201
|
Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci Bull (Beijing) 2020; 65:1659-1666. [PMID: 36659042 DOI: 10.1016/j.scib.2020.05.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
Abstract
Two-dimensional (2D) olefin-linked covalent organic frameworks (COFs) with excellent π-electron communication and high stability are emerging as promising crystalline polymeric materials. However, because of the limited species of COFs, their characteristics, processability and potential applications have not been completely understood and explored. In this work, we prepared two novel olefin-linked 2D COFs through Knoevenagel condensation of 2,4,6-trimethyl-1,3,5-triazine with tritopic triazine-cored aldehydes. The resulting COFs exhibit highly crystalline honeycomb-like structures stacked from hexagonal-latticed polymeric layers and display well-defined nanofibrillar morphologies with the uniform diameters of ca. 80 nm and ultra-lengths up to several micrometers. Such COF nanofibers can be readily composited with carbon nanotubes into high-quality continuous thin films, which are further compacted by a typical hot-pressing process to enhance their densities and mechanical strength without changing their fibrous microstructures. Such film-fabricated interdigital microelectrodes and the ionogel electrolyte are assembled into planar micro-supercapacitors (MSCs), which exhibit an outstanding areal capacitance of 44.3 mF cm-2, large operating voltage window of 2.5 V, high volumetric energy density of 38.5 mWh cm-3 as well as excellent cycling stability.
Collapse
|
202
|
Sprick RS, Chen Z, Cowan AJ, Bai Y, Aitchison CM, Fang Y, Zwijnenburg MA, Cooper AI, Wang X. Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. Angew Chem Int Ed Engl 2020; 59:18695-18700. [PMID: 32596879 PMCID: PMC7589379 DOI: 10.1002/anie.202008000] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 11/25/2022]
Abstract
The first examples of linear conjugated organic polymer photocatalysts that produce oxygen from water after loading with cobalt and in the presence of an electron scavenger are reported. The oxygen evolution rates, which are higher than for related organic materials, can be rationalized by a combination of the thermodynamic driving force for water oxidation, the light absorption of the polymer, and the aqueous dispersibility of the relatively hydrophilic polymer particles. We also used transient absorption spectroscopy to study the best performing system and we found that fast oxidative quenching of the exciton occurs (picoseconds) in the presence of an electron scavenger, minimizing recombination.
Collapse
Affiliation(s)
- Reiner Sebastian Sprick
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolLiverpoolL7 3NYUK
- Department of Pure and Applied ChemistryUniversity of StrathclydeThomas Graham Building295 Cathedral StreetGlasgowG1 1XLUK
| | - Zheng Chen
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Alexander J. Cowan
- Stephenson Institute for Renewable EnergyUniversity of LiverpoolChadwick BuildingPeach StreetLiverpoolL69 7ZFUK
| | - Yang Bai
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Catherine M. Aitchison
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | | | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| |
Collapse
|
203
|
Qian C, Zhou W, Qiao J, Wang D, Li X, Teo WL, Shi X, Wu H, Di J, Wang H, Liu G, Gu L, Liu J, Feng L, Liu Y, Quek SY, Loh KP, Zhao Y. Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. J Am Chem Soc 2020; 142:18138-18149. [DOI: 10.1021/jacs.0c08436] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng Qian
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jingsi Qiao
- Centre for Advanced 2D Materials, National University of Singapore, 117546 Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xing Li
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Wei Liang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiangyan Shi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jun Di
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Hou Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Lili Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yuchuan Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Su Ying Quek
- Centre for Advanced 2D Materials, National University of Singapore, 117546 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
| | - Kian Ping Loh
- Centre for Advanced 2D Materials, National University of Singapore, 117546 Singapore
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
204
|
|
205
|
Sun S, Ma HZ, Zhang X, Ma YC. Direct and indirect excitons in two-dimensional covalent organic frameworks. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Shan Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hui-zhong Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
206
|
Wang Y, Xie M, Lan J, Yuan L, Yu J, Li J, Peng J, Chai Z, Gibson JK, Zhai M, Shi W. Radiation Controllable Synthesis of Robust Covalent Organic Framework Conjugates for Efficient Dynamic Column Extraction of 99TcO4−. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
207
|
Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting. Catalysts 2020. [DOI: 10.3390/catal10101111] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ultrathin two-dimensional (2D) semiconductor-mediated photocatalysts have shown their compelling potential and have arguably received tremendous attention in photocatalysis because of their superior thickness-dependent physical, chemical, mechanical and optical properties. Although numerous comprehensions about 2D semiconductor photocatalysts have been amassed up to now, low cost efficiency, degradation, kinetics of charge transfer along with recycling are still the big challenges to realize a wide application of 2D semiconductor-based photocatalysis. At present, most photocatalysts still need rare or expensive noble metals to improve the photocatalytic activity, which inhibits their commercial-scale application extremely. Thus, developing less costly, earth-abundant semiconductor-based photocatalysts with efficient conversion of sunlight energy remains the primary challenge. In this review, it begins with a brief description of the general mechanism of overall photocatalytic water splitting. Then a concise overview of different types of 2D semiconductor-mediated photocatalysts is given to figure out the advantages and disadvantages for mentioned semiconductor-based photocatalysis, including the structural property and stability, synthesize method, electrochemical property and optical properties for H2/O2 production half reaction along with overall water splitting. Finally, we conclude this review with a perspective, marked on some remaining challenges and new directions of 2D semiconductor-mediated photocatalysts.
Collapse
|
208
|
Geng K, Arumugam V, Xu H, Gao Y, Jiang D. Covalent organic frameworks: Polymer chemistry and functional design. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101288] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
209
|
Chen W, Wang L, Mo D, He F, Wen Z, Wu X, Xu H, Chen L. Modulating Benzothiadiazole‐Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weiben Chen
- Department of Chemistry Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 P. R. China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Daize Mo
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhilin Wen
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Long Chen
- Department of Chemistry Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
210
|
Chen W, Wang L, Mo D, He F, Wen Z, Wu X, Xu H, Chen L. Modulating Benzothiadiazole‐Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020; 59:16902-16909. [DOI: 10.1002/anie.202006925] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Weiben Chen
- Department of Chemistry Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 P. R. China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Daize Mo
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhilin Wen
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Long Chen
- Department of Chemistry Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
211
|
Sprick RS, Chen Z, Cowan AJ, Bai Y, Aitchison CM, Fang Y, Zwijnenburg MA, Cooper AI, Wang X. Water Oxidation with Cobalt‐Loaded Linear Conjugated Polymer Photocatalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Reiner Sebastian Sprick
- Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY UK
- Department of Pure and Applied Chemistry University of Strathclyde Thomas Graham Building 295 Cathedral Street Glasgow G1 1XL UK
| | - Zheng Chen
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Alexander J. Cowan
- Stephenson Institute for Renewable Energy University of Liverpool Chadwick Building Peach Street Liverpool L69 7ZF UK
| | - Yang Bai
- Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY UK
| | - Catherine M. Aitchison
- Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY UK
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | | | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY UK
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
212
|
Zhang S, Yang Q, Xu X, Liu X, Li Q, Guo J, Torad NL, Alshehri SM, Ahamad T, Hossain MSA, Kaneti YV, Yamauchi Y. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. NANOSCALE 2020; 12:15611-15619. [PMID: 32678409 DOI: 10.1039/d0nr03041d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Constructing heterostructures with advanced architectures is an effective strategy for enhancing the crystallinity and functional performance of covalent organic frameworks (COFs). Herein, a novel core-shell heterostructure integrating a metal-organic framework (MOF)-derived graphitic carbon core (GC) and a well-arranged COF shell, termed MOF-GC@COF, is reported. ZIF-67 dodecahedra are first chemically etched with a weak organic acid and further converted to MOF-GC via thermal pyrolysis. In the subsequent step, β-ketoenamine-linked COF nanofibers are vertically assembled on the surface of the MOF-GC cores to generate the MOF-GC@COF heterostructure. As a proof-of-concept application, the as-prepared MOF-GC@COF heterostructure is used as an effective quartz crystal microbalance (QCM) sensor for the adsorption of formaldehyde. Benefiting from the synergistic effect of the hybrid composition and the advantages of the core-shell heterostructure, the newly prepared MOF-GC@COF heterostructure exhibits excellent sensing performance toward formaldehyde with rapid adsorption kinetics, high sensitivity, and superior selectivity.
Collapse
Affiliation(s)
- Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Li C, Ma Y, Liu H, Tao L, Ren Y, Chen X, Li H, Yang Q. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63572-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
214
|
Hu J, Gupta SK, Ozdemir J, Beyzavi MH. Applications of Dynamic Covalent Chemistry Concept towards Tailored Covalent Organic Framework Nanomaterials: A Review. ACS APPLIED NANO MATERIALS 2020; 3:6239-6269. [PMID: 34327307 PMCID: PMC8317485 DOI: 10.1021/acsanm.0c01327] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are a rapidly developing class of materials that has been of immense research interest during the last ten years. Numerous reviews have been devoted to summarizing the synthesis and applications of COFs. However, the underlying dynamic covalent chemistry (DCC), which is the foundation of COFs synthesis, has never been systematically reviewed in this context. Dynamic covalent chemistry is the practice of using thermodynamic equilibriums to molecular assemblies. This Critical Review will cover the state-of-the-art use of DCC to both synthesize COFs and expand the applications of COFs. Five synthetic strategies for COF synthesis are rationalized, namely: modulation, mixed linker/linkage, sub-stoichiometric reaction, framework isomerism, and linker exchange, which highlight the dynamic covalent chemistry to regulate the growth and to modify the properties of COFs. Furthermore, the challenges in these approaches and potential future perspectives in the field of COF chemistry are also provided.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Suraj K Gupta
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
215
|
Yu M, Dong R, Feng X. Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications. J Am Chem Soc 2020; 142:12903-12915. [PMID: 32628838 DOI: 10.1021/jacs.0c05130] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following a 15-year-long investigation on graphene, two-dimensional (2D) carbon-rich conjugated frameworks (CCFs) have attracted growing research interest as a new generation of multifunctional materials. Typical 2D CCFs include 2D π-conjugated polymers (also classified as 2D π-conjugated covalent organic frameworks) and 2D π-conjugated metal-organic frameworks, which are characterized by layer-stacked periodic frameworks with high in-plane π-conjugation. These unique structures endow 2D CCFs with regular porosities, large specific surface areas, and superior chemical stability. In addition, 2D CCFs exhibit certain notable properties (e.g., excellent electronic conductivity, designable topologies, and defined catalytic/redox-active sites), which have motivated increasing efforts to explore 2D CCFs for electrochemical energy applications. In this Perspective, the structural features and synthetic principles of 2D CCFs are briefly introduced. Moreover, we discuss recent achievements in 2D CCFs designed for various electrochemical energy conversion (electrocatalysis) and storage (supercapacitors and batteries) applications. Particular emphasis is placed on analyzing the precise structural regulation of 2D CCFs. Finally, we provide an outlook about the future development of synthetic 2D CCFs for electrochemical applications, which concerns novel monomer design, chemical methodology/strategy establishment, and a roadmap toward practical applications.
Collapse
Affiliation(s)
- Minghao Yu
- Center for Advancing Electronics Dresden and Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden and Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden and Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
216
|
Chen X, Dang Q, Sa R, Li L, Li L, Bi J, Zhang Z, Long J, Yu Y, Zou Z. Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO 2. Chem Sci 2020; 11:6915-6922. [PMID: 33033603 PMCID: PMC7499818 DOI: 10.1039/d0sc01747g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Selective photoreduction of CO2 into a given product is a great challenge but desirable. Inspired by natural photosynthesis occurring in hierarchical networks over non-precious molecular metal catalysts, we demonstrate an integration of single Ni sites into the hexagonal pores of polyimide covalent organic frameworks (PI-COFs) for selective photoreduction of CO2 to CO. The single Ni sites in the hexagonal pores of the COFs serve as active sites for CO2 activation and conversion, while the PI-COFs not only act as a photosensitizer to generate charge carriers but also exert a promoting effect on the selectivity. The optimized PI-COF with a triazine ring exhibits excellent activity and selectivity. A possible intra- and inter-molecular charge-transfer mechanism was proposed, in which the photogenerated electrons in PI-COFs are efficiently separated from the central ring to the diimide linkage, and then transferred to the single Ni active sites, as evidenced by theoretical calculations.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Qiang Dang
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Rongjian Sa
- Institute of Oceanography , Ocean College , Minjiang University , Fuzhou , Fujian 350108 , China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Lingyun Li
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Jinhong Bi
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Zhigang Zou
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
- Eco-materials and Renewable Energy Research Center , College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
217
|
Huang N, Lee KH, Yue Y, Xu X, Irle S, Jiang Q, Jiang D. A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angew Chem Int Ed Engl 2020; 59:16587-16593. [DOI: 10.1002/anie.202005274] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Ning Huang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization State Key Laboratory of Silicon Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ka Hung Lee
- Bredesen Centre for Interdisciplinary Research and Graduate Education University of Tennessee Knoxville TN 37996 USA
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Yan Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization State Key Laboratory of Silicon Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization State Key Laboratory of Silicon Materials Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Stefan Irle
- Bredesen Centre for Interdisciplinary Research and Graduate Education University of Tennessee Knoxville TN 37996 USA
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
218
|
Huang N, Lee KH, Yue Y, Xu X, Irle S, Jiang Q, Jiang D. A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ning Huang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationState Key Laboratory of Silicon MaterialsDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Ka Hung Lee
- Bredesen Centre for Interdisciplinary Research and Graduate EducationUniversity of Tennessee Knoxville TN 37996 USA
- Computational Sciences and Engineering Division & Chemical Sciences DivisionOak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Yan Yue
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationState Key Laboratory of Silicon MaterialsDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationState Key Laboratory of Silicon MaterialsDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Stefan Irle
- Bredesen Centre for Interdisciplinary Research and Graduate EducationUniversity of Tennessee Knoxville TN 37996 USA
- Computational Sciences and Engineering Division & Chemical Sciences DivisionOak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Qiuhong Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
219
|
Li S, Li L, Li Y, Dai L, Liu C, Liu Y, Li J, Lv J, Li P, Wang B. Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01242] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shuai Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Li Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yijun Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lu Dai
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Caixia Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanze Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiani Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianning Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
220
|
Guo J, Jiang D. Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges. ACS CENTRAL SCIENCE 2020; 6:869-879. [PMID: 32607434 PMCID: PMC7318070 DOI: 10.1021/acscentsci.0c00463] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 05/19/2023]
Abstract
Heterogeneous catalysts offer a cyclable platform for exploring efficient transformation systems, and their promising applications underpin a broad research interest. Covalent organic frameworks (COFs) are a class of crystalline porous networks that can integrate organic units into ordered skeletons and pores, offering an insoluble and robust platform for exploring heterogeneous catalysts. In this Outlook, we describe a conceptual scheme for designing catalytic COFs to promote various transformations. We summarize the general strategy for designing COFs to construct tailor-made skeletons and pores by emphasizing their structural uniqueness. We introduce different approaches to develop catalytic functions by sampling COFs into four regimes, i.e., skeletons, walls, pores, and systematically organized systems. We scrutinize their catalytic features and elucidate interplays with electrons, holes, and molecules by highlighting the key role of interface design in exploring catalytic COFs. We further envisage the key issues to be challenged, future research directions, and perspectives to show a full picture of designer heterogeneous catalysis based on COFs.
Collapse
Affiliation(s)
- Jia Guo
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Donglin Jiang
- Department
of Chemistry, Faculty of Science, National
University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
221
|
Zhang K, Kirlikovali KO, Varma RS, Jin Z, Jang HW, Farha OK, Shokouhimehr M. Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27821-27852. [PMID: 32469503 DOI: 10.1021/acsami.0c06267] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs), materials constructed from organic building blocks joined by robust covalent bonds, have emerged as attractive materials in the context of electrochemical applications because of their high, intrinsic porosities and crystalline frameworks, as well as their ability to be tuned across two- and three-dimensions by the judicious selection of building blocks. Because of the recent and rapid development of this field, we have summarized COFs employed for electrochemical applications, such as batteries and capacitors, water splitting, solar cells, and sensors, with an emphasis on the structural design and resulting performance of the targeted electrochemical system. Overall, we anticipate this review will stimulate the design and synthesis of the next generation of COFs for use in electrochemical applications and beyond.
Collapse
Affiliation(s)
- Kaiqiang Zhang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston 60208, Illinois United States
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Zhong Jin
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston 60208, Illinois United States
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
222
|
Li FF, Cui WR, Jiang W, Zhang CR, Liang RP, Qiu JD. Stable sp 2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122333. [PMID: 32092656 DOI: 10.1016/j.jhazmat.2020.122333] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Uranium is an important element in the nuclear industry while the discharge of radioactive wastewater can cause serious damages to the environment. In this work, an ultra-stable sp2 carbon-conjugated covalent organic framework (COF-PDAN-AO) is synthesized with amidoxime-substituted monomers for detection and efficient adsorption of uranium from radioactive wastewater. Abundant amidoxime groups laced on the open 1D channels of COF-PDAN-AO exhibit exceptional accessibility and the regular pores facilitate the mass transfer. Based on these features, COF-PDAN-AO achieves ultra-low detection limit of 6.5 nM, high uranium adsorption capacity (410 mg/g) and selective interaction with uranium. In addition, various spectroscopies verify COF-PDAN-AO possesses excellent radioresistance in acidic solution. Regeneration studies have shown that COF-PDAN-AO maintained good structural stability after seven cycles. These results indicate that our sp2 carbon conjugated COF can be potentially used for practical detection and adsorption of uranium from radioactive wastewater. This strategy can be extended to detection and extraction of other contaminants by designing the target ligand.
Collapse
Affiliation(s)
- Fang-Fang Li
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
223
|
Bi S, Thiruvengadam P, Wei S, Zhang W, Zhang F, Gao L, Xu J, Wu D, Chen JS, Zhang F. Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. J Am Chem Soc 2020; 142:11893-11900. [DOI: 10.1021/jacs.0c04594] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Palani Thiruvengadam
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shice Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbei Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lusha Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junsong Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
224
|
Efficient and Tunable White‐Light Emission Using a Dispersible Porous Polymer. Macromol Rapid Commun 2020; 41:e2000176. [DOI: 10.1002/marc.202000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Indexed: 11/07/2022]
|
225
|
Zhi Y, Wang Z, Zhang HL, Zhang Q. Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001070. [PMID: 32419332 DOI: 10.1002/smll.202001070] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/28/2023]
Abstract
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.
Collapse
Affiliation(s)
- Yongfeng Zhi
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
226
|
Mo C, Yang M, Sun F, Jian J, Zhong L, Fang Z, Feng J, Yu D. Alkene-Linked Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Evolution by Efficient Charge Separation and Transfer in the Presence of Sacrificial Electron Donors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902988. [PMID: 32596107 PMCID: PMC7312270 DOI: 10.1002/advs.201902988] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/10/2020] [Indexed: 05/24/2023]
Abstract
Covalent organic frameworks (COFs) are potential photocatalysts for artificial photosynthesis but they are much less explored for photocatalytic hydrogen evolution (PHE). COFs, while intriguing due to crystallinity, tunability, and porosity, tend to have low apparent quantum efficiency (AQE) and little is explored on atomistic structure-performance correlation. Here, adopting triphenylbenzene knots and phenyl linkers as a proof of concept, three structurally related COFs with different linkages are constructed to achieve a tunable COF platform and probe the effect of the linkage chemistry on PHE. Cyano-substituted alkene-linked COF (COF-alkene) yields a stable 2330 µmol h-1 g-1 PHE rate, much superior to imine- and imide-linked counterparts (<40 µmol h-1 g-1) under visible light irradiation. Impressively, COF-alkene achieves an AQE of 6.7% at 420 nm. Combined femtosecond transient absorption spectroscopy and theoretical calculation disclose the critical role of cyano-substituted alkene linkages toward high efficiency of charge separation and transfer in the presence of sacrificial electron donors-the decisive key to the superior PHE performance. Such alkene linkages can also be extended to design a series of high-performance polymeric photocatalysts, highlighting a general design idea for efficient PHE.
Collapse
Affiliation(s)
- Chunshao Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Meijia Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Fusai Sun
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Junhua Jian
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Jiangshan Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
227
|
Wang K, Jia Z, Bai Y, Wang X, Hodgkiss SE, Chen L, Chong SY, Wang X, Yang H, Xu Y, Feng F, Ward JW, Cooper AI. Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction. J Am Chem Soc 2020; 142:11131-11138. [DOI: 10.1021/jacs.0c03418] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kewei Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, 037009, China
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Zhifang Jia
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, 037009, China
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Yang Bai
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Xue Wang
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Sophie E. Hodgkiss
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Linjiang Chen
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Samantha Y. Chong
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Xiaoyan Wang
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Haofan Yang
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Yongjie Xu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Feng Feng
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, 037009, China
| | - John W. Ward
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, U.K
| |
Collapse
|
228
|
Li Q, Lan X, An G, Ricardez-Sandoval L, Wang Z, Bai G. Visible-Light-Responsive Anthraquinone Functionalized Covalent Organic Frameworks for Metal-Free Selective Oxidation of Sulfides: Effects of Morphology and Structure. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00290] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, P. R. China
| | - Guangyu An
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Luis Ricardez-Sandoval
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
229
|
Jin E, Geng K, Lee KH, Jiang W, Li J, Jiang Q, Irle S, Jiang D. Topology‐Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Enquan Jin
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Keyu Geng
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ka Hung Lee
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
| | - Weiming Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Juan Li
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Stephan Irle
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
- Bredesen Centre for Interdisciplinary Research and Graduate Education University of Tennessee Knoxville TN 37996 USA
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
230
|
Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, Chen M, Xiong T, Zhou C, Li X, Huang D, Zhu Y, Wang Z, Tang J. Covalent organic framework photocatalysts: structures and applications. Chem Soc Rev 2020; 49:4135-4165. [PMID: 32421139 DOI: 10.1039/d0cs00278j] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the light of increasing energy demand and environmental pollution, it is urgently required to find a clean and renewable energy source. In these years, photocatalysis that uses solar energy for either fuel production, such as hydrogen evolution and hydrocarbon production, or environmental pollutant degradation, has shown great potential to achieve this goal. Among the various photocatalysts, covalent organic frameworks (COFs) are very attractive due to their excellent structural regularity, robust framework, inherent porosity and good activity. Thus, many studies have been carried out to investigate the photocatalytic performance of COFs and COF-based photocatalysts. In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented. Furthermore, diverse linkers between COF building blocks such as boron-containing connections and nitrogen-containing connections are summarised and compared. The morphologies of COFs and several commonly used strategies pertaining to photocatalytic activity are also discussed. Following this, the applications of COF-based photocatalysts are detailed including photocatalytic hydrogen evolution, CO2 conversion and degradation of environmental contaminants. Finally, a summary and perspective on the opportunities and challenges for the future development of COF and COF-based photocatalysts are given.
Collapse
Affiliation(s)
- Han Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Jin E, Geng K, Lee KH, Jiang W, Li J, Jiang Q, Irle S, Jiang D. Topology‐Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:12162-12169. [DOI: 10.1002/anie.202004728] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Enquan Jin
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Keyu Geng
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ka Hung Lee
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
| | - Weiming Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Juan Li
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Stephan Irle
- Computational Sciences and Engineering Division & Chemical Sciences Division Oak Ridge National Laboratory USA
- Bredesen Centre for Interdisciplinary Research and Graduate Education University of Tennessee Knoxville TN 37996 USA
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
232
|
Ghosh S, Nakada A, Springer MA, Kawaguchi T, Suzuki K, Kaji H, Baburin I, Kuc A, Heine T, Suzuki H, Abe R, Seki S. Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks. J Am Chem Soc 2020; 142:9752-9762. [DOI: 10.1021/jacs.0c02633] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samrat Ghosh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akinobu Nakada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Maximilian A. Springer
- Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01062, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, Forschungsstelle Leipzig, Permoserstrasse 15, Leipzig 04318, Germany
| | - Takahiro Kawaguchi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Igor Baburin
- Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01062, Germany
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, Forschungsstelle Leipzig, Permoserstrasse 15, Leipzig 04318, Germany
| | - Thomas Heine
- Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01062, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, Forschungsstelle Leipzig, Permoserstrasse 15, Leipzig 04318, Germany
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
233
|
Liu H, Li C, Li H, Ren Y, Chen J, Tang J, Yang Q. Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20354-20365. [PMID: 32272831 DOI: 10.1021/acsami.0c00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) emerging as a novel kind of visible light-responsive organic semiconductor have attracted extensive research attention in the field of photocatalytic organic transformations. However, the key parameters affecting their photocatalytic properties are still not clear. In this work, a series of [3 + 3] COFs with similar two-dimensional hexagonal structure but different compositions are synthesized and employed as model materials for investigating the key factors affecting the photocatalytic properties in the visible-light-driven reductive dehalogenation reaction and the aerobic cross-dehydrogenative coupling reaction. In comparison with -H and -CF3, the -OH substituent in the aromatic ring could narrow the band gap of the COFs. The COFs with a triazine skeleton in the framework usually boost the photocatalytic activity, possibly because of the enhanced charge separation efficiency by the formation of a donor-acceptor domain. As a combined result of the narrow band gap, efficient charge separation, and high conductivity, the COF possessing both a -OH group and triazine skeleton shows the highest activity in the photocatalytic reductive dehalogenation reaction. Notably, COFs could be easily recovered and reused several times without the loss of crystallinity. Our primary results may shed light on the design of efficient COF-based semiconductors for photocatalytic organic transformations.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule (Ministry of Education), School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunzhi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yiqi Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jianting Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule (Ministry of Education), School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Engineering, Chongqing Three Georges University, Chongqing 404100, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
234
|
Li C, Wang Y, Zou Y, Zhang X, Dong H, Hu W. Two‐Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angew Chem Int Ed Engl 2020; 59:9403-9407. [DOI: 10.1002/anie.202002644] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Chenguang Li
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yongshuai Wang
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ye Zou
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Huanli Dong
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
235
|
Li C, Wang Y, Zou Y, Zhang X, Dong H, Hu W. Two‐Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chenguang Li
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yongshuai Wang
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ye Zou
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Huanli Dong
- National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of SciencesTianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
236
|
COFs-based Porous Materials for Photocatalytic Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2394-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
237
|
Shi J, Chen R, Hao H, Wang C, Lang X. 2D sp
2
Carbon‐Conjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ji‐Long Shi
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Rufan Chen
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Huimin Hao
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Cheng Wang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
238
|
Shi J, Chen R, Hao H, Wang C, Lang X. 2D sp
2
Carbon‐Conjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. Angew Chem Int Ed Engl 2020; 59:9088-9093. [DOI: 10.1002/anie.202000723] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Ji‐Long Shi
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Rufan Chen
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Huimin Hao
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Cheng Wang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
239
|
Wang H, Qian C, Liu J, Zeng Y, Wang D, Zhou W, Gu L, Wu H, Liu G, Zhao Y. Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis. J Am Chem Soc 2020; 142:4862-4871. [PMID: 32073853 DOI: 10.1021/jacs.0c00054] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covalent organic frameworks (COFs) are excellent platforms with tailored functionalities in photocatalysis. There are still challenges in increasing the photochemical performance of COFs. Therefore, we designed and prepared a series of COFs for photocatalytic hydrogen generation. Varying different ratios of β-ketoenamine to imine moieties in the linkages could differ the ordered structure, visible light harvesting, and bandgap. Overall, β-ketoenamine-linked COFs exhibited much better photocatalytic activity than those COFs having both β-ketoenamine and imine moieties on account of a nonquenched excited state and more favorable HOMO level in the photoinduced oxidation reaction from the former. Specifically, after in situ growth of β-ketoenamine-linked COFs onto NH2-Ti3C2Tx MXene via covalent connection, the heterohybrid showed an obvious improvement in photocatalytic H2 evolution because of strong covalent coupling, electrical conductivity, and efficient charge transfer. This integrated linkage evolution and covalent hybridization approach advances the development of COF-based photocatalysts.
Collapse
Affiliation(s)
- Hou Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheng Qian
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jia Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yongfei Zeng
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
240
|
Abstract
Conjugated microporous polymers (CMPs) are a unique class of materials that combine extended π-conjugation with a permanently microporous skeleton. Since their discovery in 2007, CMPs have become established as an important subclass of porous materials. A wide range of synthetic building blocks and network-forming reactions offers an enormous variety of CMPs with different properties and structures. This has allowed CMPs to be developed for gas adsorption and separations, chemical adsorption and encapsulation, heterogeneous catalysis, photoredox catalysis, light emittance, sensing, energy storage, biological applications, and solar fuels production. Here we review the progress of CMP research since its beginnings and offer an outlook for where these materials might be headed in the future. We also compare the prospect for CMPs against the growing range of conjugated crystalline covalent organic frameworks (COFs).
Collapse
Affiliation(s)
| | - Andrew I. Cooper
- Department of Chemistry and
Materials Innovation Factory, University
of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| |
Collapse
|
241
|
Xu C, Xie Q, Zhang W, Xiong S, Pan C, Tang J, Yu G. A Vinylene-Bridged Conjugated Covalent Triazine Polymer as a Visible-Light-Active Photocatalyst for Degradation of Methylene Blue. Macromol Rapid Commun 2020; 41:e2000006. [PMID: 32096912 DOI: 10.1002/marc.202000006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/02/2020] [Indexed: 11/11/2022]
Abstract
The development of new photocatalytic platforms using novel semiconductor material is an important challenge. Herein, a sp2 carbon-conjugated covalent triazine polymer (sp2 c-CTP-4), featuring a vinylene bridge and extended π-conjugation, is prepared as a highly efficient photocatalyst for degradation of methylene blue. sp2 c-CTP-4 exhibits substantial semiconducting properties such as enhanced charge transfer and prolonged lifetime of carriers compared to its counterparts with CN or CC connections, likely due to its extended π-delocalization with an unencumbered CC bridge. Moreover, benefiting from its high chemical stability, the as-made catalyst can be recycled five times with good retention of photocatalytic activity. This study provides a new pathway for constructing a robust platform for efficient photocatalysis and gives insight into the structure-property relationship of conjugated polymers.
Collapse
Affiliation(s)
- Chen Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weijie Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shaohui Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
242
|
Huang T, Lin X, Liu Y, Zhao J, Lin H, Xu Z, Zhong S, Zhang C, Wang X, Fu X, Long J. Molecular Engineering of Fully Conjugated sp 2 Carbon-Linked Polymers for High-Efficiency Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2020; 13:672-676. [PMID: 31883308 DOI: 10.1002/cssc.201903334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The diverse nature of organic precursors offers a versatile platform for precisely tailoring the electronic properties of semiconducting polymers. In this study, three fully conjugated sp2 carbon-linked polymers have been designed and synthesized for photocatalytic hydrogen evolution under visible-light illumination, by copolymerizing different C3 -symmetric aromatic aldehydes as knots with the 1,4-phenylene diacetonitrile (PDAN) linker through a C=C condensation reaction. The hydrogen evolution (HER) is achieved at a maximum rate of 30.2 mmol g-1 h-1 over a polymer based on 2,4,6-triphenyl-1,3,5-triazine units linked by cyano-substituted phenylene, with an apparent quantum yield (AQY) of 7.20 % at 420 nm. Increasing the degree of conjugation and planarity not only extends visible-light absorption, but also stabilizes the fully conjugated sp2 -carbon-linked donor-acceptor (D-A) polymer. Incorporating additional electron-withdrawing triazine units into the D-A polymer to form multiple electron donors and acceptors can greatly promote exciton separation and charge transfer, thus significantly enhancing the photocatalytic activity.
Collapse
Affiliation(s)
- Tao Huang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Xi Lin
- Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, 350108, P.R. China
| | - Yang Liu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Jiwu Zhao
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Huan Lin
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Ziting Xu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Shuncong Zhong
- Laboratory of Optics, Terahertz and Nondestructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Chunjie Zhang
- Research Institute of Air Purification Equipment, Shanxi Xinhua Chemical Co., Ltd, Taiyuan, 030008, P.R. China
| | - Xuxu Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Xianzhi Fu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China
| |
Collapse
|
243
|
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong‐Base‐Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020; 59:6007-6014. [DOI: 10.1002/anie.201914424] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Siquan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Liping Guo
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| |
Collapse
|
244
|
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong‐Base‐Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914424] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siquan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Liping Guo
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| |
Collapse
|
245
|
Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem Rev 2020; 120:8814-8933. [PMID: 31967791 DOI: 10.1021/acs.chemrev.9b00550] [Citation(s) in RCA: 1354] [Impact Index Per Article: 270.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.
Collapse
Affiliation(s)
- Keyu Geng
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ting He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sasanka Dalapati
- Field of Environment and Energy, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Ke Tian Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhongping Li
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qiuhong Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
246
|
Shu C, Zhao Y, Zhang C, Gao X, Ma W, Ren SB, Wang F, Chen Y, Zeng JH, Jiang JX. Bisulfone-Functionalized Organic Polymer Photocatalysts for High-Performance Hydrogen Evolution. CHEMSUSCHEM 2020; 13:369-375. [PMID: 31755236 DOI: 10.1002/cssc.201902797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Conjugated polymers show great potential in the application of photocatalysis, particularly for the photoreduction reaction of water to generate hydrogen. Molecular structure design is a key part for building a high-performance organic photocatalyst. Herein, two bisulfone-containing conjugated polymer photocatalysts were constructed with 1D or 3D polymer structures, and the effect of polymer geometry on photocatalytic activity was studied. It was found that the linear polymer PySEO-1 exhibited increased photocatalytic performance compared with the 3D polymer network PySEO-2 because the enhanced coplanarity of the polymeric chain in PySEO-1 promoted the photogenerated charge-carrier transmission along the 1D main chain. As a result, an attractive hydrogen generation rate of 9477 μmol h-1 g-1 was obtained with PySEO-1 under broadband light irradiation. PySEO-1 also exhibited a high external quantum efficiency of 4.1 % at an incident light wavelength of 400 nm, demonstrating that the bisulfone-containing polymers are attractive as organic photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Yongbo Zhao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Xiaomin Gao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Wenyan Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Shi-Bin Ren
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 317000, P. R. China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073, P. R. China
| | - Yu Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jing Hui Zeng
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
247
|
Wang GB, Li S, Yan CX, Lin QQ, Zhu FC, Geng Y, Dong YB. A benzothiadiazole-based covalent organic framework for highly efficient visible-light driven hydrogen evolution. Chem Commun (Camb) 2020; 56:12612-12615. [DOI: 10.1039/d0cc05222a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A benzothiadiazole-based covalent organic framework, which can be a high-performance platform for efficient visible-light driven hydrogen evolution, is reported.
Collapse
Affiliation(s)
- Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Sha Li
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Cai-Xin Yan
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Qian-Qian Lin
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Fu-Cheng Zhu
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Yan Geng
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| |
Collapse
|
248
|
Rahman MZ, Kibria MG, Mullins CB. Metal-free photocatalysts for hydrogen evolution. Chem Soc Rev 2020; 49:1887-1931. [DOI: 10.1039/c9cs00313d] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article provides a comprehensive review of the latest progress, challenges and recommended future research related to metal-free photocatalysts for hydrogen productionviawater-splitting.
Collapse
Affiliation(s)
- Mohammad Ziaur Rahman
- John J. Mcketta Department of Chemical Engineering and Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering
- University of Calgary
- 2500 University Drive
- NW Calgary
- Canada
| | - Charles Buddie Mullins
- John J. Mcketta Department of Chemical Engineering and Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
249
|
Aitchison CM, Sachs M, Little MA, Wilbraham L, Brownbill NJ, Kane CM, Blanc F, Zwijnenburg MA, Durrant JR, Sprick RS, Cooper AI. Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chem Sci 2020. [DOI: 10.1039/d0sc02675a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligomer chain length and backbone twisting were found to have a strong effect on optoelectronic properties but a trimer of dibenzo[b,d]thiophene sulfone was found to have high photocatalytic activity approaching that of its polymer analogue.
Collapse
Affiliation(s)
- Catherine M. Aitchison
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| | - Michael Sachs
- Department of Chemistry and Centre for Processable Electronics
- Imperial College London
- London W12 0BZ
- UK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| | - Liam Wilbraham
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Nick J. Brownbill
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
- Stephenson Institute for Renewable Energy
| | - Christopher M. Kane
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| | - Frédéric Blanc
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
- Stephenson Institute for Renewable Energy
| | | | - James R. Durrant
- Department of Chemistry and Centre for Processable Electronics
- Imperial College London
- London W12 0BZ
- UK
| | - Reiner Sebastian Sprick
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
- Department of Pure and Applied Chemistry
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation Factory
- University of Liverpool
- Liverpool L7 3NY
- UK
| |
Collapse
|
250
|
Guo B, Li HY, Chen JY, Young DJ, Lang JP, Li HX. Conjugated nanoporous polycarbazole bearing a cobalt complex for efficient visible-light driven hydrogen evolution. NEW J CHEM 2020. [DOI: 10.1039/d0nj01534b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A conjugated nanoporous polycarbazole (CNP) cross-linked by pyridine and coordinated to Co(iii) displays high catalytic performance for visible light-driven H2 generation.
Collapse
Affiliation(s)
- Bin Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Hai-Yan Li
- Analysis and Testing Centre
- Soochow University
- Suzhou 215123
- China
| | - Jian-Ying Chen
- Analysis and Testing Centre
- Soochow University
- Suzhou 215123
- China
| | - David James Young
- College of Engineering, Information Technology and Environment
- Charles Darwin University
- Darwin NT 0909
- Australia
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Hong-Xi Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|