201
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
202
|
The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep 2016; 6:20574. [PMID: 26837847 PMCID: PMC4738343 DOI: 10.1038/srep20574] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Bladder cancer causes an estimated 150,000 deaths per year worldwide. Although 15% of the recurrent bladder cancer becomes an invasive type, currently used targeted therapy for malignant bladder cancer is still not efficient. We focused on the miR-130 family (miR-130b, miR-301a, and miR-301b) that was significantly upregulated in bladder cancer specimens than that of the normal urothelial specimens. We analyzed the functional significance of miR-130 family using a 5637 bladder cancer cell line and revealed that miR-130 family of inhibitors suppressed cell migration and invasion by downregulating focal adhesion kinase (FAK) and Akt phosphorylation. Mechanistic analyses indicate that the miR-130 family directly targets phosphatase and tensin homolog deleted from chromosome 10 (PTEN), resulting in the upregulation of FAK and Akt phosphorylation. In clinical bladder cancer specimens, downregulation of PTEN was found to be closely correlated with miR-130 family expression levels. Overall, the miR-130 family has a crucial role in malignant progression of bladder cancer and thus the miR-130 family could be a promising therapeutic target for invasive bladder cancer.
Collapse
|
203
|
MicroRNA-135b, a HSF1 target, promotes tumor invasion and metastasis by regulating RECK and EVI5 in hepatocellular carcinoma. Oncotarget 2016; 6:2421-33. [PMID: 25537516 PMCID: PMC4385861 DOI: 10.18632/oncotarget.2965] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) often localize to chromosomal fragile sites and are associated with cancer. In this study, we screened for the aberrant and functional miRNAs in the regions of copy number alterations (CNAs) in hepatocellular carcinoma (HCC), and found that miR-135b was frequently amplified and upregulated in HCC tissues. The expression level of miR-135b was inversely correlated with the occurrence of tumor capsules. In addition, miR-135b promoted HCC cell migration and invasion in vitro and metastasis in vivo. The reversion-inducing-cysteine-rich protein with kazal motifs (RECK) and ecotropic viral integration site 5 (EVI5) were identified as the direct and functional targets of miR-135b in HCC. Furthermore, we observed that heat shock transcription factor 1 (HSF1) directly activated miR-135b expression, consequently enhancing HCC cell motility and invasiveness. The newly identified HSF1/miR-135b/RECK&EVI5 axis provides novel insight into the mechanisms of HCC metastasis, which may facilitate the development of new therapeutics against HCC.
Collapse
|
204
|
Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016; 238:141-51. [PMID: 26414675 PMCID: PMC4832380 DOI: 10.1002/path.4645] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.
Collapse
|
205
|
Studies of Tumor Suppressor Genes via Chromosome Engineering. Cancers (Basel) 2015; 8:cancers8010004. [PMID: 26729168 PMCID: PMC4728451 DOI: 10.3390/cancers8010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT) is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.
Collapse
|
206
|
Wang B, Shen ZL, Gao ZD, Zhao G, Wang CY, Yang Y, Zhang JZ, Yan YC, Shen C, Jiang KW, Ye YJ, Wang S. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle 2015; 14:1046-58. [PMID: 25602366 DOI: 10.1080/15384101.2015.1007767] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor growth cascade is a complicated and multistep process with numerous obstacles. Until recently, evidences have shown the involvement of microRNAs (miRNAs) in tumorigenesis and tumor progression of various cancers, including colorectal cancer (CRC). In this study, we explored the role of miR-194 and its downstream pathway in CRC. We acquired data through miRNA microarray profiles, showing that the expression of miR-194 was significantly suppressed in CRC tissues compared with corresponding noncancerous tissues. Decreased miR-194 expression was obviously associated with tumor size and tumor differentiation, as well as TNM stage. Both Kaplan-Meier and multivariate survival analysis showed that downregulated miR-194 was associated with overall survival. Moreover, functional assays indicated that overexpression of miR-194 in CRC cell lines inhibited cell proliferation both in vitro and in vivo. In addition, using dual-luciferase reporter gene assay, we found MAP4K4 was the direct target of miR-194. Silencing of MAP4K4 resulted in similar biological behavior changes to that of overexpression of miR-194. We also observed through Human Gene Expression Array that MDM2 was one of the downstream targets of MAP4K4. Knockdown of MAP4K4 downregulated MDM2 expression through transcription factor c-Jun binding to the -1063 to -1057 bp of the promoter. These results suggest that miR-194, regulating the MAP4K4/c-Jun/MDM2 signaling pathway, might act as a tumor suppressor and serve as a novel target for CRC prevention and therapy.
Collapse
Affiliation(s)
- Bo Wang
- a Department of Gastroenterological Surgery ; Peking University People's Hospital ; Beijing , PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
|
208
|
Abba M, Patil N, Leupold JH, Allgayer H. MicroRNAs-from metastasis prediction to metastasis prevention? Mol Cell Oncol 2015; 3:e1074336. [PMID: 27308596 DOI: 10.1080/23723556.2015.1074336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 10/22/2022]
Abstract
Recently, we suggested the microRNA (miR) landscape defining metastasis. The first miR-driven network orchestrating invasion, intravasation, and metastasis was confirmed independently across several malignancies, suggesting a rather general principle for metastasis regulation. We hope that our data will stimulate the field in terms of further hypothesis generation, metastasis prediction, and metastasis prevention.
Collapse
Affiliation(s)
- Mohammed Abba
- Department of Experimental Surgery, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany
| | - Nitin Patil
- Department of Experimental Surgery, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany
| | - Jörg Hendrik Leupold
- Department of Experimental Surgery, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany
| | - Heike Allgayer
- Department of Experimental Surgery, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135 Mannheim, Ruprecht Karl University of Heidelberg, Germany
| |
Collapse
|
209
|
Palma S, Zwenger AO, Croce MV, Abba MC, Lacunza E. From Molecular Biology to Clinical Trials: Toward Personalized Colorectal Cancer Therapy. Clin Colorectal Cancer 2015; 15:104-15. [PMID: 26777471 DOI: 10.1016/j.clcc.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/30/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
During the past years, molecular studies through high-throughput technologies have led to the confirmation of critical alterations in colorectal cancer (CRC) and the discovery of some new ones, including mutations, DNA methylations, and structural chromosomal changes. These genomic alterations might act in concert to dysregulate specific signaling pathways that normally exert their functions on critical cell phenotypes, including the regulation of cellular metabolism, proliferation, differentiation, and survival. Targeted therapy against key components of altered signaling pathways has allowed an improvement in CRC treatment. However, a significant percentage of patients with CRC and metastatic CRC will not benefit from these targeted therapies and will be restricted to systemic chemotherapy. Mechanisms of resistance have been associated with specific gene alterations. To fully understand the nature and significance of the genetic and epigenetic defects in CRC that might favor a tumor evading a given therapy, much work remains. Therefore, a dynamic link between basic molecular research and preclinical studies, which ultimately constitute the prelude to standardized therapies, is very important to provide better and more effective treatments against CRC. We present an updated revision of the main molecular features of CRC and their associated therapies currently under study in clinical trials. Moreover, we performed an unsupervised classification of CRC clinical trials with the aim of obtaining an overview of the future perspectives of preclinical studies.
Collapse
Affiliation(s)
- Sabina Palma
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ariel O Zwenger
- Servicio de Oncología, Hospital Provincial Neuquén, Neuquén, Argentina
| | - María V Croce
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín C Abba
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ezequiel Lacunza
- CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
210
|
Influence of miRNA-106b and miRNA-135a on butyrate-regulated expression of p21 and Cyclin D2 in human colon adenoma cells. GENES AND NUTRITION 2015; 10:50. [PMID: 26559563 DOI: 10.1007/s12263-015-0500-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/27/2015] [Indexed: 12/23/2022]
Abstract
Epigenetic and posttranslational modifications of the expression of cell cycle-relevant genes or proteins like p21, e.g., by miRNAs are crucial mechanisms in the development or prevention of colon cancer. The present study investigated the influence of butyrate and trichostatin A (TSA) as histone deacetylase inhibitors on the expression of colon cancer-relevant miRNA (miR-135a, miR-135b, miR-24, miR-106b, miR-let-7a) in LT97 colon adenoma cells as a model of an early stage of colon carcinogenesis. The impact of distinct miRNAs (miR-106b, miR-135a) on butyrate-mediated regulation of p21 and Cyclin D2 gene and protein expression as well as the effect on LT97 cell proliferation (non-transfected, miR-106b and miR-135a mimic transfected) was analyzed. Butyrate and partial TSA reduced the expression of miR-135a, miR-135b, miR-24 and miR-let-7a (~0.5-fold, 24 h) and miR-24, miR-106b and miR-let-7a (~0.5-0.7-fold, 48 h) in LT97 cells. Levels of p21 mRNA and protein were significantly increased by butyrate and TSA (~threefold and 4.5-fold, respectively, 24 h) in non-transfected but not in miR-106b transfected LT97 cells. Levels of Cyclin D2 mRNA were significantly reduced by butyrate and TSA (~0.3-fold, 24 h) in non-transfected and miR-135a-transfected LT97 cells, whereas protein levels were predominantly not influenced. MiR-106b and miR-135a significantly reduced butyrate-/TSA-mediated inhibition of LT97 cell proliferation (72 h). These results indicate that butyrate is able to modify colon cancer-relevant miRNAs like miR-106b and miR-135a which are involved in the regulation of cell cycle-relevant genes like p21 and might influence inhibition of adenoma cell proliferation.
Collapse
|
211
|
Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21:11709-11739. [PMID: 26556998 PMCID: PMC4631972 DOI: 10.3748/wjg.v21.i41.11709] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.
Collapse
|
212
|
Fetahu IS, Tennakoon S, Lines KE, Gröschel C, Aggarwal A, Mesteri I, Baumgartner-Parzer S, Mader RM, Thakker RV, Kállay E. miR-135b- and miR-146b-dependent silencing of calcium-sensing receptor expression in colorectal tumors. Int J Cancer 2015; 138:137-45. [PMID: 26178670 DOI: 10.1002/ijc.29681] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/20/2015] [Accepted: 07/02/2015] [Indexed: 01/24/2023]
Abstract
Studies have shown that the calcium-sensing receptor (CaSR) mediates the antitumorigenic effects of calcium against colorectal cancer (CRC). Expression of the CaSR in colorectal tumors is often reduced. We have reported previously that silencing of CaSR in CRC is caused in part by methylation of CaSR promoter 2 and loss of histone acetylation. We investigated the impact of aberrant microRNA expression on loss of CaSR expression. A microarray study in two Caco-2 subclones (Caco2/AQ and Caco2/15) that have similar genetic background, but different CaSR expression levels (Caco2/AQ expressing more CaSR than Caco2/15), identified 22 differentially expressed microRNAs that potentially target the CaSR. We validated these results by performing gain- and loss-of-function studies with the top candidates: miR-9, miR-27a, miR-135b, and miR-146b. Modulation of miR-135b or miR-146b expression by mimicking or inhibiting their expression regulated CaSR protein levels in two different colon cancer cell lines: Caco2/AQ (moderate endogenous CaSR expression) and HT29 (low endogenous CaSR levels). Inhibition of miR-135b and miR-146b expression led to high CaSR levels and significantly reduced proliferation. In samples of colorectal tumors we observed overexpression of miR-135b and miR-146b, and this correlated inversely with CaSR expression (miR-135b: r = -0.684, p < 0.001 and miR-146b: r = -0.448, p < 0.001), supporting our in vitro findings. We demonstrate that miR-135b and miR-146b target the CaSR and reduce its expression in colorectal tumors, reducing the antiproliferative and prodifferentiating actions of calcium. This provides a new approach for finding means to prevent CaSR loss, developing better treatment strategies for CRC.
Collapse
Affiliation(s)
- Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Center for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Charlotte Gröschel
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Ildiko Mesteri
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Center for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
213
|
Nana-Sinkam SP, Croce CM. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol 2015; 15:445. [PMID: 25315999 PMCID: PMC4709998 DOI: 10.1186/s13059-014-0445-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the past two decades, microRNAs have emerged as crucial mediators of organ development and human disease. Here, we discuss their role as drivers or suppressors of the hallmarks of cancer during tumorigenesis and progression, in defining interpatient heterogeneity and the promise of therapeutic application.
Collapse
|
214
|
PTEN regulates RPA1 and protects DNA replication forks. Cell Res 2015; 25:1189-204. [PMID: 26403191 DOI: 10.1038/cr.2015.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/07/2023] Open
Abstract
Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication.
Collapse
|
215
|
Xu L, Ziegelbauer J, Wang R, Wu WW, Shen RF, Juhl H, Zhang Y, Rosenberg A. Distinct Profiles for Mitochondrial t-RNAs and Small Nucleolar RNAs in Locally Invasive and Metastatic Colorectal Cancer. Clin Cancer Res 2015; 22:773-84. [PMID: 26384739 DOI: 10.1158/1078-0432.ccr-15-0737] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To gain insight into factors involved in tumor progression and metastasis, we examined the role of noncoding RNAs in the biologic characteristics of colorectal carcinoma, in paired samples of tumor together with normal mucosa from the same colorectal carcinoma patient. The tumor and healthy tissue samples were collected and stored under stringent conditions, thereby minimizing warm ischemic time. EXPERIMENTAL DESIGN We focused particularly on distinctions among high-stage tumors and tumors with known metastases, performing RNA-Seq analysis that quantifies transcript abundance and identifies novel transcripts. RESULTS In comparing 35 colorectal carcinomas, including 9 metastatic tumors (metastases to lymph nodes and lymphatic vessels), with their matched healthy control mucosa, we found a distinct signature of mitochondrial transfer RNAs (MT-tRNA) and small nucleolar RNAs (snoRNA) for metastatic and high-stage colorectal carcinoma. We also found the following: (i) MT-TF (phenylalanine) and snord12B expression correlated with a substantial number of miRNAs and mRNAs in 14 colorectal carcinomas examined; (ii) an miRNA signature of oxidative stress, hypoxia, and a shift to glycolytic metabolism in 14 colorectal carcinomas, regardless of grade and stage; and (iii) heterogeneous MT-tRNA/snoRNA fingerprints for 35 pairs. CONCLUSIONS These findings could potentially assist in more accurate and predictive staging of colorectal carcinoma, including identification of those colorectal carcinomas likely to metastasize.
Collapse
Affiliation(s)
- Lai Xu
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | | | - Rong Wang
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland
| | | | - Yaqin Zhang
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | | |
Collapse
|
216
|
Ohashi W, Hattori K, Hattori Y. Control of Macrophage Dynamics as a Potential Therapeutic Approach for Clinical Disorders Involving Chronic Inflammation. J Pharmacol Exp Ther 2015; 354:240-250. [DOI: 10.1124/jpet.115.225540] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
217
|
Sclafani F, Chau I, Cunningham D, Peckitt C, Lampis A, Hahne JC, Braconi C, Tabernero J, Glimelius B, Cervantes A, Begum R, Gonzalez De Castro D, Hulkki Wilson S, Eltahir Z, Wotherspoon A, Tait D, Brown G, Oates J, Valeri N. Prognostic role of the LCS6 KRAS variant in locally advanced rectal cancer: results of the EXPERT-C trial. Ann Oncol 2015; 26:1936-1941. [PMID: 26162609 PMCID: PMC4551162 DOI: 10.1093/annonc/mdv285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lethal-7 (let-7) is a tumour suppressor miRNA which acts by down-regulating several oncogenes including KRAS. A single-nucleotide polymorphism (rs61764370, T > G base substitution) in the let-7 complementary site 6 (LCS-6) of KRAS mRNA has been shown to predict prognosis in early-stage colorectal cancer (CRC) and benefit from anti-epidermal growth factor receptor monoclonal antibodies in metastatic CRC. PATIENTS AND METHODS We analysed rs61764370 in EXPERT-C, a randomised phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery and adjuvant CAPOX plus or minus cetuximab in locally advanced rectal cancer. DNA was isolated from formalin-fixed paraffin-embedded tumour tissue and genotyped using a PCR-based commercially available assay. Kaplan-Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms. RESULTS A total of 155/164 (94.5%) patients were successfully analysed, of whom 123 (79.4%) and 32 (20.6%) had the LCS-6 TT and LCS-6 TG genotype, respectively. Carriers of the G allele were found to have a statistically significantly higher rate of complete response (CR) after neoadjuvant therapy (28.1% versus 10.6%; P = 0.020) and a trend for better 5-year progression-free survival (PFS) [77.4% versus 64.5%: hazard ratio (HR) 0.56; P = 0.152] and overall survival (OS) rates (80.3% versus 71.9%: HR 0.59; P = 0.234). Both CR and survival outcomes were independent of the use of cetuximab. The negative prognostic effect associated with KRAS mutation appeared to be stronger in patients with the LCS-6 TT genotype (HR PFS 1.70, P = 0.078; HR OS 1.79, P = 0.082) compared with those with the LCS-6 TG genotype (HR PFS 1.33, P = 0.713; HR OS 1.01, P = 0.995). CONCLUSION This analysis suggests that rs61764370 may be a biomarker of response to neoadjuvant treatment and an indicator of favourable outcome in locally advanced rectal cancer possibly by mitigating the poor prognosis of KRAS mutation. In this setting, however, this polymorphism does not appear to predict cetuximab benefit.
Collapse
Affiliation(s)
- F Sclafani
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - I Chau
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - D Cunningham
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - C Peckitt
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - A Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton
| | - J C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton
| | - C Braconi
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey; Division of Cancer Therapeutics, The Institute of Cancer Research, London and Sutton, UK
| | - J Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B Glimelius
- Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | - A Cervantes
- Department of Hematology and Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - R Begum
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - D Gonzalez De Castro
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - S Hulkki Wilson
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - Z Eltahir
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - A Wotherspoon
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - D Tait
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - G Brown
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - J Oates
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey
| | - N Valeri
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey; Division of Molecular Pathology, The Institute of Cancer Research, London and Sutton.
| |
Collapse
|
218
|
Xu Y, Zhao S, Cui M, Wang Q. Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10294-10304. [PMID: 26617737 PMCID: PMC4637552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/26/2015] [Indexed: 06/05/2023]
Abstract
More and more evidence has confirmed that dysregulation of microRNAs (miRNAs) can conduce to the progression of human cancers. Previous studied have shown that dysregulation of miR-135b is in varieties of tumors. However, the roles of miR-135b in cervical cancer remain unknown. Therefore, our aim of this study was to explore the biological function and molecular mechanism of miR-135b in cervical cancer cell lines, discussing whether it could be a therapeutic biomarker of cervical cancer in the future. The MTT assay and ELISA-Brdu assay were used to assess cell proliferation. Cell cycle was detected by flow cytometry. Real-time quantitative polymerase chain reaction (PCR) and Western blot analyses were used to detect expressions of cyclin D1, p21, p27 and FOXO1. In our study, we found that miR-135b is up-regulated in cervical cancer cell lines. Down-regulation of miR-135b evidently inhibited proliferation and arrested cell cycle in cervical cancer cells. Bioinformatics analysis predicted that the FOXO1 was a potential target gene of miR-135b. Besides, miR-135b inhibition significantly increased expressions of the cyclin-dependent kinase inhibitors, p21(/CIP1) and p27(/KIP1), and decreased expression of cyclin D1. However, the high level of miR-135b was associated with increased expression of FOXO1 in cervical cancer cells. Further study by luciferase reporter assay demonstrated that miR-135b could directly target FOXO1. Down-regulation of FOXO1 in cervical cancer cells transfected with miR-135b inhibitor partially reversed its inhibitory effects. In conclusion, down-regulation of miR-135b inhibited cell growth in cervical cancer cells by up-regulation of FOXO1.
Collapse
Affiliation(s)
- Yue Xu
- Department of Obstetrics and Gynecology, The Eastern Division of The First Hospital of Jilin UniversityChangchun 130031, People’s Republic of China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin UniversityChangchun 130041, People’s Republic of China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin UniversityChangchun 130041, People’s Republic of China
| | - Qiang Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin UniversityChangchun 130041, People’s Republic of China
| |
Collapse
|
219
|
Kwon MS, Kim Y, Lee S, Namkung J, Yun T, Yi SG, Han S, Kang M, Kim SW, Jang JY, Park T. Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer. BMC Genomics 2015; 16 Suppl 9:S4. [PMID: 26328610 PMCID: PMC4547403 DOI: 10.1186/1471-2164-16-s9-s4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background microRNA (miRNA) expression plays an influential role in cancer classification and malignancy, and miRNAs are feasible as alternative diagnostic markers for pancreatic cancer, a highly aggressive neoplasm with silent early symptoms, high metastatic potential, and resistance to conventional therapies. Methods In this study, we evaluated the benefits of multi-omics data analysis by integrating miRNA and mRNA expression data in pancreatic cancer. Using support vector machine (SVM) modelling and leave-one-out cross validation (LOOCV), we evaluated the diagnostic performance of single- or multi-markers based on miRNA and mRNA expression profiles from 104 PDAC tissues and 17 benign pancreatic tissues. For selecting even more reliable and robust markers, we performed validation by independent datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) data depositories. For validation, miRNA activity was estimated by miRNA-target gene interaction and mRNA expression datasets in pancreatic cancer. Results Using a comprehensive identification approach, we successfully identified 705 multi-markers having powerful diagnostic performance for PDAC. In addition, these marker candidates annotated with cancer pathways using gene ontology analysis. Conclusions Our prediction models have strong potential for the diagnosis of pancreatic cancer.
Collapse
|
220
|
Exploring miRNA-Associated Signatures with Diagnostic Relevance in Glioblastoma Multiforme and Breast Cancer Patients. J Clin Med 2015; 4:1612-30. [PMID: 26287251 PMCID: PMC4555080 DOI: 10.3390/jcm4081612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
The growing attention that non-coding RNAs have attracted in the field of cancer research in recent years is undeniable. Whether investigated as prospective therapeutic targets or prognostic indicators or diagnostic biomarkers, the clinical relevance of these molecules is starting to emerge. In addition, identification of non-coding RNAs in a plethora of body fluids has further positioned these molecules as attractive non-invasive biomarkers. This review will first provide an overview of the synthetic cascade that leads to the production of the small non-coding RNAs microRNAs (miRNAs) and presents their strengths as biomarkers of disease. Our interest will next be directed at exploring the diagnostic utility of miRNAs in two types of cancer: the brain tumor glioblastoma multiforme (GBM) and breast cancer. Finally, we will discuss additional clinical implications associated with miRNA detection as well as introduce other non-coding RNAs that have generated recent interest in the cancer research community.
Collapse
|
221
|
Jafri MA, Zaidi SK, Ansari SA, Al-Qahtani MH, Shay JW. MicroRNAs as potential drug targets for therapeutic intervention in colorectal cancer. Expert Opin Ther Targets 2015; 19:1705-23. [PMID: 26189482 DOI: 10.1517/14728222.2015.1069816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small (19 - 22 nucleotide), non-protein-coding RNA segments that function as master regulators of hundreds of genes simultaneously in both normal and malignant cells. In colorectal cancer (CRC) miRNAs are deregulated and have critical roles in initiation and progression of CRC by interacting with various oncogenes and tumor suppressor genes including APC, KRAS and p53, or by modulating downstream signal transduction pathways. Numerous promising miRNAs have emerged as potential drug targets for therapeutic intervention and possible candidates for replacement therapy in CRC. AREAS COVERED In this review the authors summarize the available information on miRNAs and their role in CRC. The authors point out specific miRNAs as potential drug targets and those having a significant role in gene activation and gene silencing during the process of CRC development, to highlight their importance as possible therapeutic candidates for the treatment of CRC. EXPERT OPINION Targeting miRNAs provides an emerging opportunity to develop effective miRNA-based replacement therapy or antagonists to alter expression in colon cancer patient tumors. However, the biggest challenge is to overcome obstacles associated with pharmacokinetics, delivery and toxicity in order to translate the potential of miRNAs into efficacious anticancer drugs.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia
| | - Shakeel Ahmed Ansari
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia
| | | | - Jerry W Shay
- a 1 King Abdulaziz University, Center of Excellence in Genomic Medicine Research , Jeddah, Saudi Arabia.,b 2 UT Southwestern Medical Center, Department of Cell Biology , Dallas, TX, USA +1 214 648 4201 ; +1 214 648 5814 ;
| |
Collapse
|
222
|
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite advancements and improvements in surgical and medical treatments, the survival rate of lung cancer patients remains frustratingly poor. Local control for early-stage nonsmall cell lung cancer (NSCLC) has dramatically improved over the last decades for both operable and inoperable patients. However, the molecular mechanisms of NSCLC invasion leading to regional and distant disease spread remain poorly understood. Here, we identify microRNA-224 (miR-224) to be significantly up-regulated in NSCLC tissues, particularly in resected NSCLC metastasis. Increased miR-224 expression promotes cell migration, invasion, and proliferation by directly targeting the tumor suppressors TNFα-induced protein 1 (TNFAIP1) and SMAD4. In concordance with in vitro studies, mouse xenograft studies validated that miR-224 functions as a potent oncogenic miRNA in NSCLC in vivo. Moreover, we found promoter hypomethylation and activated ERK signaling to be involved in the regulation of miR-224 expression in NSCLC. Up-regulated miR-224, thus, facilitates tumor progression by shifting the equilibrium of the partially antagonist functions of SMAD4 and TNFAIP1 toward enhanced invasion and growth in NSCLC. Our findings indicate that targeting miR-224 could be effective in the treatment of certain lung cancer patients.
Collapse
|
223
|
Zhu M, Xu Y, Ge M, Gui Z, Yan F. Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis. Cancer Sci 2015; 106:833-9. [PMID: 25940709 PMCID: PMC4520634 DOI: 10.1111/cas.12689] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/11/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
The UHRF1 protein is pivotal for DNA methylation and heterochromatin formation, leading to decreased expressions of tumor suppressor genes and contributing to tumorigenesis. However, the factors that modulate UHRF1 expression in colorectal cancer (CRC) remain unclear. Here we showed that, compared with corresponding normal tissues, UHRF1 was upregulated and microRNA-9 (miR-9) was downregulated in CRC tissues. The expression of UHRF1 was inversely correlated with overall survival rates of patients with CRC. Overexpression of miR-9 in CRC cell lines significantly attenuated CRC cell proliferation and promoted cell apoptosis. The expression of UHRF1 was markedly reduced in pre-miR-9 transfected CRC cells. Using luciferase reporter assay, we confirmed that miR-9 was a direct upstream regulator of UHRF1. Finally, analysis of miR-9 and UHRF1 levels in human CRC tissues revealed that expression of miR-9 was inversely correlated with UHRF1 expression. Collectively, our results offer in vitro validation of the concept that miR-9 could repress the expression of UHRF1, and function as a tumor-suppressive microRNA in CRC. It may serve as a prognostic and therapeutic marker for CRC.
Collapse
Affiliation(s)
- Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China.,Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yijun Xu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ge
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China
| | - Zhen Gui
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China
| |
Collapse
|
224
|
Li J, Liang H, Bai M, Ning T, Wang C, Fan Q, Wang Y, Fu Z, Wang N, Liu R, Zen K, Zhang CY, Chen X, Ba Y. miR-135b Promotes Cancer Progression by Targeting Transforming Growth Factor Beta Receptor II (TGFBR2) in Colorectal Cancer. PLoS One 2015; 10:e0130194. [PMID: 26061281 PMCID: PMC4462589 DOI: 10.1371/journal.pone.0130194] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/16/2015] [Indexed: 01/01/2023] Open
Abstract
The transforming growth factor beta (TGF-β) signaling pathway is a tumor-suppressor pathway that is commonly inactivated in colorectal cancer (CRC). The inactivation of TGFBR2 is the most common genetic event affecting the TGF-β signaling pathway. However, the mechanism by which cancer cells downregulate TGFBR2 is unclear. In this study, we found that the TGFBR2 protein levels were consistently upregulated in CRC tissues, whereas its mRNA levels varied in these tissues, suggesting that a post-transcriptional mechanism is involved in the regulation of TGFBR2. Because microRNAs (miRNAs) are powerful post-transcriptional regulators of gene expression, we performed bioinformatic analyses to search for miRNAs that potentially target TGFBR2. We identified the specific targeting site of miR-135b in the 3'-untranslated region (3'-UTR) of TGFBR2. We further identified an inverse correlation between the levels of miR-135b and TGFBR2 protein, but not mRNA, in CRC tissue samples. By overexpressing or silencing miR-135b in CRC cells, we experimentally validated that miR-135b directly binds to the 3'-UTR of the TGFBR2 transcript and regulates TGFBR2 expression. Furthermore, the biological consequences of the targeting of TGFBR2 by miR-135b were examined using in vitro cell proliferation and apoptosis assays. We demonstrated that miR-135b exerted a tumor-promoting effect by inducing the proliferation and inhibiting the apoptosis of CRC cells via the negative regulation of TGFBR2 expression. Taken together, our findings provide the first evidence supporting the role of miR-135b as an oncogene in CRC via the inhibition of TGFBR2 translation.
Collapse
Affiliation(s)
- Jialu Li
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tiyuanbei, Tianjin, 300060, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Hongwei Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tiyuanbei, Tianjin, 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tiyuanbei, Tianjin, 300060, China
| | - Cheng Wang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tiyuanbei, Tianjin, 300060, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yanbo Wang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zheng Fu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Nan Wang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tiyuanbei, Tianjin, 300060, China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- * E-mail: (YB); (XC); (CYZ)
| | - Xi Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- * E-mail: (YB); (XC); (CYZ)
| | - Yi Ba
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- * E-mail: (YB); (XC); (CYZ)
| |
Collapse
|
225
|
Bai R, Weng C, Dong H, Li S, Chen G, Xu Z. MicroRNA-409-3p suppresses colorectal cancer invasion and metastasis partly by targeting GAB1 expression. Int J Cancer 2015; 137:2310-22. [PMID: 25991585 DOI: 10.1002/ijc.29607] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/03/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and its metastasis accounts for the majority of deaths. However, the molecular mechanisms underlying CRC progression are not well characterized. In this study, we identified miR-409-3p as a tumor suppressor of CRC. MiR-409-3p expression was significantly downregulated in CRC tissue compared to adjacent non-tumor tissue, and reduced miR-409-3p expression was correlated with CRC metastasis. In vitro and in vivo studies revealed that miR-409-3p negatively regulated CRC metastatic capacities, including suppressing cancer cell migration, invasion and metastasis. To explore the mechanism of action of miR-409-3p, we adopted a pathway and pathophysiological event-based target screening and validation approach, and found nine known metastasis-related genes as potential targets. The 3'-UTR binding assays between the candidates and miR-409-3p suggested that only GAB1, NR4A2 and LMO4 were directly regulated by the miRNA. However, endogenous expression analysis revealed that only GAB1 was modulated by miR-409-3p in CRC cells at both the mRNA and protein levels. Furthermore, we provided evidence to conclude that GAB1 was partially responsible for miR-409-3p-mediated metastasis. Taken together, our data demonstrate that miR-409-3p is a metastatic suppressor, and post-transcriptional inhibition of the oncoprotein GAB1 is one of the mechanisms of action of this miRNA. Our finding suggests miR-409-3p might be a novel target for CRC metastasis treatment.
Collapse
Affiliation(s)
- Rongpan Bai
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Weng
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| | - Haojie Dong
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Li
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
226
|
miR-582-5p inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3. Tumour Biol 2015; 36:8309-16. [PMID: 26002580 DOI: 10.1007/s13277-015-3582-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 05/18/2015] [Indexed: 12/30/2022] Open
Abstract
microRNAs play an important role in the progression of hepatocellular carcinoma (HCC). In this study, we found that miR-582-5p expression was downregulated in hepatoma tissues and HCC cell lines. Upregulation of miR-582-5p reduced colony number, inhibited cellular proliferation, and arrested cell cycle in G0/G1 phase. When miR-582-5p was inhibited, the colony number was increased and cellular proliferation and cell cycle were promoted. Further studies showed that miR-582-5p regulated the progression of HCC through directly inhibiting the expression of CDK1 and AKT3, and indirectly inhibiting the expression of cyclinD1.
Collapse
|
227
|
Li Z, Chen B, Feng M, Ouyang H, Zheng M, Ye Q, Nie Q, Zhang X. MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1. Sci Rep 2015; 5:10294. [PMID: 25980475 PMCID: PMC4434839 DOI: 10.1038/srep10294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause several different leukemia-like proliferative diseases in the hemopoietic system of chickens. Here, we investigated the transcriptome profiles and miRNA expression profiles of ALV-J-infected and uninfected chicken spleens to identify the genes and miRNAs related to ALV-J invasion. In total, 252 genes and 167 miRNAs were differentially expressed in ALV-J-infected spleens compared to control uninfected spleens. miR-23b expression was up-regulated in ALV-J-infected spleens compared with the control spleens, and transcriptome analysis revealed that the expression of interferon regulatory factor 1 (IRF1) was down-regulated in ALV-J-infected spleens compared to uninfected spleens. A dual-luciferase reporter assay showed that IRF1 was a direct target of miR-23b. miR-23b overexpression significantly (P = 0.0022) decreased IRF1 mRNA levels and repressed IRF1-3′-UTR reporter activity. In vitro experiments revealed that miR-23b overexpression strengthened ALV-J replication, whereas miR-23b loss of function inhibited ALV-J replication. IRF1 overexpression inhibited ALV-J replication, and IRF1 knockdown enhanced ALV-J replication. Moreover, IRF1 overexpression significantly (P = 0.0014) increased IFN-β expression. In conclusion, these results suggested that miR-23b may play an important role in ALV-J replication by targeting IRF1.
Collapse
Affiliation(s)
- Zhenhui Li
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Biao Chen
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Min Feng
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Hongjia Ouyang
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qiao Ye
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiquan Zhang
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
228
|
Predictive and prognostic biomarkers for neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Crit Rev Oncol Hematol 2015; 96:67-80. [PMID: 26032919 DOI: 10.1016/j.critrevonc.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 02/08/2023] Open
Abstract
Locally advanced rectal cancer is regularly treated with trimodality therapy consisting of neoadjuvant chemoradiation, surgery and adjuvant chemotherapy. There is a need for biomarkers to assess treatment response, and aid in stratification of patient risk to adapt and personalise components of the therapy. Currently, pathological stage and tumour regression grade are used to assess response. Experimental markers include proteins involved in cell proliferation, apoptosis, angiogenesis, the epithelial to mesenchymal transition and microsatellite instability. As yet, no single marker is sufficiently robust to have clinical utility. Microarrays that screen a tumour for multiple promising candidate markers, gene expression and microRNA profiling will likely have higher yield and it is expected that a combination or panel of markers would prove most useful. Moving forward, utilising serial samples of circulating tumour cells or circulating nucleic acids can potentially allow us to demonstrate tumour heterogeneity, document mutational changes and subsequently measure treatment response.
Collapse
|
229
|
Lin SY, Chang HH, Lai YH, Lin CH, Chen MH, Chang GC, Tsai MF, Chen JJW. Digoxin Suppresses Tumor Malignancy through Inhibiting Multiple Src-Related Signaling Pathways in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0123305. [PMID: 25955608 PMCID: PMC4425490 DOI: 10.1371/journal.pone.0123305] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer is the predominant type of lung cancer, resulting in high mortality worldwide. Digoxin, a cardiac glycoside, has recently been suggested to be a novel chemotherapeutic agent. Src is an oncogene that plays an important role in cancer progression and is therefore a potential target for cancer therapy. Here, we investigated whether digoxin could suppress lung cancer progression through the inhibition of Src activity. The effects of digoxin on lung cancer cell functions were investigated using colony formation, migration and invasion assays. Western blotting and qPCR assays were used to analyze the mRNA and protein expression levels of Src and its downstream proteins, and a cell viability assay was used to measure cellular cytotoxicity effects. The results of the cell function assays revealed that digoxin inhibited the proliferation, invasion, migration, and colony formation of A549 lung cancer cells. Similar effects of digoxin were also observed in other lung cancer cell lines. Furthermore, we found that digoxin significantly suppressed Src activity and its protein expression in a dose- and time-dependent manner as well as reduced EGFR and STAT3 activity. Our data suggest that digoxin is a potential anticancer agent that may suppress lung cancer progression through inhibiting Src and the activity of related proteins.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiu-Hui Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Hua Lai
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Hsuan Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Feng Tsai
- Department of Molecular Biotechnology, Dayeh University, Changhua, Taiwan
- * E-mail: (MFT); (JJWC)
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (MFT); (JJWC)
| |
Collapse
|
230
|
MicroRNAs as Regulator of Signaling Networks in Metastatic Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:823620. [PMID: 26064956 PMCID: PMC4438141 DOI: 10.1155/2015/823620] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed.
Collapse
|
231
|
Bu P, Wang L, Chen KY, Rakhilin N, Sun J, Closa A, Tung KL, King S, Kristine Varanko A, Xu Y, Huan Chen J, Zessin AS, Shealy J, Cummings B, Hsu D, Lipkin SM, Moreno V, Gümüş ZH, Shen X. miR-1269 promotes metastasis and forms a positive feedback loop with TGF-β. Nat Commun 2015; 6:6879. [PMID: 25872451 PMCID: PMC4399006 DOI: 10.1038/ncomms7879] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/09/2015] [Indexed: 01/29/2023] Open
Abstract
As patient survival drops precipitously from early-stage cancers to late-stage and metastatic cancers, microRNAs that promote relapse and metastasis can serve as prognostic and predictive markers as well as therapeutic targets for chemoprevention. Here we show that miR-1269a promotes colorectal cancer (CRC) metastasis and forms a positive feedback loop with TGF-β signalling. miR-1269a is upregulated in late-stage CRCs, and long-term monitoring of 100 stage II CRC patients revealed that miR-1269a expression in their surgically removed primary tumours is strongly associated with risk of CRC relapse and metastasis. Consistent with clinical observations, miR-1269a significantly increases the ability of CRC cells to invade and metastasize in vivo. TGF-β activates miR-1269 via Sox4, while miR-1269a enhances TGF-β signalling by targeting Smad7 and HOXD10, hence forming a positive feedback loop. Our findings suggest that miR-1269a is a potential marker to inform adjuvant chemotherapy decisions for CRC patients and a potential therapeutic target to deter metastasis.
Collapse
Affiliation(s)
- Pengcheng Bu
- 1] School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA [2] Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Lihua Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Nikolai Rakhilin
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Jian Sun
- 1] Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, New York 10021, USA [2] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, USA
| | - Adria Closa
- 1] Department of Clinical Sciences, University of Barcelona, Barcelona 08193, Spain [2] Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, CIBERESP, Barcelona E08907, Spain
| | - Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Sarah King
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | - Yitian Xu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Joyce Huan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Amelia S Zessin
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina 27710, USA
| | - James Shealy
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Bethany Cummings
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | - David Hsu
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina 27710, USA
| | - Steven M Lipkin
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, New York 10021, USA
| | - Victor Moreno
- 1] Department of Clinical Sciences, University of Barcelona, Barcelona 08193, Spain [2] Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, CIBERESP, Barcelona E08907, Spain
| | - Zeynep H Gümüş
- 1] Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10065, USA [2] Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10065, USA
| | - Xiling Shen
- 1] School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA [2] Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA [3] Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
232
|
Aakula A, Leivonen SK, Hintsanen P, Aittokallio T, Ceder Y, Børresen-Dale AL, Perälä M, Östling P, Kallioniemi O. MicroRNA-135b regulates ERα, AR and HIF1AN and affects breast and prostate cancer cell growth. Mol Oncol 2015; 9:1287-300. [PMID: 25907805 DOI: 10.1016/j.molonc.2015.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) regulate a wide range of cellular signaling pathways and biological processes in both physiological and pathological states such as cancer. We have previously identified miR-135b as a direct regulator of androgen receptor (AR) protein level in prostate cancer (PCa). We wanted to further explore the relationship of miR-135b to hormonal receptors, particularly estrogen receptor α (ERα). Here we show that miR-135b expression is lower in ERα-positive breast tumors as compared to ERα-negative samples in two independent breast cancer (BCa) patient cohorts (101 and 1302 samples). Additionally, the miR-135b expression is higher in AR-low PCa patient samples (47 samples). We identify ERα as a novel miR-135b target by demonstrating miR-135b binding to the 3'UTR of the ERα and decreased ERα protein and mRNA level upon miR-135b overexpression in BCa cells. MiR-135b reduces proliferation of ERα-positive BCa cells MCF-7 and BT-474 as well as AR-positive PCa cells LNCaP and 22Rv1 when grown in 2D. To identify other genes regulated by miR-135b we performed gene expression studies and found a link to the hypoxia inducible factor 1α (HIF1α) pathway. We show that miR-135b influences the protein level of the inhibitor for hypoxia inducible factor 1α (HIF1AN) and is able to bind to HIF1AN 3'UTR. Our study demonstrates that miR-135b regulates ERα, AR and HIF1AN protein levels through interaction with their 3'UTR regions, and proliferation in ERα-positive BCa and AR-positive PCa cells.
Collapse
Affiliation(s)
- Anna Aakula
- Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland; VTT Technical Research Centre of Finland, Medical Biotechnology, Turku, Finland; Turku Centre for Biotechnology, University of Turku, Turku, Finland.
| | - Suvi-Katri Leivonen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland
| | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Merja Perälä
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku, Finland
| | - Päivi Östling
- Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland
| |
Collapse
|
233
|
He Y, Wang J, Wang J, Yung VYW, Hsu E, Li A, Kang Q, Ma J, Han Q, Jin P, Xing R, Lu Y, Sheng J. MicroRNA-135b regulates apoptosis and chemoresistance in colorectal cancer by targeting large tumor suppressor kinase 2. Am J Cancer Res 2015; 5:1382-1395. [PMID: 26101704 PMCID: PMC4473317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023] Open
Abstract
Colorectal cancer remains the third most common cause of death from cancer worldwide. MicroRNA emerges as a good area of research for current cancer therapy. Here, we identified miR-135b to be a contributor to anti-apoptosis and chemoresistance in colorectal cancer. We observed high levels of miR-135b in colorectal cancer cell lines and clinical tissues, compared to colorectal epithelium cell line and noncancerous tissues. Furthermore, enforced expression of miR-135b attenuated doxorubicin-induced apoptosis in colorectal cells. (Doxorubicin alone can trigger significant apoptosis). In elucidating the molecular mechanism by which miR-135b participate in the regulation of apoptosis and chemoresistance in colorectal cancer, we discovered that large tumor suppressor kinase 2 (LATS2) is a direct target of miR-135b. The role of miR-135b was confirmed in colorectal tumor xenograft models. The growth of established tumors was suppressed by an inhibition of miR-135b expression and enhanced apoptosis was further assessed by TUNEL assay. Taken together, our results reveal that miR-135b and LATS2 axis may be a novel therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Yuqi He
- Department of Gastroenterology, Beijing Military General HospitalBeijing 100700, China
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao UniversityQingdao 266021, China
| | - Jiheng Wang
- Department of Gastroenterology, Beijing Military General HospitalBeijing 100700, China
| | - Victoria Yee-Wa Yung
- Department of Gastroenterology & Hepatology, University of California Davis, UC Davis Medical CenterSacramento, CA 95817
| | - Emily Hsu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los AngelesLos Angeles, CA 90095
| | - Aiqin Li
- Department of Gastroenterology, Beijing Military General HospitalBeijing 100700, China
| | - Qian Kang
- Department of Gastroenterology, Beijing Military General HospitalBeijing 100700, China
| | - Junbiao Ma
- Department of Coloproctology, The People’s Hospital of Renqiu CityRenqiu 062550, China
| | - Qingfeng Han
- Department of Coloproctology, The People’s Hospital of Renqiu CityRenqiu 062550, China
| | - Peng Jin
- Department of Gastroenterology, Beijing Military General HospitalBeijing 100700, China
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing, 100142, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing, 100142, China
| | - Jianqiu Sheng
- Department of Gastroenterology, Beijing Military General HospitalBeijing 100700, China
| |
Collapse
|
234
|
Shang Y, Wang LQ, Guo QY, Shi TL. MicroRNA-196a overexpression promotes cell proliferation and inhibits cell apoptosis through PTEN/Akt/FOXO1 pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2461-2472. [PMID: 26045752 PMCID: PMC4440061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which play a critical role in regulating varieties of the biological and pathologic processes. MiR-196a has been reported to take part in tumorigenic progression of osteosarcoma (OS). However, the effects of miR-196a on OS are still unclear. The objective of this study is to investigate the molecular mechanism of miR-196a in osteosarcoma cells. In the present study, the expression of miR-196a in OS cell lines was detected by real-time PCR. We found that the expression level of miR-196a was markedly up-regulated in osteosarcoma cell lines compared with normal osteoblastic cells. Then, the miR-196a mimic was transiently transfected into MG63 and U2OS cells using Lipofectamine™ 2000 reagent. Subsequently, the MTT and Brdu-ELISA results showed that up-regulation of miR-196a promoted the cell viability and proliferation. Our results also showed that miR-196a mimic accelerated cell cycle progression of MG63 and U2OS cells by down regulation of p21 and p27, and upregulation of cyclin D1. In addition, overexpression of miR-196a suppressed apoptosis of MG63 and U2OS cells due to increasing BCL2L2 and MCL-1 expressions, and then inactivating caspase-3. Eventually, the effect of miR-196a mimic on the PTEN/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was explored by Western blot. From our results, transfection of miR-196a decreased the expression of PTEN and increased the phosphorylation of PI3K and Akt. Taken together, miR-196a should be an oncogene in osteosarcoma. The possible mechanism was that overexpression of miR-196a promoted proliferation of MG63 and U2OS cells by modulating the PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yong Shang
- Department of Orthopaedics, Air Force General Hospital of PLABeijing 100142, People’s Republic of China
| | - Li-Qing Wang
- Department of Chronic Diseases, Haidian Center For Disease Control and PreventionBeijing 100142, People’s Republic of China
| | - Quan-Yi Guo
- Institute of Orthopaedics, Chinese PLA General HospitalBeijing 100142, People’s Republic of China
| | - Tu-Long Shi
- Department of Orthopaedics, Air Force General Hospital of PLABeijing 100142, People’s Republic of China
| |
Collapse
|
235
|
miR-19b regulates hTERT mRNA expression through targeting PITX1 mRNA in melanoma cells. Sci Rep 2015; 5:8201. [PMID: 25643913 PMCID: PMC4314654 DOI: 10.1038/srep08201] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays a crucial role in cancer development. We previously identified paired-like homeodomain1 (PITX1) as an hTERT suppressor gene. However, the underlying mechanisms that are involved in the regulation of PITX1 remain unknown. Here, we report that the microRNA-19b (miR-19b) regulates hTERT expression and cell proliferation through inhibition of PITX1. Compared with normal melanocyte cells, miR-19b expression was higher in most melanoma cells and was accompanied by downregulation of PITX1. Moreover, overexpression of miR-19b inhibited PITX1 mRNA translation through a miR-19b binding site within the 3'UTR of the PITX1 mRNA. Our combined findings indicate the participation of miR-19b as a novel upstream effector of hTERT transcription via direct targeting of PITX1.
Collapse
|
236
|
Derouet MF, Liu G, Darling GE. MiR-145 expression accelerates esophageal adenocarcinoma progression by enhancing cell invasion and anoikis resistance. PLoS One 2014; 9:e115589. [PMID: 25551563 PMCID: PMC4281214 DOI: 10.1371/journal.pone.0115589] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/29/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Carcinoma of the esophagus has a high case fatality ratio and is now the 6th most common cause of cancer deaths in the world. We previously conducted a study to profile the expression of miRNAs in esophageal adenocarcinoma (EAC) pre and post induction therapy. Of the miRNAs differentially expressed post induction chemoradiation, miR-145, a known tumor suppressor miRNA, was upregulated 8-fold following induction therapy, however, its expression was associated with shorter disease-free survival. This unexpected result was explored in this current study. METHODS In order to study the role of miR-145 in EAC, miRNA-145 was overexpressed in 3 EAC cell lines (OE33, FLO-1, SK-GT-4) and one ESCC cell line (KYSE-410). After validation of the expression of miR-145, hallmarks of cancer such as cell proliferation, resistance to chemotherapy drugs or anoikis, and cell invasion were analyzed. RESULTS There were no differences in cell proliferation and 5 FU resistance between miR145 cell lines and the control cell lines. miR-145 expression also had no effect on cisplatin resistance in two of three cell lines (OE33 and FLO-1), but miR-145 appeared to protect SK-GT-4 cells against cisplatin treatment. However, there was a significant difference in cell invasion, cell adhesion and resistance to anoikis. All three EAC miR-145 cell lines invaded more than their respective controls. Similarly, OE33 and SK-GT-4 miR-145 cell lines were able to survive longer in a suspension state. DISCUSSION While expression of miR-145 in ESCC stopped proliferation and invasion, expression of miR-145 in EAC cells enhanced invasion and anoikis resistance. Although more work is required to understand how miR-145 conveys these effects, expression of miR-145 appears to promote EAC progression by enhancing invasion and protection against anoikis, which could in turn facilitate distant metastasis.
Collapse
Affiliation(s)
- Mathieu Francois Derouet
- Latner Thoracic Surgery Research Laboratories, Toronto Discovery Medical Tower, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| | - Geoffrey Liu
- Department of Medical Oncology, Princess Margaret Hospital, University Health Network Toronto, Ontario, Canada
| | - Gail Elizabeth Darling
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
237
|
Xiang S, Fang J, Wang S, Deng B, Zhu L. MicroRNA‑135b regulates the stability of PTEN and promotes glycolysis by targeting USP13 in human colorectal cancers. Oncol Rep 2014; 33:1342-8. [PMID: 25571954 DOI: 10.3892/or.2014.3694] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/30/2014] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs has been reported to be involved in the progression of human colorectal cancers (CRCs). Loss of the adenomatous polyposis coli (APC) gene is a common initiating event in CRCs. PTEN inactivation by mutation or allelic loss also occurs in CRCs. miR‑135b was reported to be upregulated in CRCs and its overexpression was due to APC/β‑catenin and PTEN/PI3K pathway deregulation. APC was proven to be a target of miR‑135b and forms a feedback loop with miR‑135b. In the present study, we found that ubiquitin‑specific peptidase 13 (USP13) was a target of miR‑135b. miR‑135b downregulated the expression of USP13, and reduced the stability of PTEN. miR‑135b promoted cell proliferation and glycolysis that could be reversed by the overexpression of USP13 or PTEN. Moreover, knockdown of USP13 upregulated the levels of endogenous miR‑135b, but not those in CRC cells with PTEN mutation. The results showed positive feedback loops between miR‑135b and PTEN inactivation in CRCs.
Collapse
Affiliation(s)
- Shijun Xiang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jiaqing Fang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Shuyun Wang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Biao Deng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Lin Zhu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
238
|
Wang WT, Chen YQ. Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol 2014; 7:86. [PMID: 25476853 PMCID: PMC4269921 DOI: 10.1186/s13045-014-0086-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of circulating microRNAs (miRNAs) in body fluids, an increasing number of studies have focused on their potential as non-invasive biomarkers and as therapeutic targets or tools for many diseases, particularly for cancers. Because of their stability, miRNAs are easily detectable in body fluids. Extracellular miRNAs have potential as biomarkers for the prediction and prognosis of cancer. Moreover, they also enable communication between cells within the tumor microenvironment, thereby influencing tumorigenesis. In this review, we summarize the progresses made over the past decade regarding circulating miRNAs, from the development of detection methods to their clinical application as biomarkers and therapeutic tools for cancer. We also discuss the advantages and limitations of different detection methods and the pathways of circulating miRNAs in cell-cell communication, in addition to their clinical pharmacokinetics and toxicity in human organs. Finally, we highlight the potential of circulating miRNAs in clinical applications for cancer.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
239
|
Wang H, Wang L, Wu Z, Sun R, Jin H, Ma J, Liu L, Ling R, Yi J, Wang L, Bian J, Chen J, Li N, Yuan S, Yun J. Three dysregulated microRNAs in serum as novel biomarkers for gastric cancer screening. Med Oncol 2014; 31:298. [PMID: 25367852 DOI: 10.1007/s12032-014-0298-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
Gastric cancer (GC) is one of the most threatening diseases. The symptoms of GC are complex and hard to detect, which also contribute to the poor prognosis of GC. Besides, the current diagnosis for GC is expensive and invasive. Thus, a fast, noninvasive biomarker is urgently needed for GC screening. MicroRNAs (miRNAs) are small noncoding RNAs, which are involved in a great variety of pathological processes, particularly carcinogenesis. MiRNAs are stable in gastric juice, plasma as well as serum, which facilitate it to be a promising biomarker for cancer. In this study, we selected three novel miRNAs, i.e., miR-233, miR-16, and miR-100, to investigate their potential diagnostic value in GC screening. A total of 50 GC patients and 47 healthy controls were involved in this study. Blood serum samples were collected; RNAs were extracted and normalized with U6 snRNA as the internal control; qRT-PCR was performed for relative expression of target miRNAs. Levels of miRNAs expression were compared by Student's t test for the comparison between two groups, and one-way ANOVA was used for multiple comparisons. The expression of miR-223, miR-16, and miR-100 was all significantly higher in GC patients than controls (all P < 0.001). All the tested miRNAs were manifested to be valuable biomarkers for GC. Relative expression of these miRNAs was significantly correlated with clinical characteristics of GC patients, such as TNM stage (P = 0.036 for miR-223; P < 0.001 for miR-100), metastatic status (P = 0.045 for miR-223; P = 0.031 for miR-16; P = 0.006 for miR-100), tumor size (P = 0.042 for miR-223; P = 0.031 for miR-16; P < 0.001 for miR-100), and differentiation grade (P = 0.036 for miR-223; P = 0.030 for miR-16; P = 0.034 for miR-100). However, in T classification, which considered both tumor size and direct extent of primary tumor, the difference in target miRNAs expression was not significant. In summary, we confirmed the diagnostic value of serum miR-223, miR-16, and miR-100 in GC. Significantly elevated expression of the three miRNAs was also observed in advanced GC patients, which suggested their availability in cancer staging.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Orang AV, Barzegari A. MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy. Asian Pac J Cancer Prev 2014; 15:6989-99. [DOI: 10.7314/apjcp.2014.15.17.6989] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|