201
|
Cui L, Vivona S, Smith BR, Kothapalli SR, Liu J, Ma X, Chen Z, Taylor M, Kierstead PH, Fréchet JM, Gambhir SS, Rao J. Reduction Triggered In Situ Polymerization in Living Mice. J Am Chem Soc 2020; 142:15575-15584. [PMID: 32804495 PMCID: PMC8171073 DOI: 10.1021/jacs.0c07594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"Smart" biomaterials that are responsive to physiological or biochemical stimuli have found many biomedical applications for tissue engineering, therapeutics, and molecular imaging. In this work, we describe in situ polymerization of activatable biorthogonal small molecules in response to a reducing environment change in vivo. We designed a carbohydrate linker- and cyanobenzothiazole-cysteine condensation reaction-based small molecule scaffold that can undergo rapid condensation reaction upon physiochemical changes (such as a reducing environment) to form polymers (pseudopolysaccharide). The fluorescent and photoacoustic properties of a fluorophore-tagged condensation scaffold before and after the transformation have been examined with a dual-modality optical imaging method. These results confirmed the in situ polymerization of this probe after both local and systemic administration in living mice.
Collapse
Affiliation(s)
- Lina Cui
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, CA, USA
| | - Sandro Vivona
- Department of Molecular and Cellular Physiology, Stanford University, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
| | - Sri R. Kothapalli
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
| | - Jun Liu
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Xiaowei Ma
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zixin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Chemistry, Stanford University, CA, USA
| | - Madelynn Taylor
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
| | | | | | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, CA, USA
| |
Collapse
|
202
|
Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: a smart ophthalmic drug delivery vehicle. Biomater Sci 2020; 8:4665-4691. [PMID: 32760957 DOI: 10.1039/d0bm00532k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers have a major role in the controlled delivery of pharmaceutical compounds to a targeted portion of the body. In this quest, a high priority research area is the targeted delivery of ophthalmic drugs to the interior regions of the eyes. Due to their complex anatomical/biochemical nature. This necessitates an advanced drug delivery cargo that could administer a therapeutic agent to the targeted location by evading various obstacles. The ongoing focus is to design an ophthalmic formulation by coupling it with a smart in situ forming polymeric hydrogel. These smart macromolecules have an array of unique theranostic properties and can utilize the in vivo biological parameters as a stimulus to change their macromolecular state from liquid to gel. The fast gelling hydrogel improves the corneal contact time, facilitates sustained drug release, resists the burst-out effect, and assists drug permeability to anterior regions. This review summarizes the rationale, scientific objectives, properties, and classification of the biologically important in situ hydrogels in the niche of ophthalmic drug delivery. The current trends and prospectives of the array of stimulus-responsive polymers, copolymers, and nanomaterials are discussed broadly. The crucial biointerfacial attributes with pros and cons are reviewed by investigating the effect of the nature of polymers as well as the ratio/percentage of additives and copolymers that influence the overall performance.
Collapse
Affiliation(s)
- Beauty Das
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India.
| | | | | |
Collapse
|
203
|
Chen S, Jia H, Cui X, Zhang Y, Wen Y, Ding Y, Xie Q, Lin Y, Xiao F, Lin X, Wu H, Mo Z, Zheng K, Qiu J, Wen Y, Ni Q, Ban J, Chen Y, Lu Z. Characterization of stimuli-responsive and cross-linked nanohydrogels for applications in ophthalmiatrics therapy. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
204
|
Chu H, Yang W, Sun L, Cai S, Yang R, Liang W, Yu H, Liu L. 4D Printing: A Review on Recent Progresses. MICROMACHINES 2020; 11:E796. [PMID: 32842588 PMCID: PMC7570144 DOI: 10.3390/mi11090796] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.
Collapse
Affiliation(s)
- Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Lujing Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Rendi Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110016, China;
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
205
|
Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM. Design and fabrication of novel core-shell nanoparticles for theranostic applications. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04731-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
206
|
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020; 324:505-521. [PMID: 32464152 PMCID: PMC7429280 DOI: 10.1016/j.jconrel.2020.05.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
The incorporation of nanoparticles into hydrogels yields novel superstructures that have become increasingly popular in biomedical research. Each component of these nanoparticle-hydrogel superstructures can be easily modified, resulting in platforms that are highly tunable and inherently multifunctional. The advantages of the nanoparticle and hydrogel constituents can be synergistically combined, enabling these superstructures to excel in scenarios where employing each component separately may have suboptimal outcomes. In this review, the synthesis and fabrication of different nanoparticle-hydrogel superstructures are discussed, followed by an overview of their use in a range of applications, including drug delivery, detoxification, immune modulation, and tissue engineering. Overall, these platforms hold significant clinical potential, and it is envisioned that future development along these lines will lead to unique solutions for addressing areas of pressing medical need.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
207
|
Pacifici N, Bolandparvaz A, Lewis JS. Stimuli-Responsive Biomaterials for Vaccines and Immunotherapeutic Applications. ADVANCED THERAPEUTICS 2020; 3:2000129. [PMID: 32838028 PMCID: PMC7435355 DOI: 10.1002/adtp.202000129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Indexed: 12/26/2022]
Abstract
The immune system is the key target for vaccines and immunotherapeutic approaches aimed at blunting infectious diseases, cancer, autoimmunity, and implant rejection. However, systemwide immunomodulation is undesirable due to the severe side effects that typically accompany such strategies. In order to circumvent these undesired, harmful effects, scientists have turned to tailorable biomaterials that can achieve localized, potent release of immune-modulating agents. Specifically, "stimuli-responsive" biomaterials hold a strong promise for delivery of immunotherapeutic agents to the disease site or disease-relevant tissues with high spatial and temporal accuracy. This review provides an overview of stimuli-responsive biomaterials used for targeted immunomodulation. Stimuli-responsive or "environmentally responsive" materials are customized to specifically react to changes in pH, temperature, enzymes, redox environment, photo-stimulation, molecule-binding, magnetic fields, ultrasound-stimulation, and electric fields. Moreover, the latest generation of this class of materials incorporates elements that allow for response to multiple stimuli. These developments, and other stimuli-responsive materials that are on the horizon, are discussed in the context of controlling immune responses.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| | - Amir Bolandparvaz
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| | - Jamal S Lewis
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| |
Collapse
|
208
|
Sahoo JK, Choi J, Hasturk O, Laubach I, Descoteaux ML, Mosurkal S, Wang B, Zhang N, Kaplan DL. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomater Sci 2020; 8:4176-4185. [PMID: 32608410 PMCID: PMC7390697 DOI: 10.1039/d0bm00512f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels provide promising applications in tissue engineering and regenerative medicine, with silk fibroin (SF) offering biocompatibility, biodegradability and tunable mechanical properties. The molecular weight (MW) distribution of SF chains varies from ∼80 to 400 kDa depending on the extraction and purification process utilized to prepare the protein polymer. Here, we report a fundamental study on the effect of different silk degumming (extraction) time (DT) on biomaterial properties of enzymatically crosslinked hydrogels, including secondary structure, mechanical stiffness, in vitro degradation, swelling/contraction, optical transparency and cell behaviour. The results indicate that DT plays a crucial role in determining material properties of the hydrogel; decrease in DT increases β-sheet (crystal) formation and mechanical stiffness while decreasing degradation rate and optical transparency. The findings on the relationships between properties of silk hydrogels and DT should facilitate the more rational design of silk-based hydrogel biomaterials to match properties needed for diverse purpose in biomedical engineering.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Isabel Laubach
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Marc L Descoteaux
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Shreyas Mosurkal
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Boyang Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Nina Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
209
|
Fischer T, Demco DE, Fechete R, Möller M, Singh S. Poly(vinylamine-co-N-isopropylacrylamide) linear polymer and hydrogels with tuned thermoresponsivity. SOFT MATTER 2020; 16:6549-6562. [PMID: 32617537 DOI: 10.1039/d0sm00408a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fabrication of functional hydrogels with tuned thermoresponsivity is a major challenge. To meet this challenge we copolymerize N-isopropylacrylamide (NIPAm) with N-vinylformamide (NVF) in different ratios with the formamide group being subsequently selectively hydrolyzed to the corresponding amine (VAm). The copolymers are crosslinked with phenylcarbonate telechelic glycol. The influence of the NIPAm : VAm ratio on the thermoresponsitiviy is investigated in terms of absorbance, rheology, NMR spectroscopy, relaxometry, and diffusometry. Phase transition temperatures, change in the entropy of the polymer-water system, and width of the transition in the process of coil-to-globule and swollen-to-collapsed network transitions were evaluated by a two state model and Boltzmann sigmoidal function.
Collapse
Affiliation(s)
- Thorsten Fischer
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Dan E Demco
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany. and Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Radu Fechete
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| |
Collapse
|
210
|
Baul U, Bley M, Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules 2020; 21:3523-3538. [DOI: 10.1021/acs.biomac.0c00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
211
|
PNIPAM-b-PDMAEA double stimuli responsive copolymers: Effects of composition, end groups and chemical modification on solution self-assembly. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
212
|
Selianitis D, Pispas S. PDEGMA‐b‐PDIPAEMA
copolymers via
RAFT
polymerization and their
pH
and thermoresponsive schizophrenic self‐assembly in aqueous media. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
213
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int J Nanomedicine 2020; 15:4541-4572. [PMID: 32617004 PMCID: PMC7326401 DOI: 10.2147/ijn.s248987] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| |
Collapse
|
214
|
Goncharuk O, Samchenko Y, Kernosenko L, Korotych O, Poltoratska T, Pasmurtseva N, Oranska O, Sternik D, Mamyshev I. Thermoresponsive hydrogels physically crosslinked with magnetically modified LAPONITE® nanoparticles. SOFT MATTER 2020; 16:5689-5701. [PMID: 32519723 DOI: 10.1039/d0sm00929f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, considering the potential applications of hydrogel nanocomposites in biomedical engineering, there has been a growing interest in the synthesis of hydrogels with improved mechanical properties. Among magnetic materials, iron oxides are of particular interest due to their magnetic properties and biocompatibility. At the same time, LAPONITE®, a synthetic clay, can be used to improve the mechanical properties of polymer-based nanocomposites. In this study we report the effects of hydrogel composition and structure on its thermoresponsive properties and hydrogel sorption and release of a model anticancer drug - 5-fluorouracil. Using one-step coprecipitation method we synthesized magnetic LAPONITE® (LAM) nanoparticles with magnetite-to-LAPONITE® weight ratios from 2 : 1 to 1 : 8. With increase in magnetite concentration the ferrofluidic properties of LAM nanoparticles are getting improved, while fluorouracil absorptivity - decreases. Exfoliation of the clay is observed when the magnetite content exceeds the LAPONITE® content. Physical crosslinking of poly(N-isopropylacrylamide) with LAM nanoparticles yields magnetic thermosensitive hydrogel nanocomposites with controllable temperature-induced drug release. All hydrogel nanocomposites have a distinct volume phase transition from a swollen state to a collapsed state upon heating within the physiologically acceptable temperature range of 33-36 °C.
Collapse
Affiliation(s)
- Olena Goncharuk
- Ovcharenko Institute of Biocolloidal Chemistry of NAS of Ukraine, Kyiv, Ukraine and Chuiko Institute of Surface Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Yurii Samchenko
- Ovcharenko Institute of Biocolloidal Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Liudmyla Kernosenko
- Ovcharenko Institute of Biocolloidal Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Olena Korotych
- Chemical Engineering Department, University of Florida, Gainesville, USA.
| | - Tetiana Poltoratska
- Ovcharenko Institute of Biocolloidal Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Natalia Pasmurtseva
- Ovcharenko Institute of Biocolloidal Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Olena Oranska
- Chuiko Institute of Surface Chemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Dariusz Sternik
- Chemistry Department, Maria Curie-Sklodowska University, Lublin, Poland
| | - Igor Mamyshev
- Ovcharenko Institute of Biocolloidal Chemistry of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
215
|
Nanotailored hyaluronic acid modified methylcellulose as an injectable scaffold with enhanced physico-rheological and biological aspects. Carbohydr Polym 2020; 237:116146. [PMID: 32241450 DOI: 10.1016/j.carbpol.2020.116146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
Abstract
The collaborative endeavor in tissue engineering is to fabricate a bio-mimetic extracellular matrix to assist tissue regeneration. Thus, a novel injectable tissue scaffold was fabricated by exploring nanotailored hyaluronic acid (nHA) and methylcellulose (MC) (nHAMC) along with pristine HA based MC scaffold (HAMC). nHA with particle size ∼22 ± 5.3 nm were obtained and nHAMC displayed a honeycomb-like 3D microporous architecture. Nano-HA bestowed better gel strength, physico-rheological and biological properties than HA. It creditably reduced the high content of salt to reduce the gelation temperature of MC. The properties ameliorated with increased in-corporation of nano-HA. The addition of salt showed more prominent effect on gelation temperature of nHAMC than in HAMC; and salting-out effect was dependent on nHA/HA content. Biocompatible nHAMC assisted adequate cell adherence and proliferation with more extended protrusions with better migration rate than control. Thus, biomodulatory effect of nanotailored glycosaminoglycan could be asserted to design an efficient thermo-responsive scaffold.
Collapse
|
216
|
Abou-ElNour M, Soliman ME, Skouras A, Casettari L, Geneidi AS, Ishak RAH. Microparticles-in-Thermoresponsive/Bioadhesive Hydrogels as a Novel Integrated Platform for Effective Intra-articular Delivery of Triamcinolone Acetonide. Mol Pharm 2020; 17:1963-1978. [PMID: 32271590 DOI: 10.1021/acs.molpharmaceut.0c00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intra-articular (IA) injection of thermoresponsive hydrogels coupled with microparticles (MPs) possess the benefit of sustaining the anti-inflammatory drug effect within the joint cavity for rheumatoid arthritis treatment. Star-shaped thermoresponsive poly(polyethylene glycol) methacrylate [Poly(PEGMA)] copolymers were synthesized using free radical polymerization technique and fully characterized. Triamcinolone acetonide (TA)-loaded PLA/mPEG-PDL MPs, previously optimized, were integrated into the synthesized copolymer solutions at various concentrations and tested for their gelation temperatures. The MPs-in-hydrogel formulations were characterized using scanning electron microscope (SEM), viscosity measurements, ex vivo bioadhesion, and in vitro release studies. The anti-inflammatory effect of integrated systems was assessed in adjuvant-induced monoarthritic rat knee joints and compared to Kenacort and TA-loaded MPs. Two copolymers were successfully synthesized; G-1 = poly(PEGMA188-ME-co-PEGMA475-ME) and G-2 = poly(PEGMA246-EE-co-PEGMA475-ME). Using the tube inversion technique, the gel formation was found dependent on copolymer concentration. An irreversible aggregation was obtained at copolymer concentrations ≤10% (w/v), while a gel was formed at 20 and 30% (w/v) of both copolymers upon increasing temperature. The MP-hydrogel formulations were optimized at 20 and 30% (w/v) of G-1 and G-2 with gelation temperatures of 33 and 37 °C, respectively. SEM images revealed the porous microstructures of hydrogels and their adsorption on MP surfaces. The integrated formulas showed pseudoplastic behaviors, while the bioadhesion study confirmed their bioadhesiveness on excised cartilage. The in vitro release study confirmed drug sustainment from MPs-hydrogels compared to MPs. In vivo studies proved the superiority of MP-in-hydrogels in treatment of induced arthritis, relative to Kenacort and MPs alone, suggesting the applicability of this integrated platform in IA drug delivery.
Collapse
Affiliation(s)
- May Abou-ElNour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Athanasios Skouras
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Piazza Rinascimento, 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| |
Collapse
|
217
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
218
|
Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. Int J Pharm 2020; 584:119435. [PMID: 32439585 DOI: 10.1016/j.ijpharm.2020.119435] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Nanogels are currently considered as promising nanosized drug delivery carriers. Nanogels are made of a crosslinked polymeric network which could encapsulate both hydrophilic and hydrophobic drugs due to their tunable nature. The ability of nanogels to control drug release is vastly described in the literature and researchers are consistently improving the control of drug release from nanogel by designing new polymers having specific sensitivity to a chemical or physical stimulus. In this review, we briefly discuss the definition of nanogels, their release profiles, their specific gel-based characteristics and the pathways of dug release from nanogels. We have focused on the stimuli responsive nanogels and their release profile. This compilation opens the window for understanding the influence of chemical composition and design of various nanogel on their release in the presence and absence of corresponding stimuli such as temperature, pH, enzymes and others. The uniqueness of this review is that it highlights the data of release profiles in terms of the different nanogel composition and triggers. It also points the high potential of nanogels in the list of candidates for drug delivery systems, thanks to their properties regarding drug encapsulation and release, combined advantages of nano-size and swelling characteristics of hydrogel.
Collapse
Affiliation(s)
- Shayan Ahmed
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France
| | - Khair Alhareth
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France
| | - Nathalie Mignet
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France.
| |
Collapse
|
219
|
Jun J, Millican RC, Sherwood JA, Tucker BS, Vijayan VM, Alexander GC, Thomas V, Brott BC, Hwang PTJ. Evaluation of Viscoelastic Properties, Blood Coagulation, and Cellular Responses of a Temperature-Sensitive Gel for Hemostatic Application. ACS APPLIED BIO MATERIALS 2020; 3:3137-3144. [DOI: 10.1021/acsabm.0c00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph Jun
- Neuroscience, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Reid C. Millican
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| | - Jennifer A. Sherwood
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| | - Bernabe S. Tucker
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Vineeth M. Vijayan
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Grant C. Alexander
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| | - Vinoy Thomas
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Brigitta C. Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Patrick T. J. Hwang
- Endomimetics, LLC, 1500 First Avenue North, Birmingham, Alabama 35203, United States
| |
Collapse
|
220
|
Mohammed AM, Osman SK, Saleh KI, Samy AM. In Vitro Release of 5-Fluorouracil and Methotrexate from Different Thermosensitive Chitosan Hydrogel Systems. AAPS PharmSciTech 2020; 21:131. [PMID: 32405869 PMCID: PMC7220897 DOI: 10.1208/s12249-020-01672-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
5-Fluorouracil is a member of cytotoxic drugs with poor selectivity to cancer cells. Currently, systemic administration of this anti-cancer drug (oral or injection) exposes normal tissues to the drug-induced toxicity. Nowadays, attention has been greatly directed towards in situ gel-forming systems that can be injected into the affected tissues in its sol form with a minimally invasive technique. More specifically, chitosan hydrogel systems were in focus due to their antibacterial effect as well as their biodegradable, biocompatible, and mucoadhesive properties. In the present work, 5-fluorouracil was loaded on various thermosensitive chitosan hydrogel systems cross linked with different linking agents like β-glycerophosphate, pluronic F127, and hydroxyapatite. Also, methotrexate was added to 5-fluorouracil in order to gain its previously reported synergistic effects. Firstly, a compatibility study was performed using UV-spectrophotometric, infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) techniques to exclude the possibility of any physical or chemical interactions between the selected drugs and excipients. The prepared hydrogel systems were characterized for their physicochemical properties including organoleptic, pH, syringeability and injectability, viscosity, and gelation temperature (Tgel) by various analysis techniques. Moreover, the in vitro release behavior of 5-fluorouracil and methotrexate was determined with a modified analytical method. The results indicated that chitosan hydrogel system cross-linked with a combination of β- glycerophosphate, and 10 % pluronicF127 (F4) showed the most suitable physicochemical properties and release profile. Accordingly, this formula can be considered as a missionary system for localized sustained delivery of cytotoxic drugs.
Collapse
Affiliation(s)
- Ahmed M Mohammed
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Shaaban K Osman
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Khaled I Saleh
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Samy
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
221
|
A new way to prepare gold nanoparticles by sputtering - Sterilization, stability and other properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111087. [PMID: 32600693 DOI: 10.1016/j.msec.2020.111087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 11/21/2022]
Abstract
We have developed a novel simple method for effective preparing gold nanoparticles (AuNPs) intended for utilization in biomedicine. The method is based on gold sputtering into liquid poly(ethylene glycol) (PEG). The PEG was used as a basic biocompatible stabilizer of the AuNP colloid. In addition, two naturally occurring polysaccharides - Chitosan (Ch) and Methylcellulose (MC) - were separately diluted into the PEG base with the aims to enhance the yield of the sputtering without changing the sputtering parameters, and to further improve the stability and the biocompatibility of the colloid. The colloids were sterilized by steam, and their stability was measured before and after the sterilization process by dynamic light scattering and UV-Vis spectrophotometry. The results indicated a higher sputtering yield in the colloids containing the polysaccharides. The colloids were also characterized by atomic absorption spectroscopy (AAS) to reveal the composition of the prepared nanoparticles by transmission electron microscopy (TEM) to visualize the nanoparticles and to evaluate their size and clustering, and by rheometry to estimate the viscosity of the colloids. The zeta-potential of the AuNPs was also determined as an important parameter indicating the stability and the biocompatibility of the colloid. In addition, in vitro tests of antimicrobial activity and cytotoxicity were carried out to estimate the biological activity and the biocompatibility of the colloids. Antimicrobial tests were performed by a drip test on two bacterial strains - Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli. AuNP with chitosan proved to possess the highest antibacterial activity, especially towards the Gram-positive S. epidermidis. In vitro tests on eukaryotic cells, i.e. human osteoblastic cell line SAOS-2 and primary normal human dermal fibroblasts (NHDF), were performed after a 7-day cultivation to determine the effect and the toxic dose of the colloids on human cells. The studied colloid concentrations were in the range from 0.6 μg/ml to 6 μg/ml. Toxicity of the colloids started to reappear at a concentration of 4.5 μg/ml, especially with chitosan in the colloid, where the colloid with a concentration of 6 μg/ml proved to be the most toxic, especially towards the SAOS-2 cell line. However, the PEG and PEG-MC containing colloids proved to be relatively non-toxic, even at the highest concentration, but with a slowly decreasing tendency of the cell metabolic activity.
Collapse
|
222
|
Lim T, Tang Q, Zhu Z, Wei X, Zhang C. Sustained release of human platelet lysate growth factors by thermosensitive hydroxybutyl chitosan hydrogel promotes skin wound healing in rats. J Biomed Mater Res A 2020; 108:2111-2122. [PMID: 32323472 DOI: 10.1002/jbm.a.36970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
This study evaluated the effect of thermosensitive hydroxybutyl chitosan (HBC) hydrogel loaded with human platelet lysate (hPL) on skin wound healing in rats. hPLs were generated by freeze-thaw method of platelet-rich plasma from healthy donors. Successful grafting of hydroxybutyl group to chitosan molecular chain to obtain HBC hydrogel was confirmed by Fourier-transform infrared spectroscopy. HBC/hPL was prepared by combining 10% (vol/vol) hPL with HBC solution. Surface morphologies were determined by Scanning Electron Microscopy, rheological properties were measured by rheometer, and sustained release of factors from HBC/hPL was measured by enzyme-linked immunoassay. We evaluated the in vitro effect of HBC/hPL on human umbilical cord vein endothelial cell (HUVEC) proliferation, migration, and tube formation. The effect of growth factors released from HBC/hPL in promoting skin wound healing was evaluated by gross observation, histology, immunohistochemistry, and immunofluorescence in vivo. Rheological analyses indicated the gelation temperatures of HBC and HBC/hPL were 17 and 14°C, respectively. ELISA showed sustained release of human platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β1 from HBC/hPL hydrogel. In vitro studies revealed HBC/hPL promoted greater levels of HUVECs proliferation, migration, and tube formation than the HBC and control groups. In vivo studies showed better wound healing, greater amounts of newly formed collagen, as well as neovascular and neo-epidermis markers in the wound site of HBC/hPL-treated group compared to the HBC and control groups. HBC/hPL is a promising potential therapeutic agent for promoting skin wound healing via the sustained release of growth factors.
Collapse
Affiliation(s)
- Thou Lim
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenzhong Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
223
|
Tricomponent thermoresponsive polymers based on an amine-containing monomer with tuneable hydrophobicity: Effect of composition. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
224
|
Cassimjee H, Kumar P, Choonara YE, Pillay V. Proteosaccharide combinations for tissue engineering applications. Carbohydr Polym 2020; 235:115932. [DOI: 10.1016/j.carbpol.2020.115932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
225
|
Lee S, Choi JH, Park A, Rim M, Youn J, Lee W, Song JE, Khang G. Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. Int J Biol Macromol 2020; 158:452-460. [PMID: 32335106 DOI: 10.1016/j.ijbiomac.2020.04.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 01/01/2023]
Abstract
Gellan gum (GG), a nature-derived polysaccharide, is one of the materials widely used in cartilage tissue engineering (TE). Glycol chitosan (GC), a derivative of chitosan, is a water-soluble natural polymer that has excellent biocompatibility and biodegradability as well as cell adhesion. Herein, GG was physically blended with GC to enhance the mechanical properties and microenvironment of the GG to apply in cartilage TE. The study was conducted with a hydrogel model which is similar to the extracellular matrix (ECM) of cartilage tissue. The physicochemical studies were carried out with morphological study, swelling ratio, weight loss, and sol fraction. The mechanical characterization was conducted with compression test and rheological study to confirm availability in cartilage TE material. Furthermore, in vitro studies such as morphology investigation, viability assay, GAG content, qRT-PCR, and histological study were performed to verify biocompatibility and chondrogenesis of the material. The mechanical and biological properties improved with a proper amount of GC. Overall results verify the potential of the material and can be further used for the cartilage TE.
Collapse
Affiliation(s)
- Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Mina Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Wonchan Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
226
|
Wen H, Li J, Payne GF, Feng Q, Liang M, Chen J, Dong H, Cao X. Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels. Biofabrication 2020; 12:035007. [PMID: 32155609 DOI: 10.1088/1758-5090/ab7e74] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+-Citr hydrogel with gelatin and an electrostatic citrate-chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of citrate ink or the diffusion time of citrate ions into the Gel/Chit-H+ hydrogel. Specifically, mechanically anisotropic hydrogel film and cell patterning can be achieved via two-dimensional (2D) patterning; complex external and internal 3D structures can be fabricated in stimuli-responsive hydrogel and other hydrogels that are not stimuli-responsive under experimental conditions (also owing to the erasable properties of Gel/Chit-H+-Citr hydrogel) via 3D patterning; and an interconnected or segregated fluidic network can be constructed from the same initial 3D grid structure via 4D patterning. Our method is very simple, safe and generally reagentless, and the products/structures are often erasable, compatible and digestible, enabling advanced fabrication technologies (e.g. additive manufacturing) to be applied to a sustainable materials platform.
Collapse
Affiliation(s)
- Hongji Wen
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, People's Republic of China. Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China. Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Thermosensitive hydrogel nanocomposites with magnetic laponite nanoparticles. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01388-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
228
|
Sabatino MA, Carfì Pavia F, Rigogliuso S, Giacomazza D, Ghersi G, La Carrubba V, Dispenza C. Development of injectable and durable kefiran hydro-alcoholic gels. Int J Biol Macromol 2020; 149:309-319. [DOI: 10.1016/j.ijbiomac.2020.01.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/25/2019] [Accepted: 01/24/2020] [Indexed: 11/08/2022]
|
229
|
Raman R, Langer R. Biohybrid Design Gets Personal: New Materials for Patient-Specific Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901969. [PMID: 31271257 PMCID: PMC6942246 DOI: 10.1002/adma.201901969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Indexed: 05/08/2023]
Abstract
Precision medicine requires materials and devices that can sense and adapt to dynamic physiological and pathological conditions. This motivates the design and manufacture of biohybrid materials that mimic the responsive behaviors demonstrated by natural biological systems. Two parallel approaches to biohybrid design are presented-biomimetics and biointegration. Biohybrid hydrogels that mimic the form and function of natural materials, or that integrate living cells or bioactive moieties, can respond to a range of environmental stimuli in parallel, including heat, light, pH, hydration, enzymes, and electric, mechanical, and magnetic forces. A range of examples that illustrate the tremendous potential of this nascent discipline are presented, and ongoing technical challenges related to manufacturing, storage, transport, and external noninvasive control of these materials that will need to be overcome in the coming years are outlined. The ethical, educational, and regulatory challenges that will govern translation of biohybrid design into medical applications are also discussed. Personalized medical therapies that target the precise needs of patients are a critically needed and expanding market. Biohybrid design offers the unique ability to manufacture materials and devices that match the dynamic and patient-specific in vivo environment, promising to generate more effective and safe therapies that enable personalized care.
Collapse
Affiliation(s)
- Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02142, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02142, USA
| |
Collapse
|
230
|
Shin JY, Yeo YH, Jeong JE, Park SA, Park WH. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydr Polym 2020; 238:116192. [PMID: 32299570 DOI: 10.1016/j.carbpol.2020.116192] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Thermo-sensitive methylcellulose (MC) hydrogel has been widely used as a scaffold material for biomedical applications. However, due to its poor mechanical properties, the MC-based hydrogel has rarely been employed in 3D bioprinting for tissue engineering scaffolds. In this study, the dual crosslinkable tyramine-modified MC (MC-Tyr) conjugate was prepared via a two-step synthesis, and its hydrogel showed excellent mechanical properties and printability for 3D bioprinting applications. The MC-Tyr conjugate formed a dual-crosslinked hydrogel by modulating the temperature and/or visible light. A combination of reversible physical crosslinking (thermal crosslinking) and irreversible chemical crosslinking (photocrosslinking) was used in this dual crosslinked hydrogel. Also, the photocrosslinking of MC-Tyr solution was facilitated by visible light exposure in the presence of biocompatible photoinitiators (riboflavin, RF and riboflavin 5'-monophophate, RFp). The RF and RFp were used to compare the cytotoxicity and salting-out effect of MC-Tyr hydrogel, as well as the initiation ability, based on the difference in chemical structure. Also, the influence of the printing parameters on the printed MC hydrogel was investigated. Finally, the cell-laden MC-Tyr bioink was successfully extruded into stable 3D hydrogel constructs with high resolution via a dual crosslinking strategy. Furthermore, the MC-Tyr scaffolds showed excellent cell viability and proliferation.
Collapse
Affiliation(s)
- Ji Youn Shin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Yong Ho Yeo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Jae Eun Jeong
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
231
|
Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, Xia Y, Cao M. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030580. [PMID: 32150904 PMCID: PMC7182829 DOI: 10.3390/polym12030580] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-based thermosensitive hydrogels demonstrate great potential in biomedical applications. However, they have inherent drawbacks such as low mechanical strength, limited drug loading capacity and low biodegradability. Formulating PNIPAM with other functional components to form composited hydrogels is an effective strategy to make up for these deficiencies, which can greatly benefit their practical applications. This review seeks to provide a comprehensive observation about the PNIPAM-based composite hydrogels for biomedical applications so as to guide related research. It covers the general principles from the materials choice to the hybridization strategies as well as the performance improvement by focusing on several application areas including drug delivery, tissue engineering and wound dressing. The most effective strategies include incorporation of functional inorganic nanoparticles or self-assembled structures to give composite hydrogels and linking PNIPAM with other polymer blocks of unique properties to produce copolymeric hydrogels, which can improve the properties of the hydrogels by enhancing the mechanical strength, giving higher biocompatibility and biodegradability, introducing multi-stimuli responsibility, enabling higher drug loading capacity as well as controlled release. These aspects will be of great help for promoting the development of PNIPAM-based composite materials for biomedical applications.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Wenbo Fu
- Heze Key Laboratory of Water Pollution Treatment, Heze Vocational College, Heze 274000, China;
| | - Mingyu Yao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Zhen Ding
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Dongxiang Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, University of Petroleum (East China), Qingdao 266580, China; (X.X.); (Y.L.); (M.Y.); (Z.D.); (J.X.); (S.W.); (Y.X.)
- Correspondence: ; Tel./Fax: +86-532-86983455
| |
Collapse
|
232
|
Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. APPLIED MATERIALS TODAY 2020; 18:100479. [PMID: 32775607 PMCID: PMC7414424 DOI: 10.1016/j.apmt.2019.100479] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hydrogel plays a vital role in cell-laden three dimensional (3D) bioprinting, whereas those hydrogels mimic the physical and biochemical characteristics of native extracellular matrix (ECM). The complex microenvironment of the ECM does not replicate from the traditional static microenvironment of the hydrogel, but the evolution of the 3D bioprinting facilitates to accommodate the dynamic modulation and spatial heterogeneity of the hydrogel system. Selection of hydrogel for 3D bioprinting depends on the printing techniques including microextrusion, inkjet, laser-assisted printing, and stereolithography. In this review, we specifically cover the 3D printable hydrogels where cells can be encapsulated without significant reduction in the cell viability. The recent research highlights of the most widely used hydrogel materials are elucidated in terms of stability of the hydrogel system, cross-linking method, support cell types and their post-printing cell viability. Also, the techniques used to improve the mechanical and biological properties of the hydrogels, such as adding various organic and inorganic materials and making microchannels, are discussed. Furthermore, the recent advances in vascularized tissue construct and scaffold-free bioprinting as a promising method for vascularization are covered in this review. The recent trends in four-dimensional (4D) bioprinting as a stimuli-responsive formation of new organs, and 3D bioprinting based organ-on-chip systems are also discussed.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA
- Department of Orthopedic Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
233
|
Arafa MG, Girgis GNS, El-Dahan MS. Chitosan-Coated PLGA Nanoparticles for Enhanced Ocular Anti-Inflammatory Efficacy of Atorvastatin Calcium. Int J Nanomedicine 2020; 15:1335-1347. [PMID: 32184589 PMCID: PMC7053815 DOI: 10.2147/ijn.s237314] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Atorvastatin calcium (AT) is an ocular anti-inflammatory with limited bioavailability when taken orally due to its low solubility in low pH and extensive first-pass effect. To overcome these problems, AT was entrapped in polymeric nanoparticles (NPs) to improve surface properties and sustained release, in addition to achieving site-specific action. Methods AT was entrapped in chitosan (CS)-coated polylactic-co-glycolic acid (PLGA) NPs to form AT-PLGA-CS-NPs (F1). F1 and free AT were embedded in thermosensitive Pluronic®127-hydroxypropyl methylcellulose (HPMC) to form thermosensitive gels (F2) and (F3) while F4 is AT suspension in water. F1 was assessed for size, surface charge, polydispersity index (PDI), and morphology. F2 and F3 were examined for gelation temperature, gel strength, pH, and viscosity. In vitro release of the four formulations was also investigated. The ocular irritancy and anti-inflammatory efficacy of formulations against prostaglandin E1-(PGE1) induced ocular inflammation in rabbits were investigated by counting the polymorphonuclear leukocytes (PMNs) and protein migrated in tears. Results Oval F1 of 80.0–190.0±21.6 nm exhibited a PDI of 0.331 and zeta potential of 17.4±5.62 mV with a positive surface charge. F2 and F3 gelation temperatures were 35.17±0.22°C and 36.93±0.31°C, viscosity 12,243±0.64 and 9759±0.22 cP, gel strength 15.56±0.6 and 12.45±0.1 s, and pHs of 7.4±0.02 and 7.4±0.1, respectively. In vitro release of F1, F2, F3, and F4 were 48.21±0.31, 26.48±0.5, 84.76±0.11, and 100% after 24 hrs, respectively. All formulations were non-irritant. F2 significantly inhibited lid closure up to 3 h, PMN counts and proteins in tear fluids up to 5 h compared to other formulations. Conclusion AT-PLGA-CS-NP thermosensitive gels proved to be successful ocular anti-inflammatory drug delivery systems.
Collapse
Affiliation(s)
- Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt.,Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura 35516, Egypt
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Marwa S El-Dahan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
234
|
Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydr Polym 2020; 236:116074. [PMID: 32172887 DOI: 10.1016/j.carbpol.2020.116074] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022]
Abstract
Pluronic F-127 based dual-responsive (pH/temperature) hydrogel drug delivery system was developed involving polysaccharide-based nano-conjugate of hyaluronic acid and chitosan oligosaccharide lactate and applied for loading of gallic acid which is the principal component of traditional Chinese medicine Cortex Moutan recommended in the treatment of atopic dermatitis. The polysaccharide-based nano-conjugate was used as pH-responsive compound in the formulation and its amphiphilic character was determined colorimetrically. Microstructure analysis by SEM and TEM indicated highly porous hydrogel network and well-dispersed micellar structures, respectively, after modification with the nano-conjugate, and so, release property of the hydrogel for drug was significantly improved. Different pH-conditions were applied here to see pH-responsiveness of the formulation and increase in acidity of external environment gradually diminished mechanical stability of the hydrogel and that was reflected on the drug release property. Rheology was performed to observe sol-gel transition of the formulation and showed better rheological properties after modification with nano-conjugate. In this study, the cytotoxicity results of PF127 based formulations loaded with/without gallic acid showed cell viability of > 80.0 % for human HaCaT keratinocytes in the concentration range of 0.0-20.0 μg/ml.
Collapse
|
235
|
Bone Morphogenetic Protein-9-Stimulated Adipocyte-Derived Mesenchymal Progenitors Entrapped in a Thermoresponsive Nanocomposite Scaffold Facilitate Cranial Defect Repair. J Craniofac Surg 2020; 30:1915-1919. [PMID: 30896511 DOI: 10.1097/scs.0000000000005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Due to availability and ease of harvest, adipose tissue is a favorable source of progenitor cells in regenerative medicine, but has yet to be optimized for osteogenic differentiation. The purpose of this study was to test cranial bone healing in a surgical defect model utilizing bone morphogenetic protein-9 (BMP-9) transduced immortalized murine adipocyte (iMAD) progenitor cells in a citrate-based, phase-changing, poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN)-gelatin scaffold. Mesenchymal progenitor iMAD cells were transduced with adenovirus expressing either BMP-9 or green fluorescent protein control. Twelve mice underwent craniectomy to achieve a critical-sized cranial defect. The iMAD cells were mixed with the PPCN-gelatin scaffold and injected into the defects. MicroCT imaging was performed in 2-week intervals for 12 weeks to track defect healing. Histologic analysis was performed on skull sections harvested after the final imaging at 12 weeks to assess quality and maturity of newly formed bone. Both the BMP-9 group and control group had similar initial defect sizes (P = 0.21). At each time point, the BMP-9 group demonstrated smaller defect size, higher percentage defect healed, and larger percentage defect change over time. At the end of the 12-week period, the BMP-9 group demonstrated mean defect closure of 27.39%, while the control group showed only a 9.89% defect closure (P < 0.05). The BMP-9-transduced iMADs combined with a PPCN-gelatin scaffold promote in vivo osteogenesis and exhibited significantly greater osteogenesis compared to control. Adipose-derived iMADs are a promising source of mesenchymal stem cells for further studies in regenerative medicine, specifically bone engineering with the aim of potential craniofacial applications.
Collapse
|
236
|
Brewer K, Gundsambuu B, Facal Marina P, Barry SC, Blencowe A. Thermoresponsive Poly(ε-Caprolactone)-Poly(Ethylene/Propylene Glycol) Copolymers as Injectable Hydrogels for Cell Therapies. Polymers (Basel) 2020; 12:E367. [PMID: 32046029 PMCID: PMC7077385 DOI: 10.3390/polym12020367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Injectable, thermoresponsive hydrogels are promising candidates for the delivery, maintenance and controlled release of adoptive cell therapies. Therefore, there is significant interest in the development of cytocompatible and biodegradable thermoresponsive hydrogels with appropriate gelling characteristics. Towards this end, a series of thermoresponsive copolymers consisting of poly(caprolactone) (PCL), poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) segments, with various PEG:PPG ratios, were synthesised via ring-opening polymerisation (ROP) of ε-caprolactone and epoxy-functionalised PEG and PPG derivatives. The resultant PCL-PEG-PPG copolymers were characterised via proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The thermoresponsive characteristics of the aqueous copolymer solutions at various concentrations was investigated using the inversion method. Whilst all of the copolymers displayed thermoresponsive properties, the copolymer with a ratio of 1:2 PEG:PPG exhibited an appropriate sol-gel transition (28 °C) at a relatively low concentration (10 wt%), and remained a gel at 37 °C. Furthermore, the copolymers were shown to be enzymatically degradable in the presence of lipases and could be used for the encapsulation of CD4+ T-cell lymphocytes. These results demonstrate that the thermoresponsive PCL-PEG-PPG hydrogels may be suitable for use as an adoptive cell therapy (ACT) delivery vehicle.
Collapse
Affiliation(s)
- Kyle Brewer
- Applied Chemistry and Translational Biomaterials (ACTB) Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; (K.B.); (P.F.M.)
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
| | - Batjargal Gundsambuu
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; (K.B.); (P.F.M.)
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Simon C. Barry
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, SA Health, Adelaide, South Australia 5006, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; (K.B.); (P.F.M.)
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
237
|
Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00785-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
238
|
Zhang Y, Desai MS, Wang T, Lee SW. Elastin-Based Thermoresponsive Shape-Memory Hydrogels. Biomacromolecules 2020; 21:1149-1156. [PMID: 31967464 DOI: 10.1021/acs.biomac.9b01541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A shape-memory hydrogel is a programmable hydrogel material that can store specific shapes and execute functions in response to stimuli. In this report, we developed shape-memory hydrogels by creating double-network polymeric structures using a physically cross-linking elastin-like polypeptide (ELP) and a chemically cross-linking polyacrylamide (PAM). We synthesized the hydrogel matrix by polymerizing the acrylamide mixed in an ELP solution. We exploited the lower critical solution temperature transition of the ELP to enable the hydrogel to hold a new desired shape at an elevated temperature of 55 °C. The original shape of the hydrogel can then be recovered by lowering the temperature to 20 °C. The shape-memory hydrogels we developed exhibit ultrafast functionality and high repeatability. Taking advantage of the temperature-induced shape-memory capability, we also demonstrate practical functions such as gripping an object and connecting two tubes. Our materials with effective temperature-driven shape-memory functionality will be useful for developing novel materials for biomedical applications in the future.
Collapse
Affiliation(s)
- Yuancheng Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
239
|
SLN based alendronate in situ gel as an implantable drug delivery system – A full factorial design approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
240
|
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics (Basel) 2020; 9:E56. [PMID: 32024064 PMCID: PMC7168299 DOI: 10.3390/antibiotics9020056] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The epidermal skin barrier protects the body from a host of daily challenges, providing protection against mechanical insults and the absorption of chemicals and xenobiotics. In addition to the physical barrier, the epidermis also presents an innate defense against microbial overgrowth. This is achieved through the presence of a diverse collection of microorganisms on the skin (the "microbiota") that maintain a delicate balance with the host and play a significant role in overall human health. When the skin is wounded, the local tissue with a compromised barrier can become colonized and ultimately infected if bacterial growth overcomes the host response. Wound infections present an immense burden in healthcare costs and decreased quality of life for patients, and treatment becomes increasingly important because of the negative impact that infection has on slowing the rate of wound healing. In this review, we discuss specific challenges of treating wound infections and the advances in drug delivery platforms and formulations that are under development to improve topical delivery of antimicrobial treatments.
Collapse
Affiliation(s)
- R. Smith
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
| | - J. Russo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - J. Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - N. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
- Department of Dermatology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
241
|
Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials 2020; 230:119628. [DOI: 10.1016/j.biomaterials.2019.119628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
242
|
Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110354. [DOI: 10.1016/j.msec.2019.110354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 12/28/2022]
|
243
|
Mallick SP, Suman DK, Singh BN, Srivastava P, Siddiqui N, Yella VR, Madhual A, Vemuri PK. Strategies toward development of biodegradable hydrogels for biomedical applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Bhisham Narayan Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Praveen Kumar Vemuri
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| |
Collapse
|
244
|
Rocker AJ, Lee DJ, Shandas R, Park D. Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation. ACS Biomater Sci Eng 2020; 6:1217-1227. [PMID: 33464833 DOI: 10.1021/acsbiomaterials.9b01758] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) causes cardiac cell death, induces persistent inflammatory responses, and generates harmful pathological remodeling, which leads to heart failure. Biomedical approaches to restore blood supply to ischemic myocardium, via controlled delivery of angiogenic and immunoregulatory proteins, may present an efficient treatment option for coronary artery disease (CAD). Vascular endothelial growth factor (VEGF) is necessary to initiate neovessel formation, while platelet-derived growth factor (PDGF) is needed later to recruit pericytes, which stabilizes new vessels. Anti-inflammatory cytokines like interleukin-10 (IL-10) can help optimize cardiac repair and limit the damaging effects of inflammation following MI. To meet these angiogenic and anti-inflammatory needs, an injectable polymeric delivery system composed of encapsulating micelle nanoparticles embedded in a sulfonated reverse thermal gel was developed. The sulfonate groups on the thermal gel electrostatically bind to VEGF and IL-10, and their specific binding affinities control their release rates, while PDGF-loaded micelles are embedded in the gel to provide the sequential release of the growth factors. An in vitro release study was performed, which demonstrated the sequential release capabilities of the delivery system. The ability of the delivery system to induce new blood vessel formation was analyzed in vivo using a subcutaneous injection mouse model. Histological assessment was used to quantify blood vessel formation and an inflammatory response, which showed that the polymeric delivery system significantly increased functional and mature vessel formation while reducing inflammation. Overall, the results demonstrate the effective delivery of therapeutic proteins to promote angiogenesis and limit inflammatory responses.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - David J Lee
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
245
|
Gasperini L, Marques AP, Reis RL. Microfluidics for Processing of Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:15-25. [PMID: 32285362 DOI: 10.1007/978-3-030-36588-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidics techniques can be used to process a wide range of biomaterials, from synthetic to natural origin ones. This chapter describes microfluidic processing of biomaterials, mainly polymeric materials of natural origin, focusing on water-soluble polymers that form non-flowing phases after crosslinking. Some polysaccharides and proteins, including agarose, alginate, chitosan, gellan gum, hyaluronic acid, collagen, gelatin, and silk fibroin are emphasized deu to their relevance in the field. The critical characteristics of these materials are discussed, giving particular consideration to those that directly impact its processability using microfluidics. Furthermore, some microfluidic-based processing techniques are presented, describing their suitability to process materials with different sol-gel transition mechanisms.
Collapse
Affiliation(s)
- Luca Gasperini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
246
|
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
247
|
Perera MM, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym Chem 2020. [DOI: 10.1039/c9py01694e] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A review of hydrogels containing dynamic bonds that are shown to provide benefits for applications including self-healing and stimuli-induced stiffness changes.
Collapse
Affiliation(s)
- M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
248
|
Sujan MI, Sarkar SD, Sultana S, Bushra L, Tareq R, Roy CK, Azam MS. Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels. RSC Adv 2020; 10:6213-6222. [PMID: 35496010 PMCID: PMC9049678 DOI: 10.1039/c9ra09528d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
A combination of strong load-bearing capacity and high swelling degree is desired in hydrogels for many applications including drug delivery, tissue engineering, and biomedical engineering. However, a compromising relationship exists between these two most important characteristics of hydrogels. Improving both of these important properties simultaneously in a single hydrogel material is still beyond the satisfactory limit. Herein, we report a novel approach to address this problem by introducing a silica-based bi-functional 3D crosslinker. Our bi-functional silica nanoparticles (BF-Si NPs) possess amine groups that are able to offer pseudo-crosslinking effects induced by inter-cohesive bonding, and acrylate groups that can form conventional covalent crosslinking in the same hydrogel. We fabricated polyacrylic acid (PAc-Si) and polyacrylamide (PAm-Si) hydrogels using our BF-Si NPs via free radical polymerization to demonstrate this concept. Incorporation of the BF-Si crosslinkers into the hydrogels has resulted in a large enhancement in the mechanical properties compared to conventional hydrogel crosslinked with N,N′-methylene bisacrylamide (MBA). For instance, tensile strength and the toughness increased by more than 6 times and 10 times, respectively, upon replacing MBA with BF-Si in polyacrylamide hydrogel. Moreover, the hydrogels crosslinked with BF-Si exhibited a remarkably elevated level of swelling capacity in the aqueous medium. Our facile yet smart strategy of employing the 3D bi-functional crosslinker for combining high swelling degree and strong mechanical properties in the same hydrogels can be extended to the fabrication of many similar acrylate or vinyl polymer hydrogels. Bi-functional silica crosslinkers simultaneously enhance the mechanical strength and swelling capacity of the polyacrylic acid and polyacrylamide hydrogels.![]()
Collapse
Affiliation(s)
- Majharul Islam Sujan
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Stephen Don Sarkar
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Salma Sultana
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Labiba Bushra
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Rizwan Tareq
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
- Department of Materials and Metallurgical Engineering
| | - Chanchal Kumar Roy
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| | - Md. Shafiul Azam
- Department of Chemistry
- Bangladesh University of Engineering and Technology (BUET)
- Dhaka 1000
- Bangladesh
| |
Collapse
|
249
|
Li P, Dai X, Qu L, Sui Y, Zhang C. Dual responsive oligo(lysine)-modified Pluronic F127 hydrogels for drug release of 5-fluorouracil. RSC Adv 2020; 10:24507-24514. [PMID: 35516205 PMCID: PMC9055126 DOI: 10.1039/d0ra03207g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/21/2020] [Indexed: 11/21/2022] Open
Abstract
Peptide-containing hydrogels have become a research hotspot due to their unique secondary structure and biocompatibility. Herein, we used amino-terminated F127 as a macroinitiator to initiate the ring-opening polymerization of l-lysine(z)-NCA, and the obtained oligo(lysine)-modified F127 (FL) had degrees of polymerization of lysine of 2, 5, and 8. The results showed that the FL hydrogels had reversible temperature-dependent sol–gel transitions, and the introduction of lysine increased the critical gel temperature. In the dilute solution of FL, the micelle size increased and aggregated as the pH increased; the micelle grew into a rod-like shape under alkaline conditions. Scanning electron micrographs showed that the interior of the FL hydrogel had a more complete porous structure. The FL-2 hydrogel loaded with 5-fluorouracil exhibited an approximately linear release trend within 12 h and has good biocompatibility. Therefore, FL hydrogels have potential applications in the field of biomedicine. Oligo(lysine)-F127 hydrogels have a temperature-responsive sol–gel transition and pH-responsive micelle morphology.![]()
Collapse
Affiliation(s)
- Peihong Li
- School of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Xueyan Dai
- School of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Lijie Qu
- School of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Yanlong Sui
- School of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Chunling Zhang
- School of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
250
|
Nagata S, Kokado K, Sada K. Metal–organic framework tethering pH- and thermo-responsive polymer for ON–OFF controlled release of guest molecules. CrystEngComm 2020. [DOI: 10.1039/c9ce01731c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic framework tethering pH- and thermo-responsive polymer underwent ON–OFF controlled release of the included guest molecules.
Collapse
Affiliation(s)
- Shunjiro Nagata
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Kenta Kokado
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
- Faculty of Science
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
- Faculty of Science
| |
Collapse
|