201
|
Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. J Biol Chem 2021; 297:101218. [PMID: 34562452 PMCID: PMC8494237 DOI: 10.1016/j.jbc.2021.101218] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.
Collapse
Affiliation(s)
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | - Uli Schmitz
- Gilead Sciences, Inc, Foster City, California, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
202
|
Fukuzawa K, Kato K, Watanabe C, Kawashima Y, Handa Y, Yamamoto A, Watanabe K, Ohyama T, Kamisaka K, Takaya D, Honma T. Special Features of COVID-19 in the FMODB: Fragment Molecular Orbital Calculations and Interaction Energy Analysis of SARS-CoV-2-Related Proteins. J Chem Inf Model 2021; 61:4594-4612. [PMID: 34506132 PMCID: PMC8457332 DOI: 10.1021/acs.jcim.1c00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of coronavirus (known as COVID-19), the virus causing the current pandemic. There are ongoing research studies to develop effective therapeutics and vaccines against COVID-19 using various methods and many results have been published. The structure-based drug design of SARS-CoV-2-related proteins is promising, however, reliable information regarding the structural and intra- and intermolecular interactions is required. We have conducted studies based on the fragment molecular orbital (FMO) method for calculating the electronic structures of protein complexes and analyzing their quantitative molecular interactions. This enables us to extensively analyze the molecular interactions in residues or functional group units acting inside the protein complexes. Such precise interaction data are available in the FMO database (FMODB) (https://drugdesign.riken.jp/FMODB/). Since April 2020, we have performed several FMO calculations on the structures of SARS-CoV-2-related proteins registered in the Protein Data Bank. We have published the results of 681 structures, including three structural proteins and 11 nonstructural proteins, on the COVID-19 special page (as of June 8, 2021). In this paper, we describe the entire COVID-19 special page of the FMODB and discuss the calculation results for various proteins. These data not only aid the interpretation of experimentally determined structures but also the understanding of protein functions, which is useful for rational drug design for COVID-19.
Collapse
Affiliation(s)
- Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
- Department of Biomolecular Engineering, Graduate
School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki,
Aoba-ku, Sendai 980-8579, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka
819-0395, Japan
- Center for Molecular Systems (CMS),
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
- JST PRESTO, 4-1-8, Honcho,
Kawaguchi, Saitama 332-0012, Japan
| | - Yusuke Kawashima
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuma Handa
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ami Yamamoto
- Department of Physical Chemistry, School of Pharmacy
and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences,
Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871,
Japan
- Graduate School of Pharmaceutical Sciences,
Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675,
Japan
| | - Tatsuya Ohyama
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
- Frontier Institute for Biomolecular Engineering
Research (FIBER), Konan University, 7-1-20,
Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kikuko Kamisaka
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| | - Daisuke Takaya
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics
Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045,
Japan
| |
Collapse
|
203
|
Farmani AR, Mahdavinezhad F, Scagnolari C, Kouhestani M, Mohammadi S, Ai J, Shoormeij MH, Rezaei N. An overview on tumor treating fields (TTFields) technology as a new potential subsidiary biophysical treatment for COVID-19. Drug Deliv Transl Res 2021; 12:1605-1615. [PMID: 34542840 PMCID: PMC8451390 DOI: 10.1007/s13346-021-01067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Affiliated to Istituto Pasteur Italia, Viale Di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Mohammadi
- Department of Plastic Engineering, Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
204
|
Sonkar C, Doharey PK, Rathore AS, Singh V, Kashyap D, Sahoo AK, Mittal N, Sharma B, Jha HC. Repurposing of gastric cancer drugs against COVID-19. Comput Biol Med 2021; 137:104826. [PMID: 34537409 PMCID: PMC8420180 DOI: 10.1016/j.compbiomed.2021.104826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Corona Virus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become a global pandemic. Additionally, the SARS-CoV-2 infection in the patients of Gastric Cancer (GC; the third leading cause of death in the world) pose a great challenge for the health management of the patients. Since there have been uncertainties to develop a new drug against COVID-19, there is an urgent need for repurposing drugs that can target key proteins of both SARS-CoV-2 and GC. The SARS-CoV-2-RdRp protein contains the NiRAN domain, which is known to have kinase-like folds. A docking study of the FDA approved drugs against GC was performed using AutoDock 4.2 and Glide Schrodinger suite 2019 against SARS-CoV-2-RdRp protein. MMGBSA and MD simulation studies were performed to investigate the binding and stability of the inhibitors with the target protein. In this study, we have found 12 kinase inhibitors with high binding energies namely Baricitinib, Brepocitinib, Decernotinib, Fasudil, Filgotinib, GSK2606414, Peficitinib, Ruxolitinib, Tofacitinib, Upadacitinib, Pamapimod and Ibrutinib. These FDA approved drugs against GC can play a key role in the treatment of COVID-19 patients along with GC as comorbidity. We also hypothesize that JAK, ITK, Rho-associated kinases, FGFR2, FYN, PERK, TYK2, p38-MAPK and SYK kinases can be considered as key therapeutic targets in COVID-19 treatment. Taken altogether, we have proposed the SARS-CoV-2-RdRp as a potential therapeutic target through in-silico studies. However, further in-vitro and in-vivo studies are required for the validation of the proposed targets and drugs for the treatment of COVID-19 patients already suffering from GC.
Collapse
Affiliation(s)
- Charu Sonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Pawan Kumar Doharey
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, U.P., India
| | - Anuranjan Singh Rathore
- SASTRA Deemed to Be University, Trichy-Tanjore Road, Thirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211015, U.P., India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211015, U.P., India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, U.P., India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.
| |
Collapse
|
205
|
Enisamium Inhibits SARS-CoV-2 RNA Synthesis. Biomedicines 2021; 9:biomedicines9091254. [PMID: 34572438 PMCID: PMC8467925 DOI: 10.3390/biomedicines9091254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called coronavirus disease 2019 (COVID-19). While control of the SARS-CoV-2 spread partly depends on vaccine-induced or naturally acquired protective herd immunity, antiviral strategies are still needed to manage COVID-19. Enisamium is an inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. In vitro, enisamium acts through metabolite VR17-04 and inhibits the activity of the influenza A virus RNA polymerase. Here we show that enisamium can inhibit coronavirus infections in NHBE and Caco-2 cells, and the activity of the SARS-CoV-2 RNA polymerase in vitro. Docking and molecular dynamics simulations provide insight into the mechanism of action and indicate that enisamium metabolite VR17-04 prevents GTP and UTP incorporation. Overall, these results suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis in vitro.
Collapse
|
206
|
Pitsillou E, Liang J, Yu Meng Huang H, Hung A, Karagiannis TC. In silico investigation to identify potential small molecule inhibitors of the RNA-dependent RNA polymerase (RdRp) nidovirus RdRp-associated nucleotidyltransferase domain. Chem Phys Lett 2021; 779:138889. [PMID: 34305155 PMCID: PMC8273049 DOI: 10.1016/j.cplett.2021.138889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) is a promising target for antiviral drugs. In this study, a chemical library (n = 300) was screened against the nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain. Blind docking was performed using a selection of 30 compounds and nine ligands were chosen based on their docking scores, safety profile, and availability. Using cluster analysis on a 10 microsecond molecular dynamics simulation trajectory (from D.E. Shaw Research), the compounds were docked to the different conformations. On the basis of our modelling studies, oleuropein was identified as a potential lead compound.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Helen Yu Meng Huang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia,Corresponding author
| |
Collapse
|
207
|
Wang B, Svetlov D, Artsimovitch I. NMPylation and de-NMPylation of SARS-CoV-2 nsp9 by the NiRAN domain. Nucleic Acids Res 2021; 49:8822-8835. [PMID: 34352100 PMCID: PMC8385902 DOI: 10.1093/nar/gkab677] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
208
|
Tanimoto S, Itoh SG, Okumura H. "Bucket brigade" using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Biophys J 2021; 120:3615-3627. [PMID: 34339634 PMCID: PMC8324383 DOI: 10.1016/j.bpj.2021.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising drug target for coronavirus disease 2019 (COVID-19) because it plays the most important role in the replication of the RNA genome. Nucleotide analogs such as remdesivir and favipiravir are thought to interfere with the RNA replication by RdRp. More specifically, they are expected to compete with nucleoside triphosphates, such as ATP. However, the process in which these drug molecules and nucleoside triphosphates are taken up by RdRp remains unknown. In this study, we performed all-atom molecular dynamics simulations to clarify the recognition mechanism of RdRp for these drug molecules and ATP that were at a distance. The ligand recognition ability of RdRp decreased in the order of remdesivir, favipiravir, and ATP. We also identified six recognition paths. Three of them were commonly found in all ligands, and the remaining three paths were ligand-dependent ones. In the common two paths, it was observed that the multiple lysine residues of RdRp carried the ligands to the binding site like a "bucket brigade." In the remaining common path, the ligands directly reached the binding site. Our findings contribute to the understanding of the efficient ligand recognition by RdRp at the atomic level.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
209
|
Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28:740-746. [PMID: 34381216 DOI: 10.1101/2021.05.11.443555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 05/20/2023]
Abstract
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Collapse
Affiliation(s)
- Florian Kabinger
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Carina Stiller
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
210
|
Dynamic properties of SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases studied by molecular dynamics simulations. Chem Phys Lett 2021; 778:138819. [PMID: 34127868 PMCID: PMC8189741 DOI: 10.1016/j.cplett.2021.138819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023]
Abstract
One of the promising drug targets against COVID-19 is an RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The tertiary structures of the SARS-CoV-2 and SARS-CoV RdRps are almost the same. However, the RNA-synthesizing activity of the SARS-CoV RdRp is higher than that of the SARS-CoV-2 RdRp. We performed molecular dynamics simulations and found differences in their dynamic properties. In the SARS-CoV RdRp, motifs A-G, which form the active site, are up to 63% closer to each other. We also observed cooperative domain motion in the SARS-CoV RdRp. Such dynamic differences may cause the activity differences between the two RdRps.
Collapse
|
211
|
Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28:740-746. [PMID: 34381216 PMCID: PMC8437801 DOI: 10.1038/s41594-021-00651-0] [Citation(s) in RCA: 405] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Collapse
Affiliation(s)
- Florian Kabinger
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Carina Stiller
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
212
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
213
|
Littler DR, Mohanty B, Lowery SA, Colson RN, Gully BS, Perlman S, Scanlon MJ, Rossjohn J. Binding of a pyrimidine RNA base-mimic to SARS-CoV-2 nonstructural protein 9. J Biol Chem 2021; 297:101018. [PMID: 34331944 PMCID: PMC8317483 DOI: 10.1016/j.jbc.2021.101018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The coronaviral nonstructural protein 9 (Nsp9) is essential for viral replication; it is the primary substrate of Nsp12's pseudokinase domain within the viral replication transcription complex, an association that also recruits other components during different stages of RNA reproduction. In the unmodified state, Nsp9 forms an obligate homodimer via an essential GxxxG protein-interaction motif, but its ssRNA-binding mechanism remains unknown. Using structural biological techniques, here we show that a base-mimicking compound identified from a small molecule fragment screen engages Nsp9 via a tetrameric Pi-Pi stacking interaction that induces the formation of a parallel trimer-of-dimers. This oligomerization mechanism allows an interchange of "latching" N-termini, the charges of which contribute to a series of electropositive channels that suggests a potential interface for viral RNA. The identified pyrrolo-pyrimidine compound may also serve as a potential starting point for the development of compounds seeking to probe Nsp9's role within SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Dene R Littler
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Sydney Analytical Core Research Facility, The University of Sydney, Sydney, New South Wales, Australia; ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shea A Lowery
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Rhys N Colson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin S Gully
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.
| |
Collapse
|
214
|
The nucleotide addition cycle of the SARS-CoV-2 polymerase. Cell Rep 2021; 36:109650. [PMID: 34433083 PMCID: PMC8367775 DOI: 10.1016/j.celrep.2021.109650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide evidence that the RNA-dependent RNA polymerase (RdRp) uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enable the direct observation of coronavirus polymerase deep and long-lived backtracking that is strongly stimulated by secondary structures in the template. The framework we present here elucidates one of the most important structure-dynamics-function relationships in human health today and will form the grounds for understanding the regulation of this complex.
Collapse
|
215
|
Jochheim FA, Tegunov D, Hillen HS, Schmitzová J, Kokic G, Dienemann C, Cramer P. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun Biol 2021; 4:999. [PMID: 34429502 PMCID: PMC8385044 DOI: 10.1038/s42003-021-02529-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs.
Collapse
Affiliation(s)
- Florian A Jochheim
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Dimitry Tegunov
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
216
|
Weber R, McCullagh M. Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase. J Phys Chem B 2021; 125:8787-8796. [PMID: 34328740 PMCID: PMC8353885 DOI: 10.1021/acs.jpcb.1c04528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/21/2021] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic has demonstrated the need to develop potent and transferable therapeutics to treat coronavirus infections. Numerous antiviral targets are being investigated, but nonstructural protein 13 (nsp13) stands out as a highly conserved and yet understudied target. Nsp13 is a superfamily 1 (SF1) helicase that translocates along and unwinds viral RNA in an ATP-dependent manner. Currently, there are no available structures of nsp13 from SARS-CoV-1 or SARS-CoV-2 with either ATP or RNA bound, which presents a significant hurdle to the rational design of therapeutics. To address this knowledge gap, we have built models of SARS-CoV-2 nsp13 in Apo, ATP, ssRNA and ssRNA+ATP substrate states. Using 30 μs of a Gaussian-accelerated molecular dynamics simulation (at least 6 μs per substrate state), these models were confirmed to maintain substrate binding poses that are similar to other SF1 helicases. A Gaussian mixture model and linear discriminant analysis structural clustering protocol was used to identify key structural states of the ATP-dependent RNA translocation mechanism. Namely, four RNA-nsp13 structures are identified that exhibit ATP-dependent populations and support the inchworm mechanism for translocation. These four states are characterized by different RNA-binding poses for motifs Ia, IV, and V and suggest a power stroke-like motion of domain 2A relative to domain 1A. This structural and mechanistic insight of nsp13 RNA translocation presents novel targets for the further development of antivirals.
Collapse
Affiliation(s)
- Ryan Weber
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074, United States
| |
Collapse
|
217
|
Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun 2021; 12:4848. [PMID: 34381037 DOI: 10.1101/2021.03.15.435326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/28/2021] [Indexed: 05/25/2023] Open
Abstract
There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.
Collapse
Affiliation(s)
- Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Setayesh Yadzani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | | | - Antony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - José Brandão-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Tyler Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rachael Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
218
|
Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun 2021; 12:4848. [PMID: 34381037 PMCID: PMC8358061 DOI: 10.1038/s41467-021-25166-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.
Collapse
Affiliation(s)
- Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Setayesh Yadzani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | | | - Antony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - José Brandão-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Tyler Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rachael Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
219
|
Identification of an Intramolecular Switch That Controls the Interaction of Helicase nsp10 with Membrane-Associated nsp12 of Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2021; 95:e0051821. [PMID: 34076477 DOI: 10.1128/jvi.00518-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A critical step in replication of positive-stranded RNA viruses is the assembly of replication and transcription complexes (RTC). We have recently mapped the nonstructural protein (nsp) interaction network of porcine reproductive and respiratory syndrome virus (PRRSV) and provided evidence by truncation mutagenesis that the recruitment of viral core replicase enzymes (nsp9 and nsp10) to membrane proteins (nsp2, nsp3, nsp5, and nsp12) is subject to regulation. Here, we went further to discover an intramolecular switch within the helicase nsp10 that controls its interaction with the membrane-associated protein nsp12. Deletion of nsp10 linker region amino acids 124 to 133, connecting domain 1B to 1A, led to complete relocalization and colocalization in the cells coexpressing nsp12. Moreover, single-amino-acid substitutions (e.g., nsp10 E131A and I132A) were sufficient to enable the nsp10-nsp12 interaction. Further proof came from membrane floatation assays that revealed a clear movement of nsp10 mutants, but not wild-type nsp10, toward the top of sucrose gradients in the presence of nsp12. Interestingly, the same mutations were not able to activate the nsp10-nsp2/3 interaction, suggesting a differential requirement for conformation. Reverse genetics analysis showed that PRRSV mutants carrying the single substitutions were not viable and were defective in subgenomic RNA (sgRNA) accumulation. Together, our results provide strong evidence for a regulated interaction between nsp10 and nsp12 and suggest an essential role for an orchestrated RTC assembly in sgRNA synthesis. IMPORTANCE Assembly of replication and transcription complexes (RTC) is a limiting step for viral RNA synthesis. The PRRSV RTC macromolecular complexes are comprised of mainly viral nonstructural replicase proteins (nsps), but how they come together remains elusive. We previously showed that viral helicase nsp10 interacts nsp12 in a regulated manner by truncation mutagenesis. Here, we revealed that the interaction is controlled by single residues within the domain linker region of nsp10. Moreover, the activation mutations lead to defects in viral sgRNA synthesis. Our results provide important insight into the mechanisms of PRRSV RTC assembly and regulation of viral sgRNA synthesis.
Collapse
|
220
|
Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. SCIENCE CHINA-LIFE SCIENCES 2021; 65:280-294. [PMID: 34387838 PMCID: PMC8362648 DOI: 10.1007/s11427-021-1964-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world. SARS-CoV-2 is an enveloped, plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotides. The SARS-CoV-2 genome encodes 29 proteins, including 16 nonstructural, 4 structural and 9 accessory proteins. To date, over 1,228 experimental structures of SARS-CoV-2 proteins have been deposited in the Protein Data Bank (PDB), including 16 protein structures, two functional domain structures of nucleocapsid (N) protein, and scores of complexes. Overall, they exhibit high similarity to SARS-CoV proteins. Here, we summarize the progress of structural and functional research on SARS-CoV-2 proteins. These studies provide structural and functional insights into proteins of SARS-CoV-2, and further elucidate the daedal relationship between different components at the atomic level in the viral life cycle, including attachment to the host cell, viral genome replication and transcription, genome packaging and assembly, and virus release. It is important to understand the structural and functional properties of SARS-CoV-2 proteins as it will facilitate the development of anti-CoV drugs and vaccines to prevent and control the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Chongzhi Bai
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Qiming Zhong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
221
|
Yazdani S, De Maio N, Ding Y, Shahani V, Goldman N, Schapira M. Genetic Variability of the SARS-CoV-2 Pocketome. J Proteome Res 2021; 20:4212-4215. [PMID: 34180678 PMCID: PMC8265533 DOI: 10.1021/acs.jproteome.1c00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 11/30/2022]
Abstract
In the absence of effective treatment, COVID-19 is likely to remain a global disease burden. Compounding this threat is the near certainty that novel coronaviruses with pandemic potential will emerge in years to come. Pan-coronavirus drugs-agents active against both SARS-CoV-2 and other coronaviruses-would address both threats. A strategy to develop such broad-spectrum inhibitors is to pharmacologically target binding sites on SARS-CoV-2 proteins that are highly conserved in other known coronaviruses, the assumption being that any selective pressure to keep a site conserved across past viruses will apply to future ones. Here we systematically mapped druggable binding pockets on the experimental structure of 15 SARS-CoV-2 proteins and analyzed their variation across 27 α- and β-coronaviruses and across thousands of SARS-CoV-2 samples from COVID-19 patients. We find that the two most conserved druggable sites are a pocket overlapping the RNA binding site of the helicase nsp13 and the catalytic site of the RNA-dependent RNA polymerase nsp12, both components of the viral replication-transcription complex. We present the data on a public web portal (https://www.thesgc.org/SARSCoV2_pocketome/), where users can interactively navigate individual protein structures and view the genetic variability of drug-binding pockets in 3D.
Collapse
Affiliation(s)
- Setayesh Yazdani
- Structural Genomics Consortium,
University of Toronto, Toronto, Ontario M5G 1L7,
Canada
| | - Nicola De Maio
- European Molecular Biology Laboratory,
European Bioinformatics Institute, Hinxton CB10 1SD,
United Kingdom
| | - Yining Ding
- Structural Genomics Consortium,
University of Toronto, Toronto, Ontario M5G 1L7,
Canada
| | | | - Nick Goldman
- European Molecular Biology Laboratory,
European Bioinformatics Institute, Hinxton CB10 1SD,
United Kingdom
| | - Matthieu Schapira
- Structural Genomics Consortium,
University of Toronto, Toronto, Ontario M5G 1L7,
Canada
- Department of Pharmacology and Toxicology,
University of Toronto, Toronto, Ontario M5S 1A8,
Canada
| |
Collapse
|
222
|
Cox RM, Plemper RK. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Curr Opin Virol 2021; 49:127-138. [PMID: 34130040 PMCID: PMC8173484 DOI: 10.1016/j.coviro.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a catastrophic impact on human health and the world economy. The response of the scientific community was unparalleled, and a combined global effort has resulted in the creation of vaccines in a shorter time frame than previously unimaginable. Reflecting this concerted effort, the structural analysis of the etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed with an unprecedented pace. Since the onset of the pandemic, over 1000 high-resolution structures of a broad range of SARS-CoV-2 proteins have been solved and made publicly available. These structures have aided in the identification of numerous potential druggable targets and have contributed to the design of different vaccine candidates. This opinion article will discuss the impact of high-resolution structures in understanding SARS-CoV-2 biology and explore their role in the development of vaccines and antivirals.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
223
|
Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 2021; 373:1142-1146. [PMID: 34315827 PMCID: PMC9836006 DOI: 10.1126/science.abi9310] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Coronavirus 3′-to-5′ exoribonuclease (ExoN), residing in the nonstructural protein (nsp) 10–nsp14 complex, boosts replication fidelity by proofreading RNA synthesis and is critical for the virus life cycle. ExoN also recognizes and excises nucleotide analog inhibitors incorporated into the nascent RNA, undermining the effectiveness of nucleotide analog–based antivirals. Here we present cryo–electron microscopy structures of both wild-type and mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp10-nsp14 in complex with an RNA substrate bearing a 3′-end mismatch at resolutions ranging from 2.5 to 3.9 angstroms. The structures reveal the molecular determinants of ExoN substrate specificity and offer insight into the molecular mechanisms of mismatch correction during coronavirus RNA synthesis. Our findings provide guidance for rational design of improved anticoronavirus therapies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Corresponding author. (C.L.); (B.L.); (Y.Y.)
| | - Wei Shi
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Scott T. Becker
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.,Corresponding author. (C.L.); (B.L.); (Y.Y.)
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.,Corresponding author. (C.L.); (B.L.); (Y.Y.)
| |
Collapse
|
224
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
225
|
Lin Z, Qing H, Li R, Zheng L, Yao H. Evolution trace of SARS-CoV-2 from January 19 to March 12, 2020, in the United States. J Med Virol 2021; 93:6595-6604. [PMID: 34292617 PMCID: PMC8426869 DOI: 10.1002/jmv.27225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023]
Abstract
As a kind of human betacoronavirus, SARS‐CoV‐2 has endangered globally public health. As of January 2021, the virus had resulted in 2,209,195 deaths. By studying the evolution trend and characteristics of 265 SARS‐CoV‐2 strains in the United States from January to March, it is found that the strains can be divided into six clades, USA clade‐1, USA clade‐2, USA clade‐3, USA clade‐4, USA clade‐5, and USA clade‐6, in which US clade‐1 may be the most ancestral clade, USA clade‐2 is an interim clade of USA clade‐1 and USA clade‐3, the other three clades have similar codon usage pattern, while USA clade‐6 is the newest and most adaptable clade. Mismatch analysis and protein alignment showed that the evolution of the clades arises from some special mutations in viral proteins, which may help the strain to invade, replicate, transcribe and so on. Compared with previous research and classifications, we suggest that clade O in GISAID should not be an independent clade and Wuhan‐Hu‐1 (EPI_ISL_402125) should not be an ancestral reference sequence. Our study decoded the evolutionary dynamic of SARS‐CoV‐2 in the early stage from the United States, which give some clues to infer the current evolution trend of SARS‐CoV‐2 and study the function of viral mutational protein. Basing on decoding the characteristics and evolution process of SARS‐CoV‐2 in the early stage of the USA, it is suggested that the clade O in GISAID should not be as an independent evolutionary clade by phylogenetic analysis or protein alignment. Secondly, Wuhan‐Hu‐1 (EPI_ISL_402125) should not be as an ancestral reference sequence and its candidate should be EPI_ISL_529213. Thirdly, many unique mutation sites in viral proteins were found to lay foundation to study the function of the mutational protein and to reveal the evolution trend of SARS‐CoV‐2 in coming days.
Collapse
Affiliation(s)
- Ziying Lin
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | - Hua Qing
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | - Rui Li
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | | | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| |
Collapse
|
226
|
Jiang Y, Tong K, Yao R, Zhou Y, Lin H, Du L, Jin Y, Cao L, Tan J, Zhang XD, Guo D, Pan JA, Peng X. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication. Cell Biosci 2021; 11:140. [PMID: 34294141 PMCID: PMC8295636 DOI: 10.1186/s13578-021-00644-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Analysis of viral protein-protein interactions is an essential step to uncover the viral protein functions and the molecular mechanism for the assembly of a viral protein complex. We employed a mammalian two-hybrid system to screen all the viral proteins of SARS-CoV-2 for the protein-protein interactions. RESULTS Our study detected 48 interactions, 14 of which were firstly reported here. Unlike Nsp1 of SARS-CoV, Nsp1 of SARS-CoV-2 has the most interacting partners among all the viral proteins and likely functions as a hub for the viral proteins. Five self-interactions were confirmed, and five interactions, Nsp1/Nsp3.1, Nsp3.1/N, Nsp3.2/Nsp12, Nsp10/Nsp14, and Nsp10/Nsp16, were determined to be positive bidirectionally. Using the replicon reporter system of SARS-CoV-2, we screened all viral Nsps for their impacts on the viral replication and revealed Nsp3.1, the N-terminus of Nsp3, significantly inhibited the replicon reporter gene expression. We found Nsp3 interacted with N through its acidic region at N-terminus, while N interacted with Nsp3 through its NTD, which is rich in the basic amino acids. Furthermore, using purified truncated N and Nsp3 proteins, we determined the direct interactions between Nsp3 and N protein. CONCLUSIONS Our findings provided a basis for understanding the functions of coronavirus proteins and supported the potential of interactions as the target for antiviral drug development.
Collapse
Affiliation(s)
- Yiling Jiang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Kuijie Tong
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Roubin Yao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Yuanze Zhou
- Nanjing CRYCISION Biotechnology Co., Ltd, Nanjing, 211100, China
| | - Hanwen Lin
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Liubing Du
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Yunyun Jin
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Liu Cao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Jingquan Tan
- Nanjing CRYCISION Biotechnology Co., Ltd, Nanjing, 211100, China
| | - Xing-Ding Zhang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China.
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangming Science City, Shenzhen, 518107, China.
| |
Collapse
|
227
|
Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021; 11:136. [PMID: 34281608 PMCID: PMC8287290 DOI: 10.1186/s13578-021-00643-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is an extremely contagious respiratory virus causing adult atypical pneumonia COVID-19 with severe acute respiratory syndrome (SARS). SARS-CoV-2 has a single-stranded, positive-sense RNA (+RNA) genome of ~ 29.9 kb and exhibits significant genetic shift from different isolates. After entering the susceptible cells expressing both ACE2 and TMPRSS2, the SARS-CoV-2 genome directly functions as an mRNA to translate two polyproteins from the ORF1a and ORF1b region, which are cleaved by two viral proteases into sixteen non-structural proteins (nsp1-16) to initiate viral genome replication and transcription. The SARS-CoV-2 genome also encodes four structural (S, E, M and N) and up to six accessory (3a, 6, 7a, 7b, 8, and 9b) proteins, but their translation requires newly synthesized individual subgenomic RNAs (sgRNA) in the infected cells. Synthesis of the full-length viral genomic RNA (gRNA) and sgRNAs are conducted inside double-membrane vesicles (DMVs) by the viral replication and transcription complex (RTC), which comprises nsp7, nsp8, nsp9, nsp12, nsp13 and a short RNA primer. To produce sgRNAs, RTC starts RNA synthesis from the highly structured gRNA 3' end and switches template at various transcription regulatory sequence (TRSB) sites along the gRNA body probably mediated by a long-distance RNA-RNA interaction. The TRS motif in the gRNA 5' leader (TRSL) is responsible for the RNA-RNA interaction with the TRSB upstream of each ORF and skipping of the viral genome in between them to produce individual sgRNAs. Abundance of individual sgRNAs and viral gRNA synthesized in the infected cells depend on the location and read-through efficiency of each TRSB. Although more studies are needed, the unprecedented COVID-19 pandemic has taught the world a painful lesson that is to invest and proactively prepare future emergence of other types of coronaviruses and any other possible biological horrors.
Collapse
Affiliation(s)
- Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Tian
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Yang
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
228
|
Gong P. Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses. Enzymes 2021; 49:215-233. [PMID: 34696833 DOI: 10.1016/bs.enz.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.
Collapse
Affiliation(s)
- Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| |
Collapse
|
229
|
de Leon VNO, Manzano JAH, Pilapil DYH, Fernandez RAT, Ching JKAR, Quimque MTJ, Agbay JCM, Notarte KIR, Macabeo APG. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis. J Genet Eng Biotechnol 2021; 19:104. [PMID: 34272647 PMCID: PMC8284420 DOI: 10.1186/s43141-021-00206-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accessing COVID-19 vaccines is a challenge despite successful clinical trials. This burdens the COVID-19 treatment gap, thereby requiring accelerated discovery of anti-SARS-CoV-2 agents. This study explored the potential of anti-HIV reverse transcriptase (RT) phytochemicals as inhibitors of SARS-CoV-2 non-structural proteins (nsps) by targeting in silico key sites in the structures of SARS-CoV-2 nsps. One hundred four anti-HIV phytochemicals were subjected to molecular docking with nsp3, 5, 10, 12, 13, 15, and 16. Top compounds in complex with the nsps were investigated further through molecular dynamics. The drug-likeness and ADME (absorption, distribution, metabolism, and excretion) properties of the top compounds were also predicted using SwissADME. Their toxicity was likewise determined using OSIRIS Property Explorer. RESULTS Among the top-scoring compounds, the polyphenolic functionalized natural products comprised of biflavones 1, 4, 11, 13, 14, 15; ellagitannin 9; and bisisoquinoline alkaloid 19 were multi-targeting and exhibited strongest binding affinities to at least two nsps (binding energy = - 7.7 to - 10.8 kcal/mol). The top ligands were stable in complex with their target nsps as determined by molecular dynamics. Several top-binding compounds were computationally druggable, showed good gastrointestinal absorptive property, and were also predicted to be non-toxic. CONCLUSIONS Twenty anti-HIV RT phytochemicals showed multi-targeting inhibitory potential against SARS-CoV-2 non-structural proteins 3, 5, 10, 12, 13, 15, and 16. Our results highlight the importance of polyhydroxylated aromatic substructures for effective attachment in the binding/catalytic sites of nsps involved in post-translational mechanism pathways. As such with the nsps playing vital roles in viral pathogenesis, our findings provide inspiration for the design and discovery of novel anti-COVID-19 drug prototypes.
Collapse
Affiliation(s)
- Von Novi O de Leon
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
| | - Joe Anthony H Manzano
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
| | - Delfin Yñigo H Pilapil
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
| | - Rey Arturo T Fernandez
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
| | - James Kyle Anthony R Ching
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
- Department of Chemistry, College of Science, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
| | - Mark Tristan J Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
- The Graduate School, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
- Chemistry Department, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Tibanga, 9200, Iligan City, Philippines
| | - Jay Carl M Agbay
- Chemistry Department, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Tibanga, 9200, Iligan City, Philippines
- Philippine Science High School - Central Mindanao Campus, 9217 Balo-I, Lanao del Norte, Philippines
| | - Kin Israel R Notarte
- Faculty of Medicine and Surgery, University of Santo Tomas, España Blvd., 1015, Manila, Philippines
| | - Allan Patrick G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015, Manila, Philippines.
| |
Collapse
|
230
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase. Biochem J 2021; 478:2425-2443. [PMID: 34198323 PMCID: PMC8286815 DOI: 10.1042/bcj20210200] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication–transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.
Collapse
|
231
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochem J 2021; 478:2405-2423. [PMID: 34198322 PMCID: PMC8286831 DOI: 10.1042/bcj20210201] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.
Collapse
|
232
|
Zia M, Muhammad S, Shafiq-urRehman, Bibi S, Abbasi SW, Al-Sehemi AG, Chaudhary AR, Bai FQ. Exploring the potential of novel phenolic compounds as potential therapeutic candidates against SARS-CoV-2, using quantum chemistry, molecular docking and dynamic studies. Bioorg Med Chem Lett 2021; 43:128079. [PMID: 33940136 PMCID: PMC8087859 DOI: 10.1016/j.bmcl.2021.128079] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
In the current study, the interaction of SARS-CoV-2 protein (A and B chains of nsp13) with different recently synthesized phenolic compounds (Sreenivasulu et al., Synthetic Communications, 2020, 112-122) has been studied. The interactions have been investigated by using molecular docking, quantum chemical and molecular dynamics simulations methods. The molecular structures of all the ligands are studied quantum chemically in terms of their optimized structures, 3-D orbital distributions, global chemical descriptors, molecular electrostatic potential plots and HOMO-LUMO orbital energies. All the ligands show reasonably good binding affinities with nsp-13 protein. The ligand L2 shows to have better binding affinities to Chain A and Chain B of nsp13 protein, which are -6.7 and -6.4 kcal/mol. The study of intermolecular interactions indicates that L2 shows different hydrophobic and hydrogen bond interactions with both chains. Furthermore, molecular dynamic simulations of the nsp13-L2 complex are obtained over a time scale of 60 ns, which indicates its stability and flexibility behavior as assessed in terms of its RMSD and RMSF graphs. The ADMET analysis also shows no violation of Lipinski rule (RO5) by studied phenolic compounds. We believe that the current findings will be further confirmed by in vitro and in vivo studies of these recent phenolic compounds for their potential as inhibitors for SARS-Co-V-2 virus.
Collapse
Affiliation(s)
- Maimoona Zia
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Shafiq-urRehman
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Aijaz Rasool Chaudhary
- Department of Physics, Collehge of Science, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Fu Quan Bai
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
233
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 PMCID: PMC8142890 DOI: 10.1016/j.molcel.2021.05.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
234
|
Miserey‐Lenkei S, Trajkovic K, D'Ambrosio JM, Patel AJ, Čopič A, Mathur P, Schauer K, Goud B, Albanèse V, Gautier R, Subra M, Kovacs D, Barelli H, Antonny B. A comprehensive library of fluorescent constructs of SARS-CoV-2 proteins and their initial characterisation in different cell types. Biol Cell 2021; 113:311-328. [PMID: 33666950 PMCID: PMC8014678 DOI: 10.1111/boc.202000158] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND INFORMATION Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE This library should facilitate further cellular investigations, notably by imaging techniques.
Collapse
Affiliation(s)
- Stéphanie Miserey‐Lenkei
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | | | | | - Amanda J Patel
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Alenka Čopič
- Institut Jacques MonodUniversité de ParisCNRS, UMR7592ParisF‐75006France
| | - Pallavi Mathur
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Kristine Schauer
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut CuriePSL Research University, Sorbonne UniversitéCNRS, UMR144ParisF‐75005France
| | - Véronique Albanèse
- Institut Jacques MonodUniversité de ParisCNRS, UMR7592ParisF‐75006France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Melody Subra
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - David Kovacs
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et CellulaireUniversité Côte d'Azur et CNRSUMR7275ValbonneF‐06560France
| |
Collapse
|
235
|
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505:108326. [PMID: 34015720 PMCID: PMC8091805 DOI: 10.1016/j.carres.2021.108326] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of antivirals has been evolved as a suitable strategy in the current treatment and preventive measures. The concept of drug repurposing represents new experimental approaches for effective therapeutic benefits. Besides, SARS-CoV-2 exhibits several complications such as lung damage, blood clot formation, respiratory illness and organ failures in most of the patients. Based on the accumulation of data, sulfated marine polysaccharides have exerted successful inhibition of virus entry, attachment and replication with known or unknown possible mechanisms against deadly animal and human viruses so far. Since the virus entry into the host cells is the key process, the prevention of such entry mechanism makes any antiviral strategy effective. Enveloped viruses are more sensitive to polyanions than non-enveloped viruses. Besides, the viral infection caused by RNA virus types embarks severe oxidative stress in the human body that leads to malfunction of tissues and organs. In this context, polysaccharides play a very significant role in providing shielding effect against the virus due to their polyanionic rich features and a molecular weight that hinders their reactive surface glycoproteins. Significantly the functional groups especially sulfate, sulfate pattern and addition, uronic acids, monosaccharides, glycosidic linkage and high molecular weight have greater influence in the antiviral activity. Moreover, they are very good antioxidants that can reduce the free radical generation and provokes intracellular antioxidant enzymes. Additionally, polysaccharides enable a host-virus immune response, activate phagocytosis and stimulate interferon systems. Therefore, polysaccharides can be used as candidate drugs, adjuvants in vaccines or combination with other antivirals, antioxidants and immune-activating nutritional supplements and antiviral materials in healthcare products to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
236
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 DOI: 10.1101/2020.11.25.398008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
237
|
Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication. Biophys J 2021; 120:3152-3165. [PMID: 34197805 PMCID: PMC8238635 DOI: 10.1016/j.bpj.2021.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
The replication transcription complex (RTC) from the virus SARS-CoV-2 is responsible for recognizing and processing RNA for two principal purposes. The RTC copies viral RNA for propagation into new virus and for ribosomal transcription of viral proteins. To accomplish these activities, the RTC mechanism must also conform to a large number of imperatives, including RNA over DNA base recognition, basepairing, distinguishing viral and host RNA, production of mRNA that conforms to host ribosome conventions, interfacing with error checking machinery, and evading host immune responses. In addition, the RTC will discontinuously transcribe specific sections of viral RNA to amplify certain proteins over others. Central to SARS-CoV-2 viability, the RTC is therefore dynamic and sophisticated. We have conducted a systematic structural investigation of three components that make up the RTC: Nsp7, Nsp8, and Nsp12 (also known as RNA-dependent RNA polymerase). We have solved high-resolution crystal structures of the Nsp7/8 complex, providing insight into the interaction between the proteins. We have used small-angle x-ray and neutron solution scattering (SAXS and SANS) on each component individually as pairs and higher-order complexes and with and without RNA. Using size exclusion chromatography and multiangle light scattering-coupled SAXS, we defined which combination of components forms transient or stable complexes. We used contrast-matching to mask specific complex-forming components to test whether components change conformation upon complexation. Altogether, we find that individual Nsp7, Nsp8, and Nsp12 structures vary based on whether other proteins in their complex are present. Combining our crystal structure, atomic coordinates reported elsewhere, SAXS, SANS, and other biophysical techniques, we provide greater insight into the RTC assembly, mechanism, and potential avenues for disruption of the complex and its functions.
Collapse
|
238
|
Zhao H, Wu D, Nguyen A, Li Y, Adão RC, Valkov E, Patterson GH, Piszczek G, Schuck P. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. iScience 2021; 24:102523. [PMID: 33997662 PMCID: PMC8103780 DOI: 10.1016/j.isci.2021.102523] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here, we use biophysical tools to study N-protein interactions with oligonucleotides of different lengths, examining the size, composition, secondary structure, and energetics of the resulting states. We observe the formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant change in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within macromolecular condensates.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Regina C. Adão
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Eugene Valkov
- Messenger RNA Regulation and Decay Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 560, Room 21-105A, Frederick, MD 21702, USA
| | - George H. Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
239
|
Yan L, Yang Y, Li M, Zhang Y, Zheng L, Ge J, Huang YC, Liu Z, Wang T, Gao S, Zhang R, Huang YY, Guddat LW, Gao Y, Rao Z, Lou Z. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 2021; 184:3474-3485.e11. [PMID: 34143953 PMCID: PMC8142856 DOI: 10.1016/j.cell.2021.05.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.
Collapse
Affiliation(s)
- Liming Yan
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunxiang Yang
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingyu Li
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Ying Zhang
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Litao Zheng
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Ji Ge
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yucen C Huang
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Zhenyu Liu
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Tao Wang
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Gao
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Ran Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyun Y Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zihe Rao
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Guangzhou Laboratory, Guangzhou, China.
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China; Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
240
|
Vazquez C, Swanson SE, Negatu SG, Dittmar M, Miller J, Ramage HR, Cherry S, Jurado KA. SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms. PLoS One 2021; 16:e0253089. [PMID: 34166398 PMCID: PMC8224853 DOI: 10.1371/journal.pone.0253089] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.
Collapse
Affiliation(s)
- Christine Vazquez
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sydnie E. Swanson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Seble G. Negatu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark Dittmar
- Department Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jesse Miller
- Department Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Holly R. Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, United States of America
| | - Sara Cherry
- Department Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
241
|
Wang J, Reiss K, Shi Y, Lolis E, Lisi GP, Batista VS. Mechanism of Inhibition of the Reproduction of SARS-CoV-2 and Ebola Viruses by Remdesivir. Biochemistry 2021; 60:1869-1875. [PMID: 34110129 PMCID: PMC8204756 DOI: 10.1021/acs.biochem.1c00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Indexed: 01/18/2023]
Abstract
Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, Connecticut 06520-8066, United States
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| |
Collapse
|
242
|
Allosteric Activation of SARS-CoV-2 RNA-Dependent RNA Polymerase by Remdesivir Triphosphate and Other Phosphorylated Nucleotides. mBio 2021; 12:e0142321. [PMID: 34154407 PMCID: PMC8262916 DOI: 10.1128/mbio.01423-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors.
Collapse
|
243
|
Biswal M, Diggs S, Xu D, Khudaverdyan N, Lu J, Fang J, Blaha G, Hai R, Song J. Two conserved oligomer interfaces of NSP7 and NSP8 underpin the dynamic assembly of SARS-CoV-2 RdRP. Nucleic Acids Res 2021; 49:5956-5966. [PMID: 33999154 PMCID: PMC8191759 DOI: 10.1093/nar/gkab370] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.
Collapse
Affiliation(s)
- Mahamaya Biswal
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Stephen Diggs
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Duo Xu
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Jian Fang
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Jikui Song
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
244
|
Long C, Romero ME, La Rocco D, Yu J. Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 2021; 19:3339-3348. [PMID: 34104356 PMCID: PMC8175102 DOI: 10.1016/j.csbj.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | - Daniel La Rocco
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|
245
|
Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM, Krebs C, Pierson TC, Linehan WM, Rouault TA. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 2021; 373:236-241. [PMID: 34083449 PMCID: PMC8892629 DOI: 10.1126/science.abi5224] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes. We found that the catalytic subunit of the RdRp, nsp12, ligates two iron-sulfur metal cofactors in sites that were modeled as zinc centers in the available cryo-electron microscopy structures of the RdRp complex. These metal binding sites are essential for replication and for interaction with the viral helicase. Oxidation of the clusters by the stable nitroxide TEMPOL caused their disassembly, potently inhibited the RdRp, and blocked SARS-CoV-2 replication in cell culture. These iron-sulfur clusters thus serve as cofactors for the SARS-CoV-2 RdRp and are targets for therapy of COVID-19.
Collapse
Affiliation(s)
- Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
246
|
Zella D, Giovanetti M, Cella E, Borsetti A, Ciotti M, Ceccarelli G, D’Ettorre G, Pezzuto A, Tambone V, Campanozzi L, Magheri M, Unali F, Bianchi M, Benedetti F, Pascarella S, Angeletti S, Ciccozzi M. The importance of genomic analysis in cracking the coronavirus pandemic. Expert Rev Mol Diagn 2021; 21:547-562. [PMID: 33849359 PMCID: PMC8095159 DOI: 10.1080/14737159.2021.1917998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has pushed the scientific community to undertake intense research efforts. Understanding SARS-CoV-2 biology is necessary to discover therapeutic or preventive strategies capable of containing the pandemic. Knowledge of the structural characteristics of the virus genome and proteins is essential to find targets for therapies and immunological interventions.Areas covered: This review covers different areas of expertise, genomic analysis of circulating strains, structural biology, viral mutations, molecular diagnostics, disease, and vaccines. In particular, the review is focused on the molecular approaches and modern clinical strategies used in these fields.Expert opinion: Molecular approaches to SARS-CoV-2 pandemic have been critical to shorten time for new diagnostic, therapeutic and prevention strategies. In this perspective, the entire scientific community is moving in the same direction. Vaccines, together with the development of new drugs to treat the disease, represent the most important strategy to protect human from viral disease and prevent further spread. In this regard, new molecular technologies have been successfully implemented. The use of a novel strategy of communication is suggested for a better diffusion to the broader public of new data and results.
Collapse
Affiliation(s)
- Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, USA
- , Member of the Global Virus Network, Baltimore, USA
| | - Marta Giovanetti
- Flavivirus Laboratory, Oswaldo Cruz Institute Oswaldo Cruz Foundation, Rio De Janeiro, Brazil
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Alessandra Borsetti
- Department of infectious diseases, National HIV/AIDS Research Center Istituto Superiore Di Sanità, Rome, Italy
| | - Marco Ciotti
- Virology Unit, Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella D’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Aldo Pezzuto
- Cardiovascular-Respiratory Science Department, Sant’ Andrea Hospital-Sapienza University, Rome, Italy
| | - Vittoradolfo Tambone
- Institute of Philosophy of Scientific and Technological Practice, Campus Bio-Medico University, Rome, Italy
| | - Laura Campanozzi
- Institute of Philosophy of Scientific and Technological Practice, Campus Bio-Medico University, Rome, Italy
| | - Marco Magheri
- Communication Division, University Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Unali
- Communication Division, University Campus Bio-Medico of Rome, Rome, Italy
| | - Martina Bianchi
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, USA
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
247
|
Das A, Ahmed R, Akhtar S, Begum K, Banu S. An overview of basic molecular biology of SARS-CoV-2 and current COVID-19 prevention strategies. GENE REPORTS 2021; 23:101122. [PMID: 33821222 PMCID: PMC8012276 DOI: 10.1016/j.genrep.2021.101122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) manifests as extreme acute respiratory conditions caused by a novel beta coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) which is reported to be the seventh coronavirus to infect humans. Like other SARS-CoVs it has a large positive-stranded RNA genome. But, specific furin site in the spike protein, mutation prone and phylogenetically mess open reading frame1ab (Orf1ab) separates SARS-CoV-2 from other RNA viruses. Since the outbreak (February-March 2020), researchers, scientists, and medical professionals are inspecting all possible facts and aspects including its replication, detection, and prevention strategies. This led to the prompt identification of its basic biology, genome characterization, structural and expression based functional information of proteins, and utilization of this information in optimizing strategies to prevent its spread. This review summarizes the recent updates on the basic molecular biology of SARS-CoV-2 and prevention strategies undertaken worldwide to tackle COVID-19. This recent information can be implemented for the development and designing of therapeutics against SARS-CoV-2.
Collapse
Key Words
- AEC2, angiotensin-converting enzyme 2
- CD4 and CD8, cluster of differentiation
- CDC, Centers for Disease Control and Prevention
- COVID-19, Coronavirus Diseases 2019
- GM-CSF, macrophage colony-stimulating factor
- Genome organization and expression
- HCV, hepatitis C virus
- HIV, human immune deficiency virus
- LAMP, loop mediated isothermal amplification
- MARS-CoV, Middle East Respiratory Syndrome Coronavirus
- Prevention strategies
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- WHO, World Health Organization
Collapse
Affiliation(s)
- Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
248
|
Lin S, Chen H, Chen Z, Yang F, Ye F, Zheng Y, Yang J, Lin X, Sun H, Wang L, Wen A, Dong H, Xiao Q, Deng D, Cao Y, Lu G. Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res 2021; 49:5382-5392. [PMID: 33956156 PMCID: PMC8136770 DOI: 10.1093/nar/gkab320] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1′, which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.
Collapse
Affiliation(s)
- Sheng Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanli Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Ye
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zheng
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honglu Sun
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lingling Wang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ao Wen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingjie Xiao
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai 201210, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Cao
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China.,Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China.,WestVac Biopharma Co., Ltd, Chengdu, Sichuan 610000, China
| |
Collapse
|
249
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
250
|
Götte M. Remdesivir for the treatment of Covid-19: the value of biochemical studies. Curr Opin Virol 2021; 49:81-85. [PMID: 34052732 PMCID: PMC8114811 DOI: 10.1016/j.coviro.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
The nucleotide analogue prodrug remdesivir remains the only FDA-approved antiviral small molecule for the treatment of infection with SARS-CoV-2. Biochemical studies revealed that the active form of the drug targets the viral RNA-dependent RNA polymerase and causes delayed chain-termination. Delayed chain-termination is incomplete, but the continuation of RNA synthesis enables a partial escape from viral proofreading. Remdesivir becomes embedded in the copy of the RNA genome that later serves as a template. Incorporation of an incoming nucleotide triphosphate is now inhibited by the modified template. Knowledge on the mechanism of action matters. Enzymatic inhibition links to antiviral effects in cell cultures, animal models and viral load reduction in patients, which provides the logical chain that is expected for a direct acting antiviral. Hence, remdesivir also serves as a benchmark in current drug development efforts that will hopefully lead to orally available treatments to the benefit of a broader population.
Collapse
Affiliation(s)
- Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|