201
|
Elimination of microglia improves cognitive function following cranial irradiation. Sci Rep 2016; 6:31545. [PMID: 27516055 PMCID: PMC4981848 DOI: 10.1038/srep31545] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Cranial irradiation for the treatment of brain cancer elicits progressive and severe cognitive dysfunction that is associated with significant neuropathology. Radiation injury in the CNS has been linked to persistent microglial activation, and we find upregulation of pro-inflammatory genes even 6 weeks after irradiation. We hypothesize that depletion of microglia in the irradiated brain would have a neuroprotective effect. Adult mice received acute head only irradiation (9 Gy) and were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia post-irradiation. Cohorts of mice maintained on a normal and PLX5662 diet were analyzed for cognitive changes using a battery of behavioral tasks 4–6 weeks later. PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiation of animals given a normal diet caused characteristic behavioral deficits designed to test medial pre-frontal cortex (mPFC) and hippocampal learning and memory and caused increased microglial activation. Animals receiving the PLX5622 diet exhibited no radiation-induced cognitive deficits, and exhibited near complete loss of IBA-1 and CD68 positive microglia in the mPFC and hippocampus. Our data demonstrate that elimination of microglia through CSF1R inhibition can ameliorate radiation-induced cognitive deficits in mice.
Collapse
|
202
|
Gupta M, Mishra SK, Kumar BSH, Khushu S, Rana P. Early detection of whole body radiation induced microstructural and neuroinflammatory changes in hippocampus: A diffusion tensor imaging and gene expression study. J Neurosci Res 2016; 95:1067-1078. [PMID: 27436454 DOI: 10.1002/jnr.23833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022]
Abstract
Ionizing radiation is known to a cause systemic inflammatory response within hours of exposure that may affect the central nervous system (CNS). The present study was carried out to look upon the influence of radiation induced systemic inflammatory response in hippocampus within 24 hr of whole body radiation exposure. A Diffusion Tensor Imaging (DTI) study was conducted in mice exposed to a 5-Gy radiation dose through a 60 Co source operating at 2.496 Gy/min at 3 hr and 24 hr post irradiation and in sham-irradiated controls using 7 T animal MRI system. The results showed a significant decrease in Mean Diffusivity (MD), Radial Diffusivity (RD), and Axial Diffusivity (AD) in hippocampus at 24 hr compared with controls. Additionally, marked change in RD was observed at 3 hr. Increased serum C-Reactive Protein (CRP) level depicted an increased systemic/peripheral inflammation. The neuroinflammatory response in hippocampus was characterized by increased mRNA expression of IL-1β, IL-6, and Cox-2 at the 24 hr time point. Additionally, in the irradiated group, reactive astrogliosis was illustrated, with noticeable changes in GFAP expression at 24 hr. Altered diffusivity and enhanced neuroinflammatory expression in the hippocampal region showed peripheral inflammation induced changes in brain. Moreover, a negative correlation between gene expression and DTI parameters depicted a neuroinflammation induced altered microenvironment that might affect water diffusivity. The study showed that there was an influence of whole body radiation exposure on hippocampus even during the early acute phase that could be reflected in terms of neuroinflammatory response as well as microstructural changes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sushanta Kumar Mishra
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B S Hemanth Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
203
|
Acharya MM, Baulch JE, Lusardi TA, Allen BD, Chmielewski NN, Baddour AAD, Limoli CL, Boison D. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction. Front Mol Neurosci 2016; 9:42. [PMID: 27375429 PMCID: PMC4891332 DOI: 10.3389/fnmol.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Theresa A Lusardi
- R. S. Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | - Barrett D Allen
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | | | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, CA, USA
| | - Detlev Boison
- R. S. Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| |
Collapse
|
204
|
Huang L, Wickramasekara SI, Akinyeke T, Stewart BS, Jiang Y, Raber J, Maier CS. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome. J Proteomics 2016; 140:24-36. [PMID: 27020882 PMCID: PMC5029422 DOI: 10.1016/j.jprot.2016.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.
Collapse
Affiliation(s)
- Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Blair S Stewart
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
205
|
McColl A, Thomson CA, Nerurkar L, Graham GJ, Cavanagh J. TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain. J Neuroinflammation 2016; 13:102. [PMID: 27160148 PMCID: PMC4862138 DOI: 10.1186/s12974-016-0562-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/24/2016] [Indexed: 12/25/2022] Open
Abstract
Background The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0562-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alison McColl
- Institute of Infection, Immunity & Inflammation, College of Medical & Veterinary Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Carolyn A Thomson
- Institute of Infection, Immunity & Inflammation, College of Medical & Veterinary Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Louis Nerurkar
- Institute of Infection, Immunity & Inflammation, College of Medical & Veterinary Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Gerard J Graham
- Institute of Infection, Immunity & Inflammation, College of Medical & Veterinary Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| | - Jonathan Cavanagh
- Institute of Health & Wellbeing, College of Medical & Veterinary Life Sciences, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| |
Collapse
|
206
|
Radiation-Induced Growth Retardation and Microstructural and Metabolite Abnormalities in the Hippocampus. Neural Plast 2016; 2016:3259621. [PMID: 27242931 PMCID: PMC4875992 DOI: 10.1155/2016/3259621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Cranial radiotherapy (CRT) increases survival in pediatric brain-tumor patients but can cause deleterious effects. This study evaluates the acute and long-term impact of CRT delivered during childhood/adolescence on the brain and body using a rodent model. Rats received CRT, either 4 Gy fractions × 5 d (fractionated) or a cumulative dose of 20 Gy (single dose) at 28 d of age. Animals were euthanized 1 d, 5 d, or 3.5 mo after CRT. The 3.5 mo group was imaged prior to euthanasia. At 3.5 mo, we observed significant growth retardation in irradiated animals, versus controls, and the effects of single dose on brain and body weights were more severe than fractionated. Acutely single dose significantly reduced body weight but increased brain weight, whereas fractionation significantly reduced brain but not body weights, versus controls. CRT suppressed cell proliferation in the hippocampal subgranular zone acutely. Fractional anisotropy (FA) in the fimbria was significantly lower in the single dose versus controls. Hippocampal metabolite levels were significantly altered in the single dose animals, reflecting a heightened state of inflammation that was absent in the fractionated. Our findings indicate that despite the differences in severity between the doses they both demonstrated an effect on cell proliferation and growth retardation, important factors in pediatric CRT.
Collapse
|
207
|
Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury. Exp Neurol 2016; 279:96-103. [DOI: 10.1016/j.expneurol.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/27/2023]
|
208
|
Yamada MK. A link between vascular damage and cognitive deficits after whole-brain radiation therapy for cancer: A clue to other types of dementia? Drug Discov Ther 2016; 10:79-81. [PMID: 27087553 DOI: 10.5582/ddt.2016.01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Whole brain radiation therapy for the treatment of tumors can sometimes cause cognitive impairment. Memory deficits were noted in up to 50% of treated patients over a short period of several months. In addition, an increased rate of dementia in young patients has been noted over the longer term, i.e. years. A deficit in neurogenesis after irradiation has been postulated to be the main cause of cognitive decline in patients, but recent data on irradiation therapy for limited parts of the brain appear to indicate other possibilities. Irradiation can directly damage various types of cells other than neuronal stem cells. However, this paper will focus on injury to brain vasculature leading to cognitive decline since vessels represent a better therapeutic target for drug development than other cells in the brain because of the blood-brain barrier.
Collapse
|
209
|
Effects of Aging on Hippocampal Neurogenesis After Irradiation. Int J Radiat Oncol Biol Phys 2016; 94:1181-9. [DOI: 10.1016/j.ijrobp.2015.12.364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
|
210
|
Puspitasari A, Koganezawa N, Ishizuka Y, Kojima N, Tanaka N, Nakano T, Shirao T. X Irradiation Induces Acute Cognitive Decline via Transient Synaptic Dysfunction. Radiat Res 2016; 185:423-30. [DOI: 10.1667/rr14236.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
211
|
Cacao E, Cucinotta FA. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure. Radiat Res 2016; 185:319-31. [DOI: 10.1667/rr14289.s1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
212
|
Association of Hippocampal Magnetic Resonance Imaging With Learning and Memory Deficits in HIV-1-Seropositive Patients. J Acquir Immune Defic Syndr 2016; 70:436-43. [PMID: 26258566 DOI: 10.1097/qai.0000000000000789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the relationship between cognitive impairment and hippocampal morphological and functional changes in HIV-seropositive patients. METHODS Thirty HIV+ patients who complain of memory decrease and 15 healthy volunteers were recruited. Performances of learning and memory were assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R). Bilateral hippocampal volume, apparent diffusion coefficient (ADC) value, fractional anisotropy value, and magnetic resonance spectroscopy variables of bilateral hippocampus and parahippocampal gyrus were detected by 3.0 T magnetic resonance scanner. RESULTS We found significant differences in all cognitive outcomes but one between HIV+ and HIV- patients. There was a difference in the ADC value of left parahippocampal gyrus between mild-impairment group and severe-impairment group (P = 0.018). We found differences in the choline (Cho), Cho/creatinine (Cr), and N-acetylaspartate/Cr of left hippocampus (P = 0.002, P = 0.008, P = 0.002) and the Cho/Cr of right parahippocampal gyrus (P = 0.023) between HIV+ and HIV- patients and in the myoinositol of left hippocampus (P = 0.003) and the glutamate and glutamine of right hippocampus (P < 0.001) between mild-impairment group and severe-impairment group. We found significant positive correlations between N-acetylaspartate/Cr of left hippocampus and outcomes of HVLT-R and BVMT-R. There were significant negative correlations between ADC values of hippocampus and parahippocampal gyrus and outcomes of HVLT-R and BVMT-R and between Cho and Cho/Cr of hippocampus and parahippocampal gyrus and outcomes of HVLT-R and BVMT-R. CONCLUSIONS The performance of verbal learning and visual memory was significantly decreased in HIV-1-seropositive patients. The cognitive impairment of HIV infection was associated with conductive function and metabolic changes of hippocampus and parahippocampal gyrus in this study.
Collapse
|
213
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C, Kim SH, Jung U. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells. PLoS One 2016; 11:e0147538. [PMID: 26828720 PMCID: PMC4734671 DOI: 10.1371/journal.pone.0147538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, mGluR-1, STAT3 or PI3K. The inhibition of PI3K blocked both p53 signaling and STAT3-mGluR1 signaling but inhibition of p53 did not affect STAT3-mGluR1 signaling in irradiated C17.2 cells. Finally, these results of the IR-induced altered differentiation in C17.2 cells were verified in ex vivo experiments using mouse primary neural stem cells. In conclusion, the results of this study demonstrated that IR is able to trigger the altered neuronal differentiation in undifferentiated neural stem-like cells through PI3K-STAT3-mGluR1 and PI3K-p53 signaling. It is suggested that the IR-induced altered neuronal differentiation may play a role in the brain dysfunction caused by IR.
Collapse
Affiliation(s)
- Hyeon Soo Eom
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Ran Park
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sung Kee Jo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
214
|
Gros A, Veyrac A, Laroche S. [Brain and memory: new neurons to remember]. Biol Aujourdhui 2016; 209:229-248. [PMID: 26820830 DOI: 10.1051/jbio/2015028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/05/2023]
Abstract
A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and structural remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. The prevailing model of how our brain stores new information about relationships between events or new abstract constructs suggests it resides in activity-driven modifications of synaptic strength and remodelling of neural networks brought about by cellular and molecular changes within the neurons activated during learning. To date, the idea that a form of activity-dependent synaptic plasticity known as long-term potentiation, or LTP, and the associated synaptic growth play a central role in the laying down of memories has received considerable support. Beyond this mechanism of plasticity at the synapse, adult neurogenesis, i.e. the birth and growth of new neurons, is another form of neural plasticity that occurs continuously in defined brain regions such as the dentate gyrus of the hippocampus. Here, based on work in the hippocampus, we review the processes and mechanisms of the generation and selection of new neurons in the adult brain and the accumulating evidence that supports the idea that this form of neural plasticity is essential to store and lead to retrievable hippocampal-dependent memories.
Collapse
Affiliation(s)
- Alexandra Gros
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Alexandra Veyrac
- Centre de Recherche en Neurosciences de Lyon, UMR 5292 CNRS, INSERM U1028, Université Lyon 1, 69366 Lyon, France
| | - Serge Laroche
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
215
|
Yang L, Yang J, Li G, Li Y, Wu R, Cheng J, Tang Y. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol Neurobiol 2016; 54:1022-1032. [PMID: 26797684 PMCID: PMC5310567 DOI: 10.1007/s12035-015-9628-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.
Collapse
Affiliation(s)
- Lianhong Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guoqian Li
- Department of Neurology, Fujian Provincical Quanzhou First Hospital, Quanzhou, Fujian Province, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
216
|
Marples B, McGee M, Callan S, Bowen SE, Thibodeau BJ, Michael DB, Wilson GD, Maddens ME, Fontanesi J, Martinez AA. Cranial irradiation significantly reduces beta amyloid plaques in the brain and improves cognition in a murine model of Alzheimer’s Disease (AD). Radiother Oncol 2016; 118:43-51. [DOI: 10.1016/j.radonc.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
217
|
Heredia L, Bellés M, LLovet MI, Domingo JL, Linares V. Behavioral effects in mice of postnatal exposure to low-doses of 137-cesium and bisphenol A. Toxicology 2016; 340:10-6. [DOI: 10.1016/j.tox.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 12/23/2022]
|
218
|
Raber J, Allen AR, Sharma S, Allen B, Rosi S, Olsen RHJ, Davis MJ, Eiwaz M, Fike JR, Nelson GA. Effects of Proton and Combined Proton and 56Fe Radiation on the Hippocampus. Radiat Res 2015; 185:20-30. [DOI: 10.1667/rr14222.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Antiño R. Allen
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Sourabh Sharma
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Barrett Allen
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Susanna Rosi
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | | | | | | | - John R. Fike
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Gregory A. Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, 92350
| |
Collapse
|
219
|
Tong F, Zhang J, Liu L, Gao X, Cai Q, Wei C, Dong J, Hu Y, Wu G, Dong X. Corilagin Attenuates Radiation-Induced Brain Injury in Mice. Mol Neurobiol 2015; 53:6982-6996. [PMID: 26666668 DOI: 10.1007/s12035-015-9591-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Abstract
Cranial irradiation-induced inflammation plays a critical role in the initiation and progression of radiation-induced brain injury (RIBI). Anti-inflammation treatment may provide therapeutic benefits. Corilagin (beta-1-O-galloyl-3, 6-(R)-hexahydroxydiphenoyl-D-glucose, C27H22O18) was a novel member of the tannin family with anti-inflammatory properties and is isolated from some medicinal plants, such as Phyllanthus amarus and Caesalpinia coriaria. In this study, the effect of Corilagin on RIBI was investigated and the underlying mechanisms were explored. Spatial learning and memory ability of mice were investigated by the Morris water maze test. Evans blue leakage and electron microscopy were used to assess the integrity of blood-brain barrier (BBB). The mRNA and protein expressions of inflammatory cytokines, TNF-α and IL-1β, were measured by using real-time PCR and Western blotting. The activation of microglial cells and expression of TNF-α were examined by immunofluorescence staining. Phosphorylated signal transducers and activators of transcription 3 (p-STAT3) and IκBα, and the translocation of p65 from cytoplasm to nucleus were detected by using Western blotting. Morris water maze test showed that Corilagin ameliorated the neurocognitive deficits in RIBI mice. Evans blue leakage and electron microscopy exhibited that Corilagin partially protected the BBB integrity from cranial irradiation-caused damage; immunofluorescence staining showed that Corilagin could inhibit microglial activation and TNF-α expression. Real-time PCR and Western blotting revealed that Corilagin downregulated the expression of TNF-α and IL-1β and inhibited the irradiation-induced activation of NF-κB pathways by upregulating p-STAT3 expression. In conclusion, Corilagin could attenuate RIBI through inhibiting microglial activation and the expressions of inflammatory cytokines. Corilagin might inhibit the activation of NF-κB pathway in a STAT3-associated manner, thereby downregulating the inflammatory cytokine expressions.
Collapse
Affiliation(s)
- Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jian Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xican Gao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Qian Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chunhua Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jihua Dong
- Experimental Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
220
|
Tsai PF, Yang CC, Chuang CC, Huang TY, Wu YM, Pai PC, Tseng CK, Wu TH, Shen YL, Lin SY. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study. Radiat Oncol 2015; 10:253. [PMID: 26654128 PMCID: PMC4676088 DOI: 10.1186/s13014-015-0562-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Methods Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Results Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that dosimetric parameters specific to left sided hippocampus exerted an influence on immediate recall of verbal memory (adjusted odds ratio, 4.08; p-value, 0.042, predicting patients’ neurocognitive decline after receiving HS-WBRT). Conclusions Functional preservation by hippocampal sparing during WBRT is indeed achieved in our study. Providing that modern VMAT techniques can reduce the dose irradiating bilateral hippocampi below dosimetric threshold, patients should be recruited in prospective trials of hippocampal sparing during cranial irradiation to accomplish neurocognitive preservation while maintaining intracranial control. Trial registration Current Controlled Trials NCT02504788 Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0562-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping-Fang Tsai
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, #15, Wenhua 1st Rd., Kwei-Shan Hsiang, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chi-Cheng Yang
- Department of Occupational Therapy, Division of Clinical Psychology, Master of Behavioral Sciences, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan, 333, Taiwan.
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, #5, Fu-Shin Street, Kwei-Shan Hsiang, Taoyuan, Taiwan.
| | - Ting-Yi Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital and Chang Gung University, #5, Fu-Shin Street, Kwei-Shan Hsiang, Taoyuan, Taiwan.
| | - Yi-Ming Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital and Chang Gung University, #5, Fu-Shin Street, Kwei-Shan Hsiang, Taoyuan, Taiwan.
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, #15, Wenhua 1st Rd., Kwei-Shan Hsiang, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chen-Kan Tseng
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, #15, Wenhua 1st Rd., Kwei-Shan Hsiang, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tung-Ho Wu
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, #15, Wenhua 1st Rd., Kwei-Shan Hsiang, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yi-Liang Shen
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, #15, Wenhua 1st Rd., Kwei-Shan Hsiang, Taoyuan, Taiwan.
| | - Shinn-Yn Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, #15, Wenhua 1st Rd., Kwei-Shan Hsiang, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
221
|
Yi JH, Beak SJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Danggui-Jakyak-San enhances hippocampal long-term potentiation through the ERK/CREB/BDNF cascade. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:481-489. [PMID: 26453932 DOI: 10.1016/j.jep.2015.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 07/14/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui-Jakyak-San (DJS), a traditional herbal prescription, has long been used to treat gerontological disorders due to insufficient blood supply. AIM OF THE STUDY Previously, we reported that DJS increased hippocampal neurogenesis and enhanced learning and memory. However, the precise mechanism of DJS and its effects on learning and memory are still not well understood. In this study, we investigated the effect of DJS on hippocampal long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory. MATERIALS AND METHODS To understand the effect of DJS on LTP, we used acute mouse hippocampal slices and delivered one train of high frequency stimulation (100 Hz, 100 pulses). Western blots were used to analyze the changes in protein levels induced by DJS. Morris water maze test was used to evaluate the effect of DJS on spatial long-term memory. RESULTS DJS enhanced LTP in the Schaffer-collateral pathway of the hippocampus in a concentration-dependent manner. Extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) were activated by DJS. Moreover, brain-derived neurotropic factor (BDNF) was also increased by DJS. Blockade of ERK1/2 activation with PD198306 blocked the DJS-induced activation of the ERK1/2/CREB/BDNF cascade and LTP enhancement. In vivo, DJS improved spatial long-term memory and upregulated the hippocampal CREB/BDNF cascade. CONCLUSION These results suggest that DJS enhances hippocampal LTP and spatial memory through the ERK/CREB/BDNF cascade.
Collapse
Affiliation(s)
- Jee Hyun Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Soo Ji Beak
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju 501-757, Republic of Korea
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan, Republic of Korea
| | - Byeong C Kim
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju 501-757, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences and,College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
222
|
Allen AR, Raber J, Chakraborti A, Sharma S, Fike JR. 56Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus. Radiat Res 2015; 184:586-94. [DOI: 10.1667/rr14103.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
223
|
Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review. Int J Mol Sci 2015; 16:27796-815. [PMID: 26610477 PMCID: PMC4661926 DOI: 10.3390/ijms161126068] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/10/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors.
Collapse
|
224
|
Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky ST, Ginsberg SD, Ikonomovic MD, Scheff SW, Binder LI. Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience 2015; 309:51-67. [PMID: 25772787 PMCID: PMC4567973 DOI: 10.1016/j.neuroscience.2015.03.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
Abstract
Neuroplasticity involves molecular and structural changes in central nervous system (CNS) throughout life. The concept of neural organization allows for remodeling as a compensatory mechanism to the early pathobiology of Alzheimer's disease (AD) in an attempt to maintain brain function and cognition during the onset of dementia. The hippocampus, a crucial component of the medial temporal lobe memory circuit, is affected early in AD and displays synaptic and intraneuronal molecular remodeling against a pathological background of extracellular amyloid-beta (Aβ) deposition and intracellular neurofibrillary tangle (NFT) formation in the early stages of AD. Here we discuss human clinical pathological findings supporting the concept that the hippocampus is capable of neural plasticity during mild cognitive impairment (MCI), a prodromal stage of AD and early stage AD.
Collapse
Affiliation(s)
- E J Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States.
| | - L Mahady
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - D Waters
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - S E Counts
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - S E Perez
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - S T DeKosky
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - S D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Physiology & Neuroscience, New York University Langone Medical Center, Orangeburg, NY, United States
| | - M D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - S W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - L I Binder
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
225
|
Kempf SJ, von Toerne C, Hauck SM, Atkinson MJ, Benotmane MA, Tapio S. Long-term consequences of in utero irradiated mice indicate proteomic changes in synaptic plasticity related signalling. Proteome Sci 2015; 13:26. [PMID: 26578848 PMCID: PMC4647474 DOI: 10.1186/s12953-015-0083-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022] Open
Abstract
Background The harmful consequences of in utero irradiation on learning and memory have been recognised but the molecular mechanisms behind the damage are still unknown. Results Using a mass spectrometry-based approach, we investigated the long-term changes in the global cortical and hippocampal proteome 6 months after 0.1, 0.5 and 1.0 Gy in utero X-ray irradiation delivered on embryonic day 11 in male C57Bl/6 J offspring. We noted alterations in several signalling pathways involved in cognition, the transcription factor cAMP response element-binding protein (CREB) playing a central role. Immunoblotting of CREB and phosphorylated CREB (Ser133) showed an altered expression profile at all doses in the hippocampus and at 0.5 and 1.0 Gy in the cortex. The greatest reduction in the phospho-CREB level was seen at 1.0 Gy in the hippocampus. It was accompanied by enhanced expression of postsynaptic density protein 95 (PSD95), suggesting effect on synaptic plasticity in neuronal dendrites. Conclusions As the CREB signalling pathway plays a crucial role in neuronal plasticity and long-term memory formation in the brain, the radiation-induced alterations of this pathway seen here are in good agreement with the cognitive dysfunction seen in in utero irradiated populations. These data contribute to a deeper biological understanding of molecular mechanisms behind the long-term damage induced by relatively low doses of ionising radiation during gestation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0083-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan J Kempf
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany ; Present address: Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany ; Chair of Radiation Biology, Technical University Munich, Munich, Germany
| | | | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
226
|
Nieman BJ, de Guzman AE, Gazdzinski LM, Lerch JP, Chakravarty MM, Pipitone J, Strother D, Fryer C, Bouffet E, Laughlin S, Laperriere N, Riggs L, Skocic J, Mabbott DJ. White and Gray Matter Abnormalities After Cranial Radiation in Children and Mice. Int J Radiat Oncol Biol Phys 2015; 93:882-91. [DOI: 10.1016/j.ijrobp.2015.07.2293] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
227
|
Tomé WA, Gökhan Ş, Gulinello ME, Brodin NP, Heard J, Mehler MF, Guha C. Hippocampal-dependent neurocognitive impairment following cranial irradiation observed in pre-clinical models: current knowledge and possible future directions. Br J Radiol 2015; 89:20150762. [PMID: 26514377 DOI: 10.1259/bjr.20150762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We reviewed the literature for studies pertaining to impaired adult neurogenesis leading to neurocognitive impairment following cranial irradiation in rodent models. This compendium was compared with respect to radiation dose, converted to equivalent dose in 2 Gy fractions (EQD2) to allow for direct comparison between studies. The effects of differences between animal species and the dependence on animal age as well as for time after irradiation were also considered. One of the major sites of de novo adult neurogenesis is the hippocampus, and as such, this review also focuses on assessing evidence related to the expression and potential effects of inflammatory cytokines on neural stem cells in the subgranular zone of the dentate gyrus and whether this correlates with neurocognitive impairment. This review also discusses potential strategies to mitigate the detrimental effects on neurogenesis and neurocognition resulting from cranial irradiation, and how the rationale for these strategies compares with the current outcome of pre-clinical studies.
Collapse
Affiliation(s)
- Wolfgang A Tomé
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA.,3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria E Gulinello
- 4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - N Patrik Brodin
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - John Heard
- 2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Mark F Mehler
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.,4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,5 Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
228
|
Kugelman T, Zuloaga DG, Weber S, Raber J. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex. Behav Brain Res 2015; 298:1-11. [PMID: 26522840 DOI: 10.1016/j.bbr.2015.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory.
Collapse
Affiliation(s)
- Tara Kugelman
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
229
|
Simvastatin prevents β-amyloid25–35-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 2015; 97:122-32. [DOI: 10.1016/j.neuropharm.2015.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023]
|
230
|
Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice. Behav Brain Funct 2015; 11:30. [PMID: 26410080 PMCID: PMC4584127 DOI: 10.1186/s12993-015-0075-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. Methods The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Results Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Conclusions Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.
Collapse
|
231
|
Li G, Zhou L, Zhu Y, Wang C, Sha S, Xian X, Ji Y, Liu G, Chen L. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ. Dis Model Mech 2015; 8:1615-24. [PMID: 26398946 PMCID: PMC4728316 DOI: 10.1242/dmm.021550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
The seipin gene (BSCL2) was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2). Neuronal seipin-knockout (seipin-nKO) mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG) and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT) mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi). In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1) and neurogenic differentiation 1 (NeuroD1) mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705) was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.
Collapse
Affiliation(s)
- Guoxi Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Libin Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Ying Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Conghui Wang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xunde Xian
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing 210029, China
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
232
|
Park SJ, Ahn YJ, Lee HE, Hong E, Ryu JH. Standardized Prunella vulgaris
var. lilacina
Extract Enhances Cognitive Performance in Normal Naive Mice. Phytother Res 2015; 29:1814-21. [DOI: 10.1002/ptr.5449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 07/04/2015] [Accepted: 08/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Se Jin Park
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Young Je Ahn
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Eunyoung Hong
- Natraceutical & Functional Foods Center; CJ Foods R&D; Seoul 152-051 Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee East-west Pharmaceutical Research Institute, College of Pharmacy; Kyung Hee University; Seoul 130-701 Republic of Korea
| |
Collapse
|
233
|
Knibbe-Hollinger JS, Fields NR, Chaudoin TR, Epstein AA, Makarov E, Akhter SP, Gorantla S, Bonasera SJ, Gendelman HE, Poluektova LY. Influence of age, irradiation and humanization on NSG mouse phenotypes. Biol Open 2015; 4:1243-52. [PMID: 26353862 PMCID: PMC4610222 DOI: 10.1242/bio.013201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.
Collapse
Affiliation(s)
- Jaclyn S Knibbe-Hollinger
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Natasha R Fields
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Tammy R Chaudoin
- Department of Internal Medicine, Geriatrics Division, 986155 Nebraska Medical Center, Omaha, NE 68198-6155, USA
| | - Adrian A Epstein
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Sidra P Akhter
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Stephen J Bonasera
- Department of Internal Medicine, Geriatrics Division, 986155 Nebraska Medical Center, Omaha, NE 68198-6155, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
234
|
Yuan H, Zhang L, Frank JE, Inscoe CR, Burk LM, Hadsell M, Lee YZ, Lu J, Chang S, Zhou O. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study. Radiat Res 2015; 184:322-33. [PMID: 26305294 DOI: 10.1667/rr13919.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.
Collapse
Affiliation(s)
- Hong Yuan
- a Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lei Zhang
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jonathan E Frank
- b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina R Inscoe
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Laurel M Burk
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Mike Hadsell
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yueh Z Lee
- a Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,b Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,e Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sha Chang
- d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,e Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,f Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- c Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,d Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,g Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
235
|
Rabin BM, Heroux NA, Shukitt-Hale B, Carrihill-Knoll KL, Beck Z, Baxter C. Lack of reliability in the disruption of cognitive performance following exposure to protons. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:285-95. [PMID: 25935209 DOI: 10.1007/s00411-015-0597-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/23/2015] [Indexed: 05/27/2023]
Abstract
A series of three replications were run to determine the reliability with which exposure to protons produces a disruption of cognitive performance, using a novel object recognition task and operant responding on an ascending fixed-ratio task. For the first two replications, rats were exposed to head-only exposures to 1000 MeV/n protons at the NASA Space Radiation Laboratory. For the third replication, subjects were given head-only or whole-body exposures to both 1000 and 150 MeV/n protons. The results were characterized by a lack of consistency in the effects of exposure to protons on the performance of these cognitive tasks, both within and between replications. The factors that might influence the lack of consistency and the implications for exploratory class missions are discussed.
Collapse
|
236
|
Suresh Kumar MA, Peluso M, Chaudhary P, Dhawan J, Beheshti A, Manickam K, Thapar U, Pena L, Natarajan M, Hlatky L, Demple B, Naidu M. Fractionated Radiation Exposure of Rat Spinal Cords Leads to Latent Neuro-Inflammation in Brain, Cognitive Deficits, and Alterations in Apurinic Endonuclease 1. PLoS One 2015. [PMID: 26208353 PMCID: PMC4514622 DOI: 10.1371/journal.pone.0133016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.
Collapse
Affiliation(s)
- M. A. Suresh Kumar
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Michael Peluso
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, Queens University, Belfast, United Kingdom
| | - Jasbeer Dhawan
- Department of Psychology, Stony Brook University, Stony Brook, New York, United States of America
| | - Afshin Beheshti
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Krishnan Manickam
- Department of Pathology, UTHSCSA, San Antonio, Texas, United States of America
| | - Upasna Thapar
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Louis Pena
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Mohan Natarajan
- Department of Pathology, UTHSCSA, San Antonio, Texas, United States of America
| | - Lynn Hlatky
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Mamta Naidu
- GeneSys Research Institute/ Center for Cancer Systems Biology at Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
237
|
Kut C, Janson Redmond K. New considerations in radiation treatment planning for brain tumors: neural progenitor cell-containing niches. Semin Radiat Oncol 2015; 24:265-72. [PMID: 25219811 DOI: 10.1016/j.semradonc.2014.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this critical review is to explore the controversy regarding the relationship between radiation dose to the neural progenitor cell (NPC) niches and patient outcomes, in terms of both toxicity and tumor control. NPCs in the subventricular zone (SVZ) and hippocampus are paradoxically associated with long-term neurocognitive sequelae of brain irradiation, as well as resistance to therapy and tumor recurrence. The reconciliation of these somewhat opposing functions is challenging. Current literature suggests that radiation and other treatments against the NPC in the hippocampus and the SVZ may influence patient outcome. As a result, both the SVZ and the hippocampus could have important implications on radiation treatment planning strategies, and future laboratory and clinical evaluations will be critical in designing studies to optimize treatment outcome, effectiveness, and safety.
Collapse
Affiliation(s)
- Carmen Kut
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, MD
| | - Kristin Janson Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
238
|
Zanni G, Zhou K, Riebe I, Xie C, Zhu C, Hanse E, Blomgren K. Irradiation of the Juvenile Brain Provokes a Shift from Long-Term Potentiation to Long-Term Depression. Dev Neurosci 2015; 37:263-72. [PMID: 26043717 DOI: 10.1159/000430435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/11/2015] [Indexed: 11/19/2022] Open
Abstract
Radiotherapy is common in the treatment of brain tumors in children but often causes deleterious, late-appearing sequelae, including cognitive decline. This is thought to be caused, at least partly, by the suppression of hippocampal neurogenesis. However, the changes in neuronal network properties in the dentate gyrus (DG) following the irradiation of the young, growing brain are still poorly understood. We characterized the long-lasting effects of irradiation on the electrophysiological properties of the DG after a single dose of 6-Gy whole-brain irradiation on postnatal day 11 in male Wistar rats. The assessment of the basal excitatory transmission in the medial perforant pathway (MPP) by an examination of the field excitatory postsynaptic potential/volley ratio showed an increase of the synaptic efficacy per axon in irradiated animals compared to sham controls. The paired-pulse ratio at the MPP granule cell synapses was not affected by irradiation, suggesting that the release probability of neurotransmitters was not altered. Surprisingly, the induction of long-term synaptic plasticity in the DG by applying 4 trains of high-frequency stimulation provoked a shift from long-term potentiation (LTP) to long-term depression (LTD) in irradiated animals compared to sham controls. The morphological changes consisted in a virtually complete ablation of neurogenesis following irradiation, as judged by doublecortin immunostaining, while the inhibitory network of parvalbumin interneurons was intact. These data suggest that the irradiation of the juvenile brain caused permanent changes in synaptic plasticity that would seem consistent with an impairment of declarative learning. Unlike in our previous study in mice, lithium treatment did unfortunately not ameliorate any of the studied parameters. For the first time, we show that the effects of cranial irradiation on long-term synaptic plasticity is different in the juvenile compared with the adult brain, such that while irradiation of the adult brain will only cause a reduction in LTP, irradiation of the juvenile brain goes further and causes LTD. Although the mechanisms underlying the synaptic alterations need to be elucidated, these findings provide a better understanding of the effects of irradiation in the developing brain and the cognitive deficits observed in young patients who have been subjected to cranial radiotherapy. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Giulia Zanni
- Center for Brain Repair and Rehabilitation, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
239
|
de Guzman AE, Gazdzinski LM, Alsop RJ, Stewart JM, Jaffray DA, Wong CS, Nieman BJ. Treatment Age, Dose and Sex Determine Neuroanatomical Outcome in Irradiated Juvenile Mice. Radiat Res 2015; 183:541-9. [DOI: 10.1667/rr13854.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Lisa M. Gazdzinski
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard J. Alsop
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M. Stewart
- Radiation Medicine Program and Techna Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David A. Jaffray
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C. Shun Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
240
|
Nagy PM, Aubert I. Overexpression of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during aging. Neurobiol Aging 2015; 36:1881-9. [DOI: 10.1016/j.neurobiolaging.2015.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/25/2022]
|
241
|
Fan XW, Chen F, Chen Y, Chen GH, Liu HH, Guan SK, Deng Y, Liu Y, Zhang SJ, Peng WJ, Jiang GL, Wu KL. Electroacupuncture prevents cognitive impairments by regulating the early changes after brain irradiation in rats. PLoS One 2015; 10:e0122087. [PMID: 25830357 PMCID: PMC4382177 DOI: 10.1371/journal.pone.0122087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
Cognitive impairments severely affect the quality of life of patients who undergo brain irradiation, and there are no effective preventive strategies. In this study, we examined the therapeutic potential of electroacupuncture (EA) administered immediately after brain irradiation in rats. We detected changes in cognitive function, neurogenesis, and synaptic density at different time points after irradiation, but found that EA could protect the blood-brain barrier (BBB), inhibit neuroinflammatory cytokine expression, upregulate angiogenic cytokine expression, and modulate the levels of neurotransmitter receptors and neuropeptides in the early phase. Moreover, EA protected spatial memory and recognition in the delayed phase. At the cellular/molecular level, the preventative effect of EA on cognitive dysfunction was not dependent on hippocampal neurogenesis; rather, it was related to synaptophysin expression. Our results suggest that EA applied immediately after brain irradiation can prevent cognitive impairments by protecting against the early changes induced by irradiation and may be a novel approach for preventing or ameliorating cognitive impairments in patients with brain tumors who require radiotherapy.
Collapse
Affiliation(s)
- Xing-Wen Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Fu Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Yan Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Guan-Hao Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Huan-Huan Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China, 200032
| | - Shi-Kuo Guan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Yong Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Sheng-Jian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Wei-Jun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Guo-Liang Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Kai-Liang Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
- * E-mail:
| |
Collapse
|
242
|
Lorivel T, Gandin C, Veyssière J, Lazdunski M, Heurteaux C. Positive effects of the traditional Chinese medicine MLC901 in cognitive tasks. J Neurosci Res 2015; 93:1648-63. [PMID: 25821139 PMCID: PMC6681465 DOI: 10.1002/jnr.23591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/29/2015] [Accepted: 03/05/2015] [Indexed: 12/22/2022]
Abstract
MLC901 (NurAiDII) is used as a treatment for stroke patients. It has been shown that MLC901 improves motor and cognitive recovery in ischemic and traumatic brain‐injured rodents. The present study seeks to delineate cognitive effects induced by MLC901 in normal, noninjured mice. To this end, the behaviors of vehicle‐ and MLC901‐treated C57BL/6 mice in hippocampus‐dependent (passive avoidance, Morris water maze) and hippocampus‐independent (novel object recognition) cognitive tasks are compared. The potential influence of the compound on the anxiety level and nycthemeral rhythm of mice is also assessed. In addition, the long‐term effects of MLC901 on hippocampal neurogenesis are measured. The results clearly demonstrate that MLC901 promotes extinction in passive avoidance and reversal learning in the Morris water maze and improves the performance of mice in novel object recognition. In parallel, this study shows the long‐term proneurogenesis effects of MLC901 that result in the increase in the number of mature neurons in the hippocampus. If these observations can be extended to humans, then MLC901 could represent a promising therapeutic strategy. © 2015 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- T Lorivel
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - C Gandin
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - J Veyssière
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - M Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - C Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| |
Collapse
|
243
|
Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus. Neurobiol Learn Mem 2015; 121:12-9. [PMID: 25792232 DOI: 10.1016/j.nlm.2015.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
The brain can be exposed to ionizing radiation in various ways, and such irradiation can trigger adverse effects, particularly on learning and memory. However, the precise mechanisms of cognitive impairments induced by cranial irradiation remain unknown. In the hippocampus, brain-derived neurotrophic factor (BDNF) plays roles in neurogenesis, neuronal survival, neuronal differentiation, and synaptic plasticity. The significance of BDNF transcript variants in these contexts is becoming clearer. In the present study, both object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice were assessed 1 month after a single exposure to cranial irradiation (10 Gy) to evaluate hippocampus-related behavioral dysfunction following such irradiation. Furthermore, changes in the levels of BDNF, the cAMP-response element binding protein (CREB) phosphorylation, and BDNF transcript variants were measured in the hippocampus 1 month after cranial irradiation. On object recognition memory and contextual fear conditioning tasks, mice evaluated 1 month after irradiation exhibited significant memory deficits compared to sham-irradiated controls, but no apparent change was evident in locomotor activity. Both phosphorylated CREB and BDNF protein levels were significantly downregulated after irradiation of the hippocampus. Moreover, the levels of mRNAs encoding common BDNF transcripts, and exons IIC, III, IV, VII, VIII, and IXA, were significantly downregulated after irradiation. The reductions in CREB phosphorylation and BDNF expression induced by differential regulation of BDNF hippocampal exon transcripts may be associated with the memory deficits evident in mice after cranial irradiation.
Collapse
|
244
|
Baulch JE, Craver BM, Tran KK, Yu L, Chmielewski N, Allen BD, Limoli CL. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles. Redox Biol 2015; 5:24-32. [PMID: 25800120 PMCID: PMC4371546 DOI: 10.1016/j.redox.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 10/30/2022] Open
Abstract
Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC) exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO) and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively) in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS) was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut's ability to perform complex tasks during extended missions in deep space.
Collapse
Affiliation(s)
- Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Brianna M Craver
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Katherine K Tran
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Liping Yu
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Nicole Chmielewski
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA.
| |
Collapse
|
245
|
Son Y, Yang M, Wang H, Moon C. Hippocampal dysfunctions caused by cranial irradiation: a review of the experimental evidence. Brain Behav Immun 2015; 45:287-96. [PMID: 25596174 DOI: 10.1016/j.bbi.2015.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/11/2022] Open
Abstract
Cranial irradiation (IR) is commonly used for the treatment of brain tumors but may cause disastrous brain injury, especially in the hippocampus, which has important cognition and emotional regulation functions. Several preclinical studies have investigated the mechanisms associated with cranial IR-induced hippocampal dysfunction such as memory defects and depression-like behavior. However, current research on hippocampal dysfunction and its associated mechanisms, with the ultimate goal of overcoming the side effects of cranial radiation therapy in the hippocampus, is still very much in progress. This article reviews several in vivo studies on the possible mechanisms of radiation-induced hippocampal dysfunction, which may be associated with hippocampal neurogenesis, neurotrophin and neuroinflammation. Thus, this review may be helpful to gain new mechanistic insights into hippocampal dysfunction following cranial IR and provide effective strategies for potential therapeutic approaches for cancer patients receiving radiation therapy.
Collapse
Affiliation(s)
- Yeonghoon Son
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Miyoung Yang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
246
|
Hanbury DB, Robbins ME, Bourland JD, Wheeler KT, Peiffer AM, Mitchell EL, Daunais JB, Deadwyler SA, Cline JM. Pathology of fractionated whole-brain irradiation in rhesus monkeys ( Macaca mulatta ). Radiat Res 2015; 183:367-74. [PMID: 25688996 PMCID: PMC4467778 DOI: 10.1667/rr13898.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fractionated whole-brain irradiation (fWBI), used to treat brain metastases, often leads to neurologic injury and cognitive impairment. The cognitive effects of irradiation in nonhuman primates (NHP) have been previously published; this report focuses on corresponding neuropathologic changes that could have served as the basis for those effects in the same study. Four rhesus monkeys were exposed to 40 Gy of fWBI [5 Gy × 8 fraction (fx), 2 fx/week for four weeks] and received anatomical MRI prior to, and 14 months after fWBI. Neurologic and histologic sequelae were studied posthumously. Three of the NHPs underwent cognitive assessments, and each exhibited radiation-induced impairment associated with various degrees of vascular and inflammatory neuropathology. Two NHPs had severe multifocal necrosis of the forebrain, midbrain and brainstem. Histologic and MRI findings were in agreement, and the severity of cognitive decrement previously reported corresponded to the degree of observed pathology in two of the animals. In response to fWBI, the NHPs showed pathology similar to humans exposed to radiation and show comparable cognitive decline. These results provide a basis for implementing NHPs to examine and treat adverse cognitive and neurophysiologic sequelae of radiation exposure in humans.
Collapse
Affiliation(s)
- David B. Hanbury
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mike E. Robbins
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kenneth T. Wheeler
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ann M. Peiffer
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Erin L. Mitchell
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James B. Daunais
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Samuel A. Deadwyler
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
247
|
Heredia L, Bellés M, Llovet MI, Domingo JL, Linares V. Neurobehavioral effects of concurrent exposure to cesium-137 and paraquat during neonatal development in mice. Toxicology 2015; 329:73-9. [DOI: 10.1016/j.tox.2015.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/01/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023]
|
248
|
Dong X, Luo M, Huang G, Zhang J, Tong F, Cheng Y, Cai Q, Dong J, Wu G, Cheng J. Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol 2015; 91:224-39. [PMID: 25426696 DOI: 10.3109/09553002.2014.988895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation-induced brain injury (RIBI) is the most common side-effect after cranial radiation therapy (CRT). In the present study, the RIBI mice model was established and the changes in the expression of tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β) mRNA, and the related signal pathways in the hippocampus of this model were investigated. MATERIALS AND METHODS 10 Gy CRT or sham-irradiation was given to the three-week old mice. The water maze test was used to test the RIBI model in mice. The expression of pro-inflammatory cytokines was detected by real-time polymerase chain reaction (PCR) in vivo. The changes of microglial activation and neurogensis in the hippocampus were analyzed by immunofluorescence and immunohistochemistry. The cytoplasm to nuclei translocation of Nuclear factor kappa B (NF-κB), and the protein expressions of IkappaB-alpha (IκB-α), NF-κB essential modulator (NEMO), p53-induced protein with a death domain (PIDD), TNF-α and IL-1β were examined by Western blotting. A RIBI model was established by Morris water maze test 6 weeks after 10 Gy CRT in three-week old C57BL/6J mice. RESULTS The mRNA and protein expression levels of TNF-α and IL-1β reached the peak during the early phase after CRT. Increases in cytokine levels also were observed after irradiation of mouse BV-2 microglial cells. Neurogensis was significantly inhibited in the hippocampus with an increase of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells. The total number of microglia was decreased after CRT, but microglial activation was significantly increased. Western blotting revealed, in the RIBI mice, the expression of IκB-α was down-regulated, accompanied by the up-regulated expression of NEMO and regulated auto-proteolysis of PIDD. Also the NF-κB pathway activation was observed in BV-2 cells after irradiation. CONCLUSIONS CRT-induced pro-inflammatory cytokines release in the brain tissues and inhibition of neurogenesis in the hippocampus might be contributed by the microglial activation and play an important role in RIBI.
Collapse
Affiliation(s)
- Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Sokolova IV, Schneider CJ, Bezaire M, Soltesz I, Vlkolinsky R, Nelson GA. Proton Radiation Alters Intrinsic and Synaptic Properties of CA1 Pyramidal Neurons of the Mouse Hippocampus. Radiat Res 2015; 183:208-18. [DOI: 10.1667/rr13785.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Irina V. Sokolova
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Calvin J. Schneider
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Marianne Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Roman Vlkolinsky
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Gregory A. Nelson
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
250
|
Sun D, Daniels TE, Rolfe A, Waters M, Hamm R. Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J Neurotrauma 2015; 32:495-505. [PMID: 25242459 DOI: 10.1089/neu.2014.3545] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurogenesis persists throughout life in the neurogenic regions of the mature mammalian brain, and this response is enhanced after traumatic brain injury (TBI). In the hippocampus, adult neurogenesis plays an important role in hippocampal-dependent learning and memory functions and is thought to contribute to the spontaneous cognitive recovery observed after TBI. Utilizing an antimitotic agent, arabinofuranosyl cytidine (Ara-C), the current study investigated the direct association of injury-induced hippocampal neurogenesis with cognitive recovery. In this study, adult rats received a moderate lateral fluid percussion injury followed by a 7-day intraventricular infusion of 2% Ara-C or vehicle. To examine the effect of Ara-C on cell proliferation, animals received intraperitoneal injections of 5-bromo-2-deoxyuridine (BrdU), to label dividing cells, and were sacrificed at 7 days after injury. Brain sections were immunostained for BrdU or doublecortin (DCX), and the total number of BrdU(+) or DCX(+) cells in the hippocampus was quantified. To examine the outcome of inhibiting the injury-induced cell proliferative response on cognitive recovery, animals were assessed on Morris water maze (MWM) tasks at 21-25 or 56-60 days postinjury. We found that a 7-day infusion of Ara-C significantly reduced the total number of BrdU(+) and DCX(+) cells in the dentate gyrus (DG) in both hemispheres. Moreover, inhibition of the injury-induced cell proliferative response in the DG completely abolished the innate cognitive recovery on MWM performance at 56-60 days postinjury. These results support the causal relationship of injury-induced hippocampal neurogenesis on cognitive functional recovery and suggest the importance of this endogenous repair mechanism on restoration of hippocampal function.
Collapse
Affiliation(s)
- Dong Sun
- 1 Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| | | | | | | | | |
Collapse
|