201
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
202
|
Mulé MP, Giacalone D, Lawlor K, Golden A, Cook C, Lott T, Aksten E, O'Toole GA, Bergeron LJ. Iron-dependent gene expression in Actinomyces oris. J Oral Microbiol 2015; 7:29800. [PMID: 26685151 PMCID: PMC4684579 DOI: 10.3402/jom.v7.29800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
Background Actinomyces oris is a Gram-positive bacterium that has been associated with healthy and diseased sites in the human oral cavity. Most pathogenic bacteria require iron to survive, and in order to acquire iron in the relatively iron-scarce oral cavity A. oris has been shown to produce iron-binding molecules known as siderophores. The genes encoding these siderophores and transporters are thought to be regulated by the amount of iron in the growth medium and by the metal-dependent repressor, AmdR, which we showed previously binds to the promoter of proposed iron-regulated genes. Objective The purpose of this study was to characterize siderophore and associated iron transport systems in A. oris.
Design We examined gene expression of the putative iron transport genes fetA and sidD in response to low- and high-iron environments. One of these genes, sidD, encoding a putative Fe ABC transporter protein, was insertionally inactivated and was examined for causing growth defects. To gain a further understanding of the role of iron metabolism in oral diseases, clinical isolates of Actinomyces spp. were examined for the presence of the gene encoding AmdR, a proposed global regulator of iron-dependent gene expression in A. oris.
Results When A. oris was grown under iron-limiting conditions, the genes encoding iron/siderophore transporters fetA and sidD showed increased expression. One of these genes (sidD) was mutated, and the sidD::Km strain exhibited a 50% reduction in growth in late log and stationary phase cells in media that contained iron. This growth defect was restored when the sidD gene was provided in a complemented strain. We were able to isolate the AmdR-encoding gene in seven clinical isolates of Actinomyces. When these protein sequences were aligned to the laboratory strain, there was a high degree of sequence similarity. Conclusions The growth of the sidD::Km mutant in iron-replete medium mirrored the growth of the wild-type strain grown in iron-limiting medium, suggesting that the sidD::Km mutant was compromised in iron uptake. The known iron regulator AmdR is well conserved in clinical isolates of A. oris. This work provides additional insight into iron metabolism in this important oral microbe.
Collapse
Affiliation(s)
- Matthew P Mulé
- Department of Biology, New England College, Henniker, NH, USA
| | - David Giacalone
- Department of Biology, New England College, Henniker, NH, USA
| | - Kayla Lawlor
- Department of Biology, New England College, Henniker, NH, USA
| | - Alexa Golden
- Department of Biology, New England College, Henniker, NH, USA
| | - Caroline Cook
- Department of Biology, New England College, Henniker, NH, USA
| | - Thomas Lott
- Department of Biology, New England College, Henniker, NH, USA
| | | | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lori J Bergeron
- Department of Biology, New England College, Henniker, NH, USA;
| |
Collapse
|
203
|
Zomorrodi AR, Segrè D. Synthetic Ecology of Microbes: Mathematical Models and Applications. J Mol Biol 2015; 428:837-61. [PMID: 26522937 DOI: 10.1016/j.jmb.2015.10.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/29/2022]
Abstract
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Finally, we present our outlook on key aspects of microbial ecosystems and synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.
Collapse
Affiliation(s)
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA; Department of Biology, Boston University, Boston, MA; Department of Biomedical Engineering, Boston University, Boston, MA.
| |
Collapse
|
204
|
Ibrahem MD. Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. J Adv Res 2015; 6:765-91. [PMID: 26644914 PMCID: PMC4642160 DOI: 10.1016/j.jare.2013.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
The increase in the human population in addition to the massive demand for protein of animal origin forced the authorities to seek for additional sources of feed supplies. Aquaculture is the world worth coming expansion to compensate the shortage in animal protein. Feed in aquaculture plays an important role in the production cycle and exert threshold on both practical and economic aspects. Feed additive sectors are expanding day after day to achieve better growth and health for fish and shrimp and to meet the potential requirements of the culturists. Probiotic proved its successes in human and animal feeding practices and recently gained attention in aquaculture; it has beneficial effects in diseases control and competes with various environmental stressors as well as to promote the growth of the cultured organisms. Probiotics have the privilege to manipulate the non-specific innate immunity among fishes, hence help them into resist many pathogenic agents and are actively used worldwide. The present review is an informative compilation of the probiotics, their mode of action and their useful effects on fishes. The review also highlights the status of probiotics in aquaculture of Egypt, probiotic recent prospective for the possible role of probiotics in fish external and internal environment.
Collapse
Affiliation(s)
- Mai D. Ibrahem
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
205
|
Silver LL. Natural products as a source of drug leads to overcome drug resistance. Future Microbiol 2015; 10:1711-8. [DOI: 10.2217/fmb.15.67] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Novel antibacterials may be found that can enhance the pipeline of therapeutics capable of overcoming antibiotic resistance by a return to exploration of natural products. Such novel products may be derived from both standard and previously uncultivable sources, and enriched by expression of previously unseen antibiotics predicted by genome mining of productive bacterial genera. Hypersensitive whole cell phenotypic screens can be used to detect novel secondary metabolites from both standard and newly uncovered sources.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 South Springfield Avenue, Unit C403, Springfield, NJ 07081, USA
| |
Collapse
|
206
|
Sidebottom AM, Karty JA, Carlson EE. Accurate mass MS/MS/MS analysis of siderophores ferrioxamine B and E1 by collision-induced dissociation electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1899-1902. [PMID: 26323615 DOI: 10.1007/s13361-015-1242-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
Siderophores are bacterially secreted, small molecule iron chelators that facilitate the binding of insoluble iron (III) for reuptake and use in various biological processes. These compounds are classified by their iron (III) binding geometry, as dictated by subunit composition and include groups such as the trihydroxamates (hexadentate ligand) and catecholates (bidentate). Small modifications to the core structure such as acetylation, lipid tail addition, or cyclization, make facile characterization of new siderophores difficult by molecular ion detection alone (MS(1)). We have expanded upon previous fragmentation-directed studies using electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS/MS) and identified diagnostic MS(3) features from the trihydroxamate siderophore class for ferrioxamine B and E1 by accurate mass. Diagnostic features for MS(3) include C-C, C-N, amide, and oxime cleavage events with proposed losses of water and -CO from the iron (III) coordination sites. These insights will facilitate the discovery of novel trihydroxamate siderophores from complex sample matrices. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN, 47403, USA
| | - Erin E Carlson
- Department of Chemistry, Indiana University, Bloomington, IN, 47403, USA.
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47403, USA.
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
207
|
Decleyre H, Heylen K, Van Colen C, Willems A. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers. Front Microbiol 2015; 6:1124. [PMID: 26528270 PMCID: PMC4604302 DOI: 10.3389/fmicb.2015.01124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.
Collapse
Affiliation(s)
- Helen Decleyre
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Kim Heylen
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Carl Van Colen
- Marine Biology Research Group, Department of Biology, Ghent University Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
208
|
Estrela S, Morris JJ, Kerr B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ Microbiol 2015; 18:1415-27. [DOI: 10.1111/1462-2920.13028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Sylvie Estrela
- Department of Biology and BEACON Center for the Study of Evolution in Action; University of Washington; Seattle WA 98195 USA
| | - J. Jeffrey Morris
- Department of Biology; University of Alabama at Birmingham; Birmingham AL 35294 USA
- BEACON Center for the Study of Evolution in Action; Michigan State University; East Lansing MI 48824 USA
| | - Benjamin Kerr
- Department of Biology and BEACON Center for the Study of Evolution in Action; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
209
|
Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity. J Adv Res 2015; 7:305-16. [PMID: 26966571 PMCID: PMC4767806 DOI: 10.1016/j.jare.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022] Open
Abstract
Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >106–108 cfu g−1 were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium.
Collapse
|
210
|
Bhuiyan MNI, Takai R, Mitsuhashi S, Shigetomi K, Tanaka Y, Kamagata Y, Ubukata M. Zincmethylphyrins and coproporphyrins, novel growth factors released by Sphingopyxis sp., enable laboratory cultivation of previously uncultured Leucobacter sp. through interspecies mutualism. J Antibiot (Tokyo) 2015; 69:97-103. [PMID: 26306814 DOI: 10.1038/ja.2015.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 01/29/2023]
Abstract
We have identified coproporphyrins including structurally new zincmethylphyrins I and III as growth factors A-F for the previously uncultured bacterial strain, Leucobacter sp. ASN212, from a supernatant of 210 l of Sphingopyxis sp. GF9 culture. Growth factors A-F induced significant growth of strain ASN212 at the concentrations of picomolar to nanomolar which would otherwise be unculturable in liquid medium or on agar plate. More interestingly, we found that the growth factors functioned as self-toxic compounds for the growth-factor producing strain GF9 at the picomolar to nanomolar levels. As a variety of bacteria could potentially produce coproporphyrins, our findings suggest that these compounds function as a novel class of signal molecules across a boundary at phylum level in the complex bacterial communities.
Collapse
Affiliation(s)
| | - Ryogo Takai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinya Mitsuhashi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kengo Shigetomi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Tanaka
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yoichi Kamagata
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Makoto Ubukata
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
211
|
Ang MLT, Murima P, Pethe K. Next-generation antimicrobials: from chemical biology to first-in-class drugs. Arch Pharm Res 2015; 38:1702-17. [PMID: 26259630 PMCID: PMC4567591 DOI: 10.1007/s12272-015-0645-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023]
Abstract
The global emergence of multi-drug resistant bacteria invokes an urgent and imperative necessity for the identification of novel antimicrobials. The general lack of success in progressing novel chemical entities from target-based drug screens have prompted calls for radical and innovative approaches for drug discovery. Recent developments in chemical biology and target deconvolution strategies have revived interests in the utilization of whole-cell phenotypic screens and resulted in several success stories for the discovery and development novel drug candidates and target pathways. In this review, we present and discuss recent chemical biology approaches focusing on the discovery of novel targets and new lead molecules for the treatment of human bacterial and protozoan infections.
Collapse
Affiliation(s)
- Michelle Lay Teng Ang
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, 30 Biopolis Street, #B2-15a, Singapore, 138671, Singapore.
| | - Paul Murima
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, 30 Biopolis Street, #B2-15a, Singapore, 138671, Singapore.
| |
Collapse
|
212
|
From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 2015; 72:4287-308. [PMID: 26254872 PMCID: PMC4611022 DOI: 10.1007/s00018-015-2004-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/30/2022]
Abstract
Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.
Collapse
|
213
|
Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet 2015; 31:475-82. [DOI: 10.1016/j.tig.2015.05.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/21/2022]
|
214
|
Arias AA, Lambert S, Martinet L, Adam D, Tenconi E, Hayette MP, Ongena M, Rigali S. Growth of desferrioxamine-deficientStreptomycesmutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiol Ecol 2015; 91:fiv080. [DOI: 10.1093/femsec/fiv080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
215
|
Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured. Appl Environ Microbiol 2015; 81:6589-600. [PMID: 26162880 DOI: 10.1128/aem.01486-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/08/2015] [Indexed: 01/04/2023] Open
Abstract
Currently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogen Batrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened by B. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual's bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health.
Collapse
|
216
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
217
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
218
|
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237-64. [PMID: 25567229 DOI: 10.1128/cmr.00014-14] [Citation(s) in RCA: 548] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
Collapse
|
219
|
Antoraz S, Santamaría RI, Díaz M, Sanz D, Rodríguez H. Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 2015; 6:461. [PMID: 26029195 PMCID: PMC4429630 DOI: 10.3389/fmicb.2015.00461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogens is changing the way scientists look for new antibiotic compounds. This race against the increased prevalence of multi-resistant strains makes it necessary to expedite the search for new compounds with antibiotic activity and to increase the production of the known. Here, we review a variety of new scientific approaches aiming to enhance antibiotic production in Streptomyces. These include: (i) elucidation of the signals that trigger the antibiotic biosynthetic pathways to improve culture media, (ii) bacterial hormone studies aiming to reproduce intra and interspecific communications resulting in antibiotic burst, (iii) co-cultures to mimic competition-collaboration scenarios in nature, and (iv) the very recent in situ search for antibiotics that might be applied in Streptomyces natural habitats. These new research strategies combined with new analytical and molecular techniques should accelerate the discovery process when the urgency for new compounds is higher than ever.
Collapse
Affiliation(s)
- Sergio Antoraz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - David Sanz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Héctor Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
220
|
Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39:567-91. [PMID: 25940667 PMCID: PMC4487407 DOI: 10.1093/femsre/fuv013] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| |
Collapse
|
221
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
222
|
Lambert S, Traxler MF, Craig M, Maciejewska M, Ongena M, van Wezel GP, Kolter R, Rigali S. Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics 2015; 6:1390-9. [PMID: 24788337 DOI: 10.1039/c4mt00068d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Streptomyces coelicolor is an important model organism for developmental studies of filamentous GC-rich actinobacteria. The genetic characterization of mutants of S. coelicolor blocked at the vegetative mycelium stage, the so-called bald (bld) mutants that are unable to erect spore-forming aerial hyphae, has opened the way to discovering the molecular basis of development in actinomycetes. Desferrioxamine (DFO) production and import of ferrioxamines (FO; iron-complexed DFO) are key to triggering morphogenesis of S. coelicolor and we show here that growth of S. coelicolor on the reference medium for Streptomyces developmental studies is fully dependent on DFO biosynthesis. UPLC-ESI-MS analysis revealed that all bld mutants tested are affected in DFO biosynthesis, with bldA, bldJ, and ptsH mutants severely impaired in DFO production, while bldF, bldK, crr and ptsI mutants overproduce DFO. Morphogenesis of bldK and bldJ mutants was recovered by supplying exogenous iron. Transcript analysis showed that the bldJ mutant is impaired in expression of genes involved in the uptake of FO, whereas transcription of genes involved in both DFO biosynthesis and FO uptake is increased in bldK mutants. Our study allows proposing altered DFO production and/or FO uptake as a novel phenotypic marker of many S. coelicolor bld mutants, and strengthens the role of siderophores and iron acquisition in morphological development of actinomycetes.
Collapse
Affiliation(s)
- Stéphany Lambert
- Centre for Protein Engineering, University of Liège, Institut de Chimie B6a, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Tyc O, Wolf AB, Garbeva P. The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms. PLoS One 2015; 10:e0119838. [PMID: 25774766 PMCID: PMC4361692 DOI: 10.1371/journal.pone.0119838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
In most environments many microorganisms live in close vicinity and can interact in various ways. Recent studies suggest that bacteria are able to sense and respond to the presence of neighbouring bacteria in the environment and alter their response accordingly. This ability might be an important strategy in complex habitats such as soils, with great implications for shaping the microbial community structure. Here, we used a sand microcosm approach to investigate how Pseudomonas fluorescens Pf0-1 responds to the presence of monocultures or mixtures of two phylogenetically different bacteria, a Gram-negative (Pedobacter sp. V48) and a Gram-positive (Bacillus sp. V102) under two nutrient conditions. Results revealed that under both nutrient poor and nutrient rich conditions confrontation with the Gram-positive Bacillus sp. V102 strain led to significant lower cell numbers of Pseudomonas fluorescens Pf0-1, whereas confrontation with the Gram-negative Pedobacter sp. V48 strain did not affect the growth of Pseudomonas fluorescens Pf0-1. However, when Pseudomonas fluorescens Pf0-1 was confronted with the mixture of both strains, no significant effect on the growth of Pseudomonas fluorescens Pf0-1 was observed. Quantitative real-time PCR data showed up-regulation of genes involved in the production of a broad-spectrum antibiotic in Pseudomonas fluorescens Pf0-1 when confronted with Pedobacter sp. V48, but not in the presence of Bacillus sp. V102. The results provide evidence that the performance of bacteria in soil depends strongly on the identity of neighbouring bacteria and that inter-specific interactions are an important factor in determining microbial community structure.
Collapse
Affiliation(s)
- Olaf Tyc
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, the Netherlands
- * E-mail:
| | - Alexandra B. Wolf
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, the Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, the Netherlands
| |
Collapse
|
224
|
Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 2015; 81:2466-73. [PMID: 25616801 DOI: 10.1128/aem.03981-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 μM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace.
Collapse
|
225
|
Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K. A new antibiotic kills pathogens without detectable resistance. Nature 2015; 517:455-9. [PMID: 25561178 PMCID: PMC7414797 DOI: 10.1038/nature14098] [Citation(s) in RCA: 1679] [Impact Index Per Article: 167.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/19/2014] [Indexed: 01/28/2023]
Abstract
Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.
Collapse
Affiliation(s)
- Losee L Ling
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Tanja Schneider
- 1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Aaron J Peoples
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Amy L Spoering
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Ina Engels
- 1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Brian P Conlon
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA
| | - Anna Mueller
- 1] Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany [2] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Till F Schäberle
- 1] German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany [2] Institute for Pharmaceutical Biology, University of Bonn, Bonn 53115, Germany
| | - Dallas E Hughes
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Slava Epstein
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | - Douglas R Cohen
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Cintia R Felix
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | | | | | - Anthony G Nitti
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Ashley M Zullo
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Chao Chen
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA
| |
Collapse
|
226
|
O'Brien S, Hodgson DJ, Buckling A. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc Biol Sci 2015; 281:rspb.2014.0858. [PMID: 24898376 PMCID: PMC4071558 DOI: 10.1098/rspb.2014.0858] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria are often iron-limited, and hence produce extracellular iron-scavenging siderophores. A crucial feature of siderophore production is that it can be an altruistic behaviour (individually costly but benefitting neighbouring cells), thus siderophore producers can be invaded by non-producing social 'cheats'. Recent studies have shown that siderophores can also bind other heavy metals (such as Cu and Zn), but in this case siderophore chelation actually reduces metal uptake by bacteria. These complexes reduce heavy metal toxicity, hence siderophore production may contribute to toxic metal bioremediation. Here, we show that siderophore production in the context of bioremediation is also an altruistic trait and can be exploited by cheating phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. Specifically, we show that in toxic copper concentrations (i) siderophore non-producers evolve de novo and reach high frequencies, and (ii) producing strains are fitter than isogenic non-producing strains in monoculture, and vice versa in co-culture. Moreover, we show that the evolutionary effect copper has on reducing siderophore production is greater than the reduction observed under iron-limited conditions. We discuss the relevance of these results to the evolution of siderophore production in natural communities and heavy metal bioremediation.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - David J Hodgson
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
227
|
Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep 2015; 32:956-70. [DOI: 10.1039/c5np00013k] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gram positive bacteria from the soil have historically been a deep source of useful natural products. This article considers how natural products may mediate microbial interactions in the soil environment.
Collapse
Affiliation(s)
- Matthew F. Traxler
- Dept. of Plant and Microbial Biology
- University of California at Berkeley
- Berkeley
- USA
| | - Roberto Kolter
- Dept. of Microbiology and Immunobiology
- Harvard Medical School
- Boston
- USA
| |
Collapse
|
228
|
Monnet C, Landaud S, Bonnarme P, Swennen D. Growth and adaptation of microorganisms on the cheese surface. FEMS Microbiol Lett 2014; 362:1-9. [PMID: 25790503 DOI: 10.1093/femsle/fnu025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microbial communities living on cheese surfaces are composed of various bacteria, yeasts and molds that interact together, thus generating the typical sensory properties of a cheese. Physiological and genomic investigations have revealed important functions involved in the ability of microorganisms to establish themselves at the cheese surface. These functions include the ability to use the cheese's main energy sources, to acquire iron, to tolerate low pH at the beginning of ripening and to adapt to high salt concentrations and moisture levels. Horizontal gene transfer events involved in the adaptation to the cheese habitat have been described, both for bacteria and fungi. In the future, in situ microbial gene expression profiling and identification of genes that contribute to strain fitness by massive sequencing of transposon libraries will help us to better understand how cheese surface communities function.
Collapse
Affiliation(s)
- Christophe Monnet
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Sophie Landaud
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Pascal Bonnarme
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR 1319 Micalis, 78850 Thiverval-Grignon, France AgroParisTech, UMR 1319 Micalis, 78850 Thiverval-Grignon, France
| |
Collapse
|
229
|
Abstract
Microbes produce many compounds that are costly to a focal cell but promote the survival and reproduction of neighboring cells. This observation has led to the suggestion that microbial strains and species will commonly cooperate by exchanging compounds. Here, we examine this idea with an ecoevolutionary model where microbes make multiple secretions, which can be exchanged among genotypes. We show that cooperation between genotypes only evolves under specific demographic regimes characterized by intermediate genetic mixing. The key constraint on cooperative exchanges is a loss of autonomy: strains become reliant on complementary genotypes that may not be reliably encountered. Moreover, the form of cooperation that we observe arises through mutual exploitation that is related to cheating and "Black Queen" evolution for a single secretion. A major corollary is that the evolution of cooperative exchanges reduces community productivity relative to an autonomous strain that makes everything it needs. This prediction finds support in recent work from synthetic communities. Overall, our work suggests that natural selection will often limit cooperative exchanges in microbial communities and that, when exchanges do occur, they can be an inefficient solution to group living.
Collapse
|
230
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
231
|
Richards MA, Cassen V, Heavner BD, Ajami NE, Herrmann A, Simeonidis E, Price ND. MediaDB: a database of microbial growth conditions in defined media. PLoS One 2014; 9:e103548. [PMID: 25098325 PMCID: PMC4123892 DOI: 10.1371/journal.pone.0103548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 01/24/2023] Open
Abstract
Isolating pure microbial cultures and cultivating them in the laboratory on defined media is used to more fully characterize the metabolism and physiology of organisms. However, identifying an appropriate growth medium for a novel isolate remains a challenging task. Even organisms with sequenced and annotated genomes can be difficult to grow, despite our ability to build genome-scale metabolic networks that connect genomic data with metabolic function. The scientific literature is scattered with information about defined growth media used successfully for cultivating a wide variety of organisms, but to date there exists no centralized repository to inform efforts to cultivate less characterized organisms by bridging the gap between genomic data and compound composition for growth media. Here we present MediaDB, a manually curated database of defined media that have been used for cultivating organisms with sequenced genomes, with an emphasis on organisms with metabolic network models. The database is accessible online, can be queried by keyword searches or downloaded in its entirety, and can generate exportable individual media formulation files. The data assembled in MediaDB facilitate comparative studies of organism growth media, serve as a starting point for formulating novel growth media, and contribute to formulating media for in silico investigation of metabolic networks. MediaDB is freely available for public use at https://mediadb.systemsbiology.net.
Collapse
Affiliation(s)
- Matthew A. Richards
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Victor Cassen
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Benjamin D. Heavner
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Nassim E. Ajami
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrea Herrmann
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Evangelos Simeonidis
- Institute for Systems Biology, Seattle, Washington, United States of America
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
232
|
Fuerst JA. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 2014; 98:7331-47. [DOI: 10.1007/s00253-014-5861-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022]
|
233
|
Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa. Proc Natl Acad Sci U S A 2014; 111:9768-73. [PMID: 24965364 DOI: 10.1073/pnas.1404753111] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper describes a microfluidics-based workflow for genetically targeted isolation and cultivation of microorganisms from complex clinical samples. Data sets from high-throughput sequencing suggest the existence of previously unidentified bacterial taxa and functional genes with high biomedical importance. Obtaining isolates of these targets, preferably in pure cultures, is crucial for advancing understanding of microbial genetics and physiology and enabling physical access to microbes for further applications. However, the majority of microbes have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species. We describe a method that enables genetically targeted cultivation of microorganisms through a combination of microfluidics and on- and off-chip assays. This method involves (i) identification of cultivation conditions for microbes using growth substrates available only in small quantities as well as the correction of sampling bias using a "chip wash" technique; and (ii) performing on-chip genetic assays while also preserving live bacterial cells for subsequent scale-up cultivation of desired microbes, by applying recently developed technology to create arrays of individually addressable replica microbial cultures. We validated this targeted approach by cultivating a bacterium, here referred to as isolate microfluidicus 1, from a human cecal biopsy. Isolate microfluidicus 1 is, to our knowledge, the first successful example of targeted cultivation of a microorganism from the high-priority group of the Human Microbiome Project's "Most Wanted" list, and, to our knowledge, the first cultured representative of a previously unidentified genus of the Ruminococcaceae family.
Collapse
|
234
|
Austin RN, Kenney GE, Rosenzweig AC. Perspective: what is known, and not known, about the connections between alkane oxidation and metal uptake in alkanotrophs in the marine environment. Metallomics 2014; 6:1121-5. [PMID: 24710692 PMCID: PMC4061484 DOI: 10.1039/c4mt00041b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Should iron and copper be added to the environment to stimulate the natural bioremediation of marine oil spills? The key enzymes that catalyze the oxidation of alkanes require either iron or copper, and the concentration of these ions in seawater is vanishingly low. Nevertheless, the dependence of alkane oxidation activity on external metal concentrations remains unclear. This perspective will summarize what is known about the co-regulation of alkane oxidation and metal acquisition and pose a series of critical questions to which, for the most part, we do not yet have answers. The paucity of answers points to the need for additional studies to illuminate the cellular biology connecting microbial growth on alkanes to the acquisition of metal ions.
Collapse
|
235
|
Cloning and Heterologous Expression of the Vibrioferrin Biosynthetic Gene Cluster from a Marine Metagenomic Library. Biosci Biotechnol Biochem 2014; 75:2283-7. [DOI: 10.1271/bbb.110379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
236
|
Heterologous Production of Desferrioxamines with a Fusion Biosynthetic Gene Cluster. Biosci Biotechnol Biochem 2014; 77:2467-72. [DOI: 10.1271/bbb.130597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
237
|
Soe CZ, Codd R. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis. ACS Chem Biol 2014; 9:945-56. [PMID: 24483365 DOI: 10.1021/cb400901j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical conversions across the double bond(s) of the unsaturated macrocycles provides a new route to increased molecular diversity in this class of siderophore.
Collapse
Affiliation(s)
- Cho Z. Soe
- School of Medical Sciences
(Pharmacology) and Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rachel Codd
- School of Medical Sciences
(Pharmacology) and Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
238
|
Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol 2014; 12:263-73. [PMID: 24590245 DOI: 10.1038/nrmicro3218] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comparisons of closely related microorganisms have shown that individual genomes can be highly diverse in terms of gene content. In this Review, we discuss several studies showing that much of this variation is associated with social and ecological interactions, which have an important role in the population biology of wild populations of bacteria and archaea. These interactions create frequency-dependent selective pressures that can either stabilize gene frequencies at intermediate levels in populations or promote fast gene turnover, which presents as low gene frequencies in genome surveys. Thus, interpretation of gene-content diversity requires the delineation of populations according to cohesive gene flow and ecology, as micro-evolutionary changes arise in response to local selection pressures and population dynamics.
Collapse
Affiliation(s)
- Otto X Cordero
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH-Zürich), CH-8092 Zürich, Switzerland
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
239
|
Vizcaino MI, Guo X, Crawford JM. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery. J Ind Microbiol Biotechnol 2014; 41:285-99. [PMID: 24127069 PMCID: PMC3946945 DOI: 10.1007/s10295-013-1356-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 12/24/2022]
Abstract
The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.
Collapse
Affiliation(s)
- Maria I. Vizcaino
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Xun Guo
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06510, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| |
Collapse
|
240
|
Villa JA, Ray EE, Barney BM. Azotobacter vinelandiisiderophore can provide nitrogen to support the culture of the green algaeNeochloris oleoabundansandScenedesmussp. BA032. FEMS Microbiol Lett 2014; 351:70-77. [DOI: 10.1111/1574-6968.12347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/24/2013] [Accepted: 11/24/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Juan A. Villa
- Biotechnology Institute; University of Minnesota; St. Paul MN USA
| | - Erin E. Ray
- Department of Bioproducts and Biosystems Engineering; University of Minnesota; St. Paul MN USA
| | - Brett M. Barney
- Biotechnology Institute; University of Minnesota; St. Paul MN USA
- Department of Bioproducts and Biosystems Engineering; University of Minnesota; St. Paul MN USA
| |
Collapse
|
241
|
Adler C, Corbalan NS, Peralta DR, Pomares MF, de Cristóbal RE, Vincent PA. The alternative role of enterobactin as an oxidative stress protector allows Escherichia coli colony development. PLoS One 2014; 9:e84734. [PMID: 24392154 PMCID: PMC3879343 DOI: 10.1371/journal.pone.0084734] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022] Open
Abstract
Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.
Collapse
Affiliation(s)
- Conrado Adler
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia S. Corbalan
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Daiana R. Peralta
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - María Fernanda Pomares
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo E. de Cristóbal
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Paula A. Vincent
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
242
|
HIDAYATI ERNIN, Department of Biology, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Bogor 16680, Indonesia, TRI WAHYUDI ARIS, SUWANTO ANTONIUS, WIDYASTUTI RAHAYU. Abundance of Culturable Bacteria Isolated from Maize Rhizosphere Soil Using Four Different Culture Media. MICROBIOLOGY INDONESIA 2014. [DOI: 10.5454/mi.8.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
243
|
Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 2013; 25:543-56. [DOI: 10.1007/s10532-013-9680-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
244
|
Schofield MM, Sherman DH. Meta-omic characterization of prokaryotic gene clusters for natural product biosynthesis. Curr Opin Biotechnol 2013; 24:1151-8. [PMID: 23731715 PMCID: PMC3797859 DOI: 10.1016/j.copbio.2013.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/14/2013] [Accepted: 05/07/2013] [Indexed: 01/04/2023]
Abstract
Microorganisms produce a remarkable selection of bioactive small molecules. The study and exploitation of these secondary metabolites have traditionally been restricted to the cultivable minority of bacteria. Rapid advances in meta-omics challenge this paradigm. Breakthroughs in metagenomic library methodologies, direct sequencing, single cell genomics, and natural product-specific bioinformatic tools now facilitate the retrieval of previously inaccessible biosynthetic gene clusters. Similarly, metaproteomic developments enable the direct study of biosynthetic enzymes from complex microbial communities. Additional methods within and beyond meta-omics are also in development. This review discusses recent reports in these arenas and how they can be utilized to characterize natural product biosynthetic gene clusters and pathways.
Collapse
Affiliation(s)
- Michael M. Schofield
- Life Sciences Institute and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - David H. Sherman
- Life Sciences Institute and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Departments of Medicinal Chemistry, and Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109
| |
Collapse
|
245
|
Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 2013; 97:9621-36. [DOI: 10.1007/s00253-013-5206-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
246
|
Epstein SS. The phenomenon of microbial uncultivability. Curr Opin Microbiol 2013; 16:636-42. [DOI: 10.1016/j.mib.2013.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/15/2022]
|
247
|
Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291-321. [DOI: 10.1007/s00253-013-5229-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
|
248
|
Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE. Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem Biol 2013; 8:2009-16. [PMID: 23777274 DOI: 10.1021/cb4002798] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products exhibit a broad range of biological properties and have been a crucial source of therapeutic agents and novel scaffolds. Although bacterial secondary metabolomes are widely explored, they remain incompletely cataloged by current isolation and characterization strategies. To identify metabolites residing in unexplored chemical space, we have developed an integrated discovery approach that combines bacterial growth perturbation, accurate mass spectrometry, comparative mass spectra data analysis, and fragmentation spectra clustering for the identification of low-abundant, novel compounds from complex biological matrices. In this investigation, we analyzed the secreted metabolome of the extensively studied Actinomycete, Streptomyces coelicolor M145, and discovered a low-abundant suite of 15 trihydroxamate, amphiphilic siderophores. Compounds in this class have primarily been observed in marine microorganisms making their detection in the soil-dwelling S. coelicolor M145 significant. At least 10 of these ferrioxamine-based molecules are not known to be produced by any organism, and none have previously been detected from S. coelicolor M145. In addition, we confirmed the production of ferrioxamine D1, a relatively hydrophilic family member that has not been shown to be biosynthesized by this organism. The identified molecules are part of only a small list of secondary metabolites that have been discovered since sequencing of S. coelicolor M145 revealed that it possessed numerous putative secondary metabolite-producing gene clusters with no known metabolites. Thus, the identified siderophores represent the unexplored metabolic potential of both well-studied and new organisms that could be uncovered with our sensitive and robust approach.
Collapse
Affiliation(s)
- Ashley M. Sidebottom
- Department of Chemistry and ‡Department of Molecular
and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew R. Johnson
- Department of Chemistry and ‡Department of Molecular
and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jonathan A. Karty
- Department of Chemistry and ‡Department of Molecular
and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Darci J. Trader
- Department of Chemistry and ‡Department of Molecular
and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Erin E. Carlson
- Department of Chemistry and ‡Department of Molecular
and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
249
|
Abstract
Dense and diverse microbial communities are found in many environments. Disentangling the social interactions between strains and species is central to understanding microbes and how they respond to perturbations. However, the study of social evolution in microbes tends to focus on single species. Here, we broaden this perspective and review evolutionary and ecological theory relevant to microbial interactions across all phylogenetic scales. Despite increased complexity, we reduce the theory to a simple null model that we call the genotypic view. This states that cooperation will occur when cells are surrounded by identical genotypes at the loci that drive interactions, with genetic identity coming from recent clonal growth or horizontal gene transfer (HGT). In contrast, because cooperation is only expected to evolve between different genotypes under restrictive ecological conditions, different genotypes will typically compete. Competition between two genotypes includes mutual harm but, importantly, also many interactions that are beneficial to one of the two genotypes, such as predation. The literature offers support for the genotypic view with relatively few examples of cooperation between genotypes. However, the study of microbial interactions is still at an early stage. We outline the logic and methods that help to better evaluate our perspective and move us toward rationally engineering microbial communities to our own advantage.
Collapse
Affiliation(s)
- Sara Mitri
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; ,
| | | |
Collapse
|
250
|
Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 2013; 4:mBio.00459-13. [PMID: 23963177 PMCID: PMC3747584 DOI: 10.1128/mbio.00459-13] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immunosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understanding these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray ionization (NanoDESI) and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyncratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor during several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive differential secondary metabolite production. Actinomycetes, filamentous actinobacteria from the soil, are the deepest natural source of useful medicinal compounds, including antibiotics, antifungals, and anticancer agents. There is great interest in developing new strategies that increase the diversity of metabolites secreted by actinomycetes in the laboratory. Here we used several metabolomic approaches to examine the chemicals made by these bacteria when grown in pairwise coculture. We found that these interspecies interactions stimulated production of numerous chemical compounds that were not made when they grew alone. Among these compounds were at least 12 different versions of a molecule called desferrioxamine, a siderophore used by the bacteria to gather iron. Many other compounds of unknown identity were also observed, and the pattern of compound production varied greatly among the interaction sets. These findings suggest that chemical interactions between actinomycetes are surprisingly complex and that coculture may be a promising strategy for finding new molecules from actinomycetes.
Collapse
|