201
|
Shwartz Y, Farkas Z, Stern T, Aszódi A, Zelzer E. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension. Dev Biol 2012; 370:154-63. [PMID: 22884393 DOI: 10.1016/j.ydbio.2012.07.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 02/01/2023]
Abstract
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models.
Collapse
Affiliation(s)
- Yulia Shwartz
- Department of Molecular Genetics, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
202
|
Lui PPY, Wong OT. Tendon stem cells: experimental and clinical perspectives in tendon and tendon-bone junction repair. Muscles Ligaments Tendons J 2012; 2:163-168. [PMID: 23738293 PMCID: PMC3666522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tendon and tendon-bone junction injuries, while heal, have high re-tear rates. Mesenchymal stem cells (MSCs) have great appeal for the promotion of tendon and tendon-bone junction healing because of their high proliferation rate, multi-potency and relative ease of isolation from various tissues. Tendon stem cells have been identified recently and could be an alternative new cell source for tendon and tendon-bone junction repair. In this review, we summarized the in vitro characteristics of tendon stem cells. The evidence supporting the potential use of these cells for tendon and tendon-bone junction repair was presented. In order to therapeutically apply tendon stem cells in the clinical settings, standardization of tendon stem cell culture is essential. Issues relating to the sources, purity, efficacy, safety and delivery of tendon stem cells for tendon and tendon-bone junction repair were summarized and discussed. The direction for future research was suggested.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, China
- Program of Stem Cell and Regeneration, School of Biomedical Science, The Chinese University of Hong Kong, China
| | - On Tik Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, China
| |
Collapse
|
203
|
Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, Tabin CJ. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell 2012; 22:639-50. [PMID: 22421048 DOI: 10.1016/j.devcel.2012.01.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 11/13/2011] [Accepted: 01/18/2012] [Indexed: 12/16/2022]
Abstract
The proepicardial organ is an important transient structure that contributes cells to various cardiac lineages. However, its contribution to the coronary endothelium has been disputed, with conflicting data arising in chick and mouse. Here we resolve this conflict by identifying two proepicardial markers, Scleraxis (Scx) and Semaphorin3D (Sema3D), that genetically delineate heretofore uncharacterized proepicardial subcompartments. In contrast to previously fate-mapped Tbx18/WT-1-expressing cells that give rise to vascular smooth muscle, Scx- and Sema3D-expressing proepicardial cells give rise to coronary vascular endothelium both in vivo and in vitro. Furthermore, Sema3D(+) and Scx(+) proepicardial cells contribute to the early sinus venosus and cardiac endocardium, respectively, two tissues linked to vascular endothelial formation at later stages. Taken together, our studies demonstrate that the proepicardial organ is a molecularly compartmentalized structure, reconciling prior chick and mouse data and providing a more complete understanding of the progenitor populations that establish the coronary vascular endothelium.
Collapse
Affiliation(s)
- Tamar C Katz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Juffer P, Jaspers RT, Lips P, Bakker AD, Klein-Nulend J. Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab 2012; 302:E389-95. [PMID: 22114022 DOI: 10.1152/ajpendo.00320.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.
Collapse
Affiliation(s)
- Petra Juffer
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
205
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
206
|
The role of mechanobiology in tendon healing. J Shoulder Elbow Surg 2012; 21:228-37. [PMID: 22244066 PMCID: PMC3259533 DOI: 10.1016/j.jse.2011.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 02/01/2023]
Abstract
Mechanical cues affect tendon healing, homeostasis, and development in a variety of settings. Alterations in the mechanical environment are known to result in changes in the expression of extracellular matrix proteins, growth factors, transcription factors, and cytokines that can alter tendon structure and cell viability. Loss of muscle force in utero or in the immediate postnatal period delays tendon and enthesis development. The response of healing tendons to mechanical load varies depending on anatomic location. Flexor tendons require motion to prevent adhesion formation, yet excessive force results in gap formation and subsequent weakening of the repair. Excessive motion in the setting of anterior cruciate ligament reconstruction causes accumulation of macrophages, which are detrimental to tendon graft healing. Complete removal of load is detrimental to rotator cuff healing; yet, large forces are also harmful. Controlled loading can enhance healing in most settings; however, a fine balance must be reached between loads that are too low (leading to a catabolic state) and too high (leading to microdamage). This review will summarize existing knowledge of the mechanobiology of tendon development, homeostasis, and healing.
Collapse
|
207
|
Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2011; 36:1099-107. [PMID: 22134708 DOI: 10.1007/s00264-011-1417-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/06/2011] [Indexed: 01/30/2023]
Abstract
PURPOSE Surgical reattachment of tendon to bone often fails due to regeneration failure of the specialised tendon-bone junction (TBJ). The use of mesenchymal stem cells for TBJ regeneration has been reported with promising results. Tendon-derived stem cells (TDSCs) with high proliferative and multi-lineage differentiation potential have been isolated. As stem cells residing in tendons, TDSCs can be considered a new cell source for TBJ repair. Bone morphogenic protein 2 (BMP-2) is a potent osteogenic factor with roles in normal bone healing and pathological ectopic bone formation in soft tissues. The use of BMP-2 to promote TBJ repair has been well reported. This study aimed to compare TDSCs to the gold standard bone-marrow-derived mesenchymal stem cells (BMSCs) with respect to osteogenic response to BMP-2 in vitro. METHOD The clonogenicity and multi-differentiation potential of TDSCs and BMSCs were identified by colony-forming-unit assay, osteogenic, adipogenic and chondrogenic differentiation assays. Their osteogenic response to BMP-2 in vitro was examined by alkaline phosphatase (ALP) cytochemical staining, ALP activity assay and Alizarin red S staining of calcium nodule formation. Messenger RNA (mRNA) and BMP receptor (types IA, IB and II) protein expression were examined by quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. RESULTS Our results showed that both TDSCs and BMSCs exhibited stem cell properties, including clonogenicity and multi-differentiation potential. TDSCs expressed higher mRNA and protein levels of BMP receptors IA, IB and II. They also exhibited higher osteogenic differentiation with and without BMP-2 stimulation compared with BMSCs. CONCLUSIONS TDSCs with/without BMP-2 might be an attractive source for TBJ repair compared with BMSCs.
Collapse
|
208
|
Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A 2011; 18:598-608. [PMID: 21939397 DOI: 10.1089/ten.tea.2011.0338] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tendon injuries are common clinical problems and are difficult to treat. In particular, the tendon-to-bone insertion site, once damaged, does not regenerate its complex zonal arrangement. A potential treatment for tendon injuries is to replace injured tendons with bioengineered tendons. However, the bioengineering of tendon will require a detailed understanding of the normal development of tendon, which is currently lacking. Here, we use the mouse patellar tendon as a model to describe the spatial and temporal pattern of expression of molecular markers for tendon differentiation from late fetal life to 2 weeks after birth. We found that collagen I, fibromodulin, and tenomodulin were expressed throughout the tendon, whereas tenascin-C, biglycan, and cartilage oligomeric protein were concentrated in the insertion site during this period. We also identified signaling pathways that are activated both throughout the developing tendon, for example, transforming growth factor beta and bone morphogenetic protein, and specifically in the insertion site, for example, hedgehog pathway. Using a mouse line expressing green fluorescent protein in all tenocytes, we also found that tenocyte cell proliferation occurs at highest levels during late fetal life, and declines to very low levels by 2 weeks after birth. These data will allow both the functional analysis of specific signaling pathways in tenocyte development and their application to tissue-engineering studies in vitro.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
209
|
Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 2011; 138:3247-59. [PMID: 21750035 DOI: 10.1242/dev.063768] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate skeleton consists of over 200 individual bones, each with its own unique shape, size and function. We study the role of intrauterine muscle-induced mechanical loads in determining the three-dimensional morphology of developing bones. Analysis of the force-generating capacity of intrauterine muscles in mice revealed that developing bones are subjected to significant and progressively increasing mechanical challenges. To evaluate the effect of intrauterine loads on bone morphogenesis and the contribution of the emerging shape to the ability of bones to withstand these loads, we monitored structural and mineral changes during development. Using daily micro-CT scans of appendicular long bones we identify a developmental program, which we term preferential bone growth, that determines the specific circumferential shape of each bone by employing asymmetric mineral deposition and transient cortical thickening. Finite element analysis demonstrates that the resulting bone structure has optimal load-bearing capacity. To test the hypothesis that muscle forces regulate preferential bone growth in utero, we examine this process in a mouse strain (mdg) that lacks muscle contractions. In the absence of mechanical loads, the stereotypical circumferential outline of each bone is lost, leading to the development of mechanically inferior bones. This study identifies muscle force regulation of preferential bone growth as the module that shapes the circumferential outline of bones and, consequently, optimizes their load-bearing capacity during development. Our findings invoke a common mechanism that permits the formation of different circumferential outlines in different bones.
Collapse
Affiliation(s)
- Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
210
|
Thomopoulos S. The role of mechanobiology in the attachment of tendon to bone. ACTA ACUST UNITED AC 2011. [DOI: 10.1138/20110515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
211
|
Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 2011; 39:1282-9. [PMID: 21335341 DOI: 10.1177/0363546510395485] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuffs heal through a scar tissue interface after repair that makes them prone to failure. Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is thought to direct tendon development during embryogenesis. The purpose of this study was to determine if the application of mesenchymal stem cells (MSCs) transduced with adenoviral-mediated scleraxis (Ad-Scx) could improve regeneration of the tendon-bone insertion site in a rat rotator cuff repair model. HYPOTHESIS Bone marrow-derived cells transduced with Scx would improve the structure of the healing tendon-bone interface and result in increased tendon attachment strength. STUDY DESIGN Controlled laboratory study. METHODS Sixty Lewis rats underwent unilateral detachment and repair of the supraspinatus tendon. Thirty animals received MSCs in a fibrin glue carrier, and 30 received Ad-Scx-transduced MSCs. Animals were sacrificed at 2 weeks and 4 weeks and evaluated for the presence of fibrocartilage and collagen fiber organization at the insertion. Biomechanical testing was performed to determine the structural and material properties of the repaired tissue. Statistical analysis was performed with a Wilcoxon rank sum test with significance set at P = .05. RESULTS There were no differences between the Scx and MSC groups in terms of histologic appearance at 2 weeks. However, the Scx group had higher ultimate stress-to-failure (2.6 ± 0.9 vs 1.7 ± 0.3 MPa; P = .03) and stiffness (8.4 ± 2.9 vs 5.0 ± 1.9 N/mm; P = .01) compared with the MSC group. At 4 weeks, the Scx group had more fibrocartilage (728.7 ± 50.4 vs 342.6 ± 217.0 mm(2); P = .04), higher ultimate load to failure (26.7 ± 4.6 vs 20.8 ± 4.4 N; P = .01), higher ultimate stress to failure (4.7 ± 1.3 vs 3.5 ± 1.0 MPa; P < .04), and higher stiffness values (15.3 ± 3.4 vs 9.3 ± 2.2 N/mm; P < .001) as compared with the MSC group. CONCLUSION Mesenchymal stem cells genetically modified with Scx can augment rotator cuff healing at early time points. CLINICAL RELEVANCE Biologic augmentation of acutely injured rotator cuffs with Scx-transduced MSCs may improve rotator cuff tendon healing and reduce the incidence of re-tears. However, further studies are needed to determine if this remains safe and effective in larger models.
Collapse
|
212
|
Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:165-76. [PMID: 21314435 DOI: 10.1089/ten.teb.2010.0662] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
213
|
Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: Insights from animal models. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:203-13. [PMID: 20860060 PMCID: PMC4794623 DOI: 10.1002/bdrc.20184] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A range of clinical conditions in which fetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, particularly the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, whereas genetically modified mice with nonfunctional or absent skeletal muscle offer a valuable tool for examining the interplay between muscle forces and skeletogenesis in mammals. This article reviews the body of research on animal models of bone or joint formation in vivo in the presence of an altered or abnormal mechanical environment. In both immobilized chicks and "muscleless limb" mice, a range of effects are seen, such as shorter rudiments with less bone formation, changes in rudiment and joint shape, and abnormal joint cavitation. However, although all bones and synovial joints are affected in immobilized chicks, some rudiments and joints are unaffected in muscleless mice. We propose that extrinsic mechanical forces from movements of the mother or littermates impact on skeletogenesis in mammals, whereas the chick embryo is reliant on intrinsic movement for mechanical stimulation. The insights gained from animal models into the mechanobiology of embryonic skeletal development could provide valuable cues to prospective tissue engineers of cartilage and bone and contribute to new or improved treatments to minimize the impact on skeletal development of reduced movement in utero.
Collapse
|
214
|
Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 2010; 137:2807-17. [PMID: 20699295 DOI: 10.1242/dev.047498] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.
Collapse
Affiliation(s)
- Ronen Schweitzer
- Shriners Hospital for Children, Research Division, Portland, OR 97239, USA.
| | | | | |
Collapse
|
215
|
Li Y, Qiu Q, Watson SS, Schweitzer R, Johnson RL. Uncoupling skeletal and connective tissue patterning: conditional deletion in cartilage progenitors reveals cell-autonomous requirements for Lmx1b in dorsal-ventral limb patterning. Development 2010; 137:1181-8. [PMID: 20215352 DOI: 10.1242/dev.045237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integration of muscle, connective tissue and skeletal patterning during development is essential for proper functioning of the musculoskeletal system. How this integration is achieved is poorly understood. There is ample evidence suggesting that skeletal pattern is programmed autonomously, whereas muscle pattern is, for the most part, programmed non-cell-autonomously. Connective tissues depend upon both muscle and skeletal tissues for their proper survival and development. Here, we employed a novel approach to dissect the coordination of musculoskeletal patterning during mouse limb development. Using both conditional gain- and loss-of-function approaches, we selectively deleted or activated the LIM-homeodomain transcription factor Lmx1b in skeletal progenitors using a Sox9-Cre knock-in allele. As Lmx1b is both necessary and sufficient to specify dorsal pattern, this approach allowed us to investigate the effect of selectively deleting or activating Lmx1b in skeletal progenitors on muscle, connective and skeletal tissues during limb development. Our results indicate that whereas Lmx1b activity is required autonomously in skeletal progenitors to direct dorsal pattern, loss or gain of Lmx1b activity in skeletal progenitors has no effect on muscle or connective tissue patterning. Hence, we show for the first time that skeletal and connective tissue patterning can be uncoupled, indicating a degree of autonomy in the formation of the musculoskeletal system.
Collapse
Affiliation(s)
- Ying Li
- Program in Genes and Development, University of Texas Health Sciences Center, Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|