have discussed targeting of myeloid cell populations as a combination therapy with chemo-, targeted-, or radiation therapies.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Laboratory, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
237
|
Li GJ, Xu HW, Ji JJ, Yang F, Gao BQ. Prognostic value of preoperative lymphocyte-to-monocyte ratio in pancreatic adenocarcinoma. Onco Targets Ther 2016; 9:1085-92. [PMID: 27042101 PMCID: PMC4780182 DOI: 10.2147/ott.s96707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Inflammation and immunity have an important role in the development of cancer. The lymphocyte-to-monocyte ratio (LMR) has been shown to be of prognostic value in several malignant forms. The purpose of this study was to analyze the prognostic significance of preoperative LMR in post-curative resection of pancreatic adenocarcinoma. METHODS A total of 144 patients with primary pancreatic adenocarcinoma who underwent curative operation were enrolled in this retrospective study. The correlation between preoperative LMR and survival was analyzed using Kaplan-Meier curves and multivariate Cox regression analyses. RESULTS In the univariate analysis, an elevated preoperative LMR was significantly associated with an increased overall survival (OS) (19 months vs 12 months, P=0.000), and this result remained significant in the multivariate analysis (hazard ratio [HR]: 0.148; 95% confidence interval [CI]: 0.085-0.252; P=0.000). Furthermore, patients with high LMR also had higher median recurrence-free survival (RFS) than patients with low LMR in univariate (18 months vs 10 months, P=0.000) and multivariate analyses (HR: 0.148; 95% CI: 0.085-0.252; P=0.000). Subgroup analyses showed that both patients with stage III cancer and patients with stage I+II cancer can obtain OS and RFS benefits from high LMR. CONCLUSION LMR can be considered as an independent prognostic biomarker for operable pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Guang-Jun Li
- First Department of General Surgery, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| | - Hong-Wei Xu
- First Department of General Surgery, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| | - Juan-Juan Ji
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| | - Fang Yang
- Department of Gastroenterology, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| | - Bao-Qin Gao
- First Department of General Surgery, First Affiliated Hospital of Xin-Xiang Medical University, Henan, People's Republic of China
| |
Collapse
|
238
|
Alternatively Activated Macrophages Play an Important Role in Vascular Remodeling and Hemorrhaging in Patients with Brain Arteriovenous Malformation. J Stroke Cerebrovasc Dis 2016; 25:600-9. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/29/2015] [Accepted: 11/22/2015] [Indexed: 12/30/2022] Open
|
239
|
Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm 2016; 2016:4375120. [PMID: 26997761 PMCID: PMC4779817 DOI: 10.1155/2016/4375120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies.
Collapse
|
240
|
Xing Y, Tian Y, Kurosawa T, Matsui S, Touma M, Wu Q, Sugimoto K. Inhibition of blood vessel formation in tumors by IL-18-polarized M1 macrophages. Genes Cells 2016; 21:287-95. [PMID: 26791003 DOI: 10.1111/gtc.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/29/2015] [Indexed: 12/16/2022]
Abstract
We previously showed that interleukin (IL)-18 produced by NFSA cells induced the M1 type of macrophages in NFSA tumors, caused the destruction of endothelial cells in vitro and may have resulted in the necrosis of NFSA tumors by enhancing macrophage phagocytosis and cytotoxicity. However, the effect of IL-18 on blood vessel formation in vivo has not been elucidated. MS-K cells do not express il-18, and they form tumors with well-developed blood vessels. Here, we established IL-18-over-expressing MS-K cell clones (MS-K-IL-18) to address the roles of IL-18 in angiogenesis. The over-expression of IL-18 inhibited the proliferation rate of the MS-K-IL-18 cells in vitro and blood vessel formation in the MS-K-IL-18 tumors. Interestingly, CD14-positive cells from the MS-K-IL-18 tumor had up-regulated expression of the M1-type macrophage marker il-6 and down-regulated expression of interferon (ifn)-γ. Furthermore, FACS analysis showed more accumulation of CD11b+/CD80+ M1 macrophages in the MS-K-IL-18 tumors than in the parental MS-K tumor. Moreover, an in vitro coculture assay showed that MS-K-IL-18-conditioned medium (CM) stimulated macrophages to induce the apoptosis of endothelial cells. Cumulatively, our data showed that IL-18 inhibited tumor blood vessel formation in vivo.
Collapse
Affiliation(s)
- Yanjiang Xing
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Yijun Tian
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Takamasa Kurosawa
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Sayaka Matsui
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Maki Touma
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| | - Qiong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan
| |
Collapse
|
241
|
Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H, Umansky L. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: lesson from insulinoma. Carcinogenesis 2016; 37:301-313. [PMID: 26785731 DOI: 10.1093/carcin/bgw007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor infiltrating iNOS+ macrophages under the influence of immunosuppressive tumor microenvironment gets polarized to tumor-promoting and immunosuppressive macrophages, known as tumor-associated macrophages (TAM). Their recruitment and increased density in the plethora of tumors has been associated with poor prognosis in cancer patients. Therefore, retuning of TAM to M1 phenotype would be a key for effective immunotherapy. Radiotherapy has been a potential non-invasive strategy to improve cancer immunotherapy and tumor immune rejection. Irradiation of late-stage tumor-bearing Rip1-Tag5 mice twice with 2 Gy dose resulted in profound changes in the inflammatory tumor micromilieu, characterized by induction of M1-associated effecter cytokines as well as reduction in protumorigenic and M2-associated effecter cytokines. Similarly, in vitro irradiation of macrophages with 2 Gy dose-induced expression of iNOS, NO, NFκBpp65, pSTAT3 and proinflammatory cytokines secretion while downregulating p38MAPK which are involved in iNOS translation and acquisition of an M1-like phenotype. Enhancement of various M2 effecter cytokines and angiogenic reprogramming in iNOs+ macrophage depleted tumors and their subsequent reduction by 2 Gy dose in Rip1-Tag5 transgenic mice furthermore demonstrated a critical role of peritumoral macrophages in the course of gamma irradiation mediated M1 retuning of insulinoma.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| | - Felix Klug
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| | - Vinod Nadella
- School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Varadendra Mazumdar
- School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | | | - Liudmila Umansky
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| |
Collapse
|
242
|
Blood Genome-Wide Transcriptional Profiles of HER2 Negative Breast Cancers Patients. Mediators Inflamm 2016; 2016:3239167. [PMID: 26884644 PMCID: PMC4738716 DOI: 10.1155/2016/3239167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 11/22/2022] Open
Abstract
Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.
Collapse
|
243
|
Wang LQ, Zhao LH, Qiao YZ. Identification of potential therapeutic targets for lung cancer by bioinformatics analysis. Mol Med Rep 2015; 13:1975-82. [PMID: 26739332 PMCID: PMC4768991 DOI: 10.3892/mmr.2015.4752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to identify potential therapeutic targets for lung cancer and explore underlying molecular mechanisms of its development and progression. The gene expression profile datasets no. GSE3268 and GSE19804, which included five and 60 pairs of tumor and normal lung tissue specimens, respectively, were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between lung cancer and normal tissues were identified, and gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the DEGs was performed. Furthermore, protein‑protein interaction (PPI) networks and a transcription factor (TF) regulatory network were constructed and key target genes were screened. A total of 466 DEGs were identified, and the PPI network indicated that IL‑6 and MMP9 had key roles in lung cancer. A PPI module containing 34 nodes and 547 edges was obtained, including PTTG1. The TF regulatory network indicated that TFs of FOSB and LMO2 had a key role. Furthermore, MMP9 was indicated to be the target of FOSB, while PTTG1 was the target of LMO2. In conclusion, the bioinformatics analysis of the present study indicated that IL‑6, MMP9 and PTTG1 may have key roles in the progression and development of lung cancer and may potentially be used as biomarkers or specific therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Li-Quan Wang
- Department of Thoracic Surgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lan-Hua Zhao
- Department of Thoracic Surgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Yi-Ze Qiao
- Department of Thoracic Surgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
244
|
Jiang K, Sun Y, Wang C, Ji J, Li Y, Ye Y, Lv L, Guo Y, Guo S, Li H, Zhang L, Zhou Y, Jiang B, Ren Y, Xu Y, Yang X, Liu H, Wang Y, Shen Z, Qin W, Guo P, Jiang Y, Hu Z, Shen H, Cheng J, Yang Y, Wang S. Genome-wide association study identifies two new susceptibility loci for colorectal cancer at 5q23.3 and 17q12 in Han Chinese. Oncotarget 2015; 6:40327-36. [PMID: 26515597 PMCID: PMC4741898 DOI: 10.18632/oncotarget.5530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have reported a number of loci harboring common variants that influence risk of colorectal cancer (CRC) in European descent. But all the SNPs identified explained a small fraction of total heritability. To identify more genetic factors that modify the risk of CRC, especially Chinese Han specific, we conducted a three-stage GWAS including a screening stage (932 CRC cases and 966 controls) and two independent validations (Stage 2: 1,759 CRC cases and 1,875 controls; Stage 3: 943 CRC cases and 1,838 controls). In the combined analyses, we discovered two novel loci associated with CRC: rs12522693 at 5q23.3 (CDC42SE2-CHSY3, OR = 1.31, P = 2.08 × 10-8) and rs17836917 at 17q12 (ASIC2-CCL2, OR = 0.75, P = 4.55 × 10-8). Additionally, we confirmed two previously reported risk loci, rs6983267 at 8q24.21 (OR = 1.17, P = 7.17 × 10-7) and rs10795668 at 10p14 (OR = 0.86, P = 2.96 × 10-6) in our cohorts. These results bring further insights into the CRC susceptibility and advance our understanding on etiology of CRC.
Collapse
Affiliation(s)
- Kewei Jiang
- Department of General Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Yimin Sun
- Health Science Research Institute, Capital Bio Corporation, Beijing 102206, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Cheng Wang
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jiafu Ji
- Department of Surgery, Ministry of Education Key Lab of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yaoping Li
- Department of Colorectal Surgery, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030001, China
- Shanxi Branch Center, National Engineering Research Center for Beijing Biochip Technology, Taiyuan, China
| | - Yingjiang Ye
- Department of General Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Liang Lv
- Department of General Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, China
- Department of General Surgery, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, China
| | - Yong Guo
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China
| | - Sutang Guo
- Shanxi Branch Center, National Engineering Research Center for Beijing Biochip Technology, Taiyuan, China
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hai Li
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lianhai Zhang
- Department of Surgery, Ministry of Education Key Lab of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanbing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, China
| | - Bo Jiang
- Department of Colorectal Surgery, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yonghong Ren
- Health Science Research Institute, Capital Bio Corporation, Beijing 102206, China
| | - Youchun Xu
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China
| | - Xiongfei Yang
- The Anorectal Department, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Hongxia Liu
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yirui Wang
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China
| | - Zhanlong Shen
- Department of General Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Wenyan Qin
- Health Science Research Institute, Capital Bio Corporation, Beijing 102206, China
| | - Peng Guo
- Department of General Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, China
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Zhibin Hu
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jing Cheng
- Health Science Research Institute, Capital Bio Corporation, Beijing 102206, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yinxue Yang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
- Ningxia Branch Center, National Engineering Research Center for Beijing Biochip Technology, Yinchuan 750004, China
| | - Shan Wang
- Department of General Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
245
|
Affiliation(s)
- David M. Mosser
- Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute University of Maryland College Park Maryland
| | - Ricardo Gonçalves
- Department of General Pathology, Institute of Biological Sciences Federal University of Minas Gerais (UFMG) Belo Horizonte Brazil
| |
Collapse
|
246
|
Ok Atılgan A, Özdemir BH, Akçay EY, Ataol Demirkan Ö, Tekindal MA, Özkardeş H. Role of tumor-associated macrophages in the Hexim1 and TGFβ/SMAD pathway, and their influence on progression of prostatic adenocarcinoma. Pathol Res Pract 2015; 212:83-92. [PMID: 26608417 DOI: 10.1016/j.prp.2015.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/22/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hexamethylene bisacetamide-inducible protein 1 (Hexim1) regulates transforming growth factor-β (TGFβ) activity and turnover of SMAD proteins in a cyclin-dependent kinase 9-dependent way. It does so specifically through inhibiting function of this enzyme and by inhibiting the transcriptional activity of positive transcription elongation factor b (P-TEFb). Tumor-associated macrophages (TAMs) play a role in the progression of prostate adenocarcinomas. We investigated the clinicopathological significance of Hexim1, TGFβ, SMAD2, and SMAD7 expression in prostate adenocarcinoma cells, and assessed associations between TAMs density and these proteins. METHODS The cases of 100 patients diagnosed with prostate acinar adenocarcinoma who had undergone radical prostatectomy were retrospectively examined. Each was reviewed for Gleason score, cancer stage, and specific histopathological features. Original slides were re-examined, and new slides were prepared and immunostained with Hexim1, TGFβ, SMAD2, SMAD7 and CD68. RESULTS Hexim1 expression was positively correlated with Gleason score, cancer stage, lymphovascular invasion, perineural invasion, extracapsular extension, and positive surgical margin. TAMs density was positively correlated with Gleason score, cancer stage, perineural invasion, extracapsular extension, and positive surgical margin. TAMs density was positively correlated with Hexim1 expression and TGFβ expression. More advanced cancer stage, lymphovascular invasion, perineural invasion, and extracapsular extension were correlated with strong Hexim1 expression, strong SMAD2 expression, and mild SMAD7 expression, respectively. Strong Hexim1 expression, strong TGFβ expression, and mild SMAD7 expression were associated with higher Gleason score. Strong Hexim1 expression was correlated with strong TGFβ expression and mild SMAD7 expression. Strong Hexim1 expression, strong SMAD2 expression, and mild expression of SMAD7 were associated with disease progression. Strong SMAD2 expression was associated with shorter disease-free survival. CONCLUSION The results suggest that greater TAMs density, strong Hexim1 expression, strong SMAD2 expression, and mild SMAD7 expression play important roles in the progression of prostate adenocarcinoma. Further investigation of these proteins will help facilitate the definitive prognosis of prostate adenocarcinomas. Ultimately, these proteins may be therapeutic targets for patients with prostate cancer.
Collapse
Affiliation(s)
- Alev Ok Atılgan
- Baskent University Faculty of Medicine, Department of Pathology, 79.sok. No: 7/4 Bahçelievler, 06490 Ankara, Turkey.
| | - B Handan Özdemir
- Baskent University Faculty of Medicine, Department of Pathology, 79.sok. No: 7/4 Bahçelievler, 06490 Ankara, Turkey.
| | - Eda Yılmaz Akçay
- Baskent University Faculty of Medicine, Department of Pathology, 79.sok. No: 7/4 Bahçelievler, 06490 Ankara, Turkey.
| | - Özlem Ataol Demirkan
- Baskent University Faculty of Medicine, Department of Pathology, 79.sok. No: 7/4 Bahçelievler, 06490 Ankara, Turkey.
| | - M Agah Tekindal
- Baskent University Faculty of Medicine, Department of Biostatistics, Bağlıca Kampüsü Eskişehir Yolu 20.km Bağlıca, 06810 Ankara, Turkey.
| | - Hakan Özkardeş
- Baskent University Faculty of Medicine, Department of Urology, 79.sok. No: 7/4 Bahçelievler, 06490 Ankara, Turkey.
| |
Collapse
|
247
|
Sanderson LE, Chien AT, Astin JW, Crosier KE, Crosier PS, Hall CJ. An inducible transgene reports activation of macrophages in live zebrafish larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:63-69. [PMID: 26123890 DOI: 10.1016/j.dci.2015.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models.
Collapse
Affiliation(s)
- Leslie E Sanderson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - An-Tzu Chien
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
248
|
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72:4111-26. [PMID: 26210152 PMCID: PMC11113543 DOI: 10.1007/s00018-015-1995-y] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Abstract
Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy.
| | - Marco Erreni
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy
| |
Collapse
|
249
|
MiR-146b Mediates Endotoxin Tolerance in Human Phagocytes. Mediators Inflamm 2015; 2015:145305. [PMID: 26451077 PMCID: PMC4584235 DOI: 10.1155/2015/145305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 01/06/2023] Open
Abstract
A proper regulation of the innate immune response is fundamental to keep the immune system in check and avoid a chronic status of inflammation. As they act as negative modulators of TLR signaling pathways, miRNAs have been recently involved in the control of the inflammatory response. However, their role in the context of endotoxin tolerance is just beginning to be explored. We here show that miR-146b is upregulated in human monocytes tolerized by LPS, IL-10, or TGFβ priming and demonstrate that its transcription is driven by STAT3 and RUNX3, key factors downstream of IL-10 and TGFβ signaling. Our study also found that IFNγ, known to revert LPS tolerant state, inhibits miR-146b expression. Finally, we provide evidence that miR-146b levels have a profound effect on the tolerant state, thus candidating miR-146b as a molecular mediator of endotoxin tolerance.
Collapse
|
250
|
Zhu F, Li X, Jiang Y, Zhu H, Zhang H, Zhang C, Zhao Y, Luo F. GdCl3 suppresses the malignant potential of hepatocellular carcinoma by inhibiting the expression of CD206 in tumor‑associated macrophages. Oncol Rep 2015; 34:2643-55. [PMID: 26352004 DOI: 10.3892/or.2015.4268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, we aimed to ascertain whether there is a correlation between CD206 expression in tumor associated-macrophages (TAMs) and the prognosis of primary hepatocellular carcinomas (HCC) and we investigated the effect of GdCl3 on HCC. The expression of CD206 in HCC tumor tissues and peri-carcinoma tissues was measured using an array for liver tissues. The effects of GdCl3 on CD206 expression were examined in stimulated RAW264.7 cells. Target gene expression was evaluated by RT-PCR, western blotting and immunohistochemistry. The transwell system was used to assess the invasiveness of HCC cells. Finally, we established a mouse model for HCC using N-nitrosodiethylamine (DEN) to determine the effect of GdCl3 on HCC. Liver tissue array analysis revealed that CD206 was highly expressed in the HCC tissues compared to the level in peri-carcinoma tissue. We found that GdCl3 suppressed the expression of CD206 in the M2 macrophage phenotype of stimulated RAW264.7 cells with an IC10 value of 0.07 µg/µl. In addition, GdCl3 also induced cell apoptosis in the RAW264.7 cells. Addition of GdCl3 into the culture medium of RAW264.7 cells markedly reduced the invasive ability of Hepa1-6 cells compared to the control cells. Accordingly, GdCl3 treatment increased the expression of the epithelial-mesenchymal transition (EMT)-related protein E-cadherin while expression of N-cadherin, TWIST and Snail was reduced in IL-4-stimulated cells. Moreover, GdCl3 treatment inhibited HCC progression in DEN-induced HCC mice, possibly by downregulating CD206. Our findings indicate that CD206 is a potential biomarker for predicting HCC prognosis and that GdCl3 suppresses HCC progression by downregulating the expression of CD206 in TAMs.
Collapse
Affiliation(s)
- Fangyu Zhu
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiangnan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yong Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haoran Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haolong Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengyao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|