201
|
Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Proc Natl Acad Sci U S A 2013; 110:2258-63. [PMID: 23345445 DOI: 10.1073/pnas.1222426110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eriocalyxin B (EriB), a diterpenoid isolated from Isodon eriocalyx, was previously reported to have antitumor effects via multiple pathways, and these pathways are related to immune responses. In this study, we demonstrated that EriB was efficacious in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Treatment with EriB led to amelioration of EAE, which correlated with reduced spinal cord inflammation and demyelination. EriB treatment abolished encephalitogenic T-cell responses to myelin oligodendrocyte glycoprotein in an adoptive transfer EAE model. The underlying mechanism of EriB-induced effects involved inhibition of T helper (Th) 1 and Th17 cell differentiation through Janus Kinase/Signal Transducer and Activator Of Transcription and Nuclear factor-κB signaling pathways as well as elevation of reactive oxygen species. These findings indicate that EriB exerts potent antiinflammatory effects through selective modulation of pathogenic Th1 and Th17 cells by targeting critical signaling pathways. The study provides insights into the role of EriB as a unique therapeutic agent for the treatment of autoimmune diseases.
Collapse
|
202
|
Løken-Amsrud KI, Myhr KM, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, Hovdal H, Lilleås F, Midgard R, Pedersen T, Benth JŠ, Torkildsen Ø, Wergeland S, Holmøy T. Alpha-tocopherol and MRI outcomes in multiple sclerosis--association and prediction. PLoS One 2013; 8:e54417. [PMID: 23349882 PMCID: PMC3551804 DOI: 10.1371/journal.pone.0054417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/11/2012] [Indexed: 01/18/2023] Open
Abstract
Objective Alpha-tocopherol is the main vitamin E compound in humans, and has important antioxidative and immunomodulatory properties. The aim of this study was to study alpha-tocopherol concentrations and their relationship to disease activity in Norwegian multiple sclerosis (MS) patients. Methods Prospective cohort study in 88 relapsing-remitting MS (RRMS) patients, originally included in a randomised placebo-controlled trial of omega-3 fatty acids (the OFAMS study), before and during treatment with interferon beta. The patients were followed for two years with repeated 12 magnetic resonance imaging (MRI) scans and nine serum measurements of alpha-tocopherol. Results During interferon beta (IFNB) treatment, each 10 µmol/L increase in alpha-tocopherol reduced the odds (CI 95%) for simultaneous new T2 lesions by 36.8 (0.5–59.8) %, p = 0.048, and for combined unique activity by 35.4 (1.6–57.7) %, p = 0.042, in a hierarchical regression model. These associations were not significant prior to IFNB treatment, and were not noticeably changed by gender, age, body mass index, HLA-DRB1*15, treatment group, compliance, or the concentrations of 25-hydroxyvitamin D, retinol, neutralising antibodies against IFNB, or the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. The corresponding odds for having new T1 gadolinium enhancing lesions two months later was reduced by 65.4 (16.5–85.7) %, p = 0.019, and for new T2 lesions by 61.0 (12.4–82.6) %, p = 0.023. Conclusion During treatment with IFNB, increasing serum concentrations of alpha-tocopherol were associated with reduced odds for simultaneous and subsequent MRI disease activity in RRMS patients.
Collapse
|
203
|
Bolcaen J, Acou M, Mertens K, Hallaert G, Van den Broecke C, Achten E, Goethals I. Structural and Metabolic Features of Two Different Variants of Multiple Sclerosis: A PET/MRI Study. J Neuroimaging 2012; 23:431-6. [DOI: 10.1111/j.1552-6569.2012.00760.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
204
|
Levin MC, Lee S, Gardner LA, Shin Y, Douglas JN, Groover CJ. Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease. Degener Neurol Neuromuscul Dis 2012; 2:175-187. [PMID: 30890887 PMCID: PMC6065584 DOI: 10.2147/dnnd.s38353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Considering there are no treatments for progressive forms of multiple sclerosis (MS), a comprehensive understanding of the role of neurodegeneration in the pathogenesis of MS should lead to novel therapeutic strategies to treat it. Many studies have implicated viral triggers as a cause of MS, yet no single virus has been exclusively shown to cause MS. Given this, human and animal viral models of MS are used to study its pathogenesis. One example is human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Importantly, HAM/TSP is similar clinically, pathologically, and immunologically to progressive MS. Interestingly, both MS and HAM/TSP patients were found to make antibodies to heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an RNA-binding protein overexpressed in neurons. Anti-hnRNP A1 antibodies reduced neuronal firing and caused neurodegeneration in neuronal cell lines, suggesting the autoantibodies are pathogenic. Further, microarray analyses of neurons exposed to anti-hnRNP A1 antibodies revealed novel pathways of neurodegeneration related to alterations of RNA levels of the spinal paraplegia genes (SPGs). Mutations in SPGs cause hereditary spastic paraparesis, genetic disorders clinically indistinguishable from progressive MS and HAM/TSP. Thus, there is a strong association between involvement of SPGs in neurodegeneration and the clinical phenotype of progressive MS and HAM/TSP patients, who commonly develop spastic paraparesis. Taken together, these data begin to clarify mechanisms of neurodegeneration related to the clinical presentation of patients with chronic immune-mediated neurological disease of the central nervous system, which will give insights into the design of novel therapies to treat these neurological diseases.
Collapse
Affiliation(s)
- Michael C Levin
- Veterans Administration Medical Center, Memphis, TN, USA,
- Departments of Neurology,
- Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA,
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN, USA,
- Departments of Neurology,
| | - Lidia A Gardner
- Veterans Administration Medical Center, Memphis, TN, USA,
- Departments of Neurology,
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN, USA,
- Departments of Neurology,
| | - Joshua N Douglas
- Veterans Administration Medical Center, Memphis, TN, USA,
- Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA,
| | - Chassidy J Groover
- Veterans Administration Medical Center, Memphis, TN, USA,
- Departments of Neurology,
| |
Collapse
|
205
|
Romme Christensen J, Börnsen L, Khademi M, Olsson T, Jensen PE, Sørensen PS, Sellebjerg F. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. Mult Scler 2012. [DOI: 10.1177/1352458512466929] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. Objectives: To study cerebrospinal fluid (CSF) biomarkers and clarify whether inflammation and axonal damage are associated in progressive MS. Methods: Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing–remitting (RRMS) and 20 non-inflammatory neurological disease (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. Results: Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13 was increased in RRMS and SPMS patients. Biomarkers of axonal damage (NFL) and demyelination (MBP) were increased in all MS patients. In progressive MS patients CSF levels of osteopontin and CXCL13 correlated with NFL while osteopontin and MMP9 correlated with MBP. MBP8298 treatment did not affect the levels of the biomarkers after one year of treatment. All biomarkers were continuously increased after one year of follow-up except MBP, which decreased. Conclusion: CSF biomarkers of inflammation, axonal damage and demyelination are continuously increased in progressive MS patients and correlate. These findings parallel pathology studies, emphasise a relationship between inflammation, axonal damage and demyelination and support the use of CSF biomarkers in progressive MS clinical trials.
Collapse
Affiliation(s)
- Jeppe Romme Christensen
- University of Copenhagen and Department of Neurology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Lars Börnsen
- University of Copenhagen and Department of Neurology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska University Hospital, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska University Hospital, Sweden
| | - Poul Erik Jensen
- University of Copenhagen and Department of Neurology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Per Soelberg Sørensen
- University of Copenhagen and Department of Neurology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Finn Sellebjerg
- University of Copenhagen and Department of Neurology, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
206
|
Kirov II, Tal A, Babb JS, Herbert J, Gonen O. Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS. Neurology 2012; 80:39-46. [PMID: 23175732 DOI: 10.1212/wnl.0b013e31827b1a8c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize and follow the diffuse gray and white matter (GM/WM) metabolic abnormalities in early relapsing-remitting multiple sclerosis using proton magnetic resonance spectroscopic imaging ((1)H-MRSI). METHODS Eighteen recently diagnosed, mildly disabled patients (mean baseline time from diagnosis 32 months, mean Expanded Disability Status Scale [EDSS] score 1.3), all on immunomodulatory medication, were scanned semiannually for 3 years with T1-weighted and T2-weighted MRI and 3D (1)H-MRSI at 3 T. Ten sex- and age-matched controls were followed annually. Global absolute concentrations of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and myo-inositol (mI) were obtained for all GM and WM in the 360 cm(3) (1)H-MRSI volume of interest. RESULTS Patients' average WM Cr, Cho, and mI concentrations (over all time points), 5.3 ± 0.4, 1.6 ± 0.1, and 5.1 ± 0.7 mM, were 8%, 12%, and 11% higher than controls' (p ≤ 0.01), while their WM NAA, 7.4 ± 0.7 mM, was 6% lower (p = 0.07). There were increases with time of patients' WM Cr: 0.1 mM/year, Cho: 0.02 mM/year, and NAA: 0.1 mM/year (all p < 0.05). None of the patients' metabolic concentrations correlated with their EDSS score, relapse rate, GM/WM/CSF fractions, or lesion volume. CONCLUSIONS Diffuse WM glial abnormalities were larger in magnitude than the axonal abnormalities and increased over time independently of conventional clinical or imaging metrics and despite immunomodulatory treatment. In contrast, the axonal abnormalities showed partial recovery, suggesting that patients' lower WM NAA levels represented a dysfunction, which may abate with treatment. Absence of detectable diffuse changes in GM suggests that injury there is minimal, focal, or heterogeneous between cortex and deep GM nuclei.
Collapse
Affiliation(s)
- Ivan I Kirov
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
207
|
Abstract
Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
208
|
Yang J, Yan Y, Ma CG, Kang T, Zhang N, Gran B, Xu H, Li K, Ciric B, Zangaladze A, Curtis M, Rostami A, Zhang GX. Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis. Acta Neuropathol 2012; 124:491-503. [PMID: 22526024 DOI: 10.1007/s00401-012-0989-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/02/2023]
Abstract
The suppressive effect of neural stem cells (NSCs) on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), has been reported. However, the migration of NSCs to inflammatory sites was relatively slow as was the onset of rather limited clinical benefit. Lack of, or low expression of particular chemokine receptors on NSCs could be an important factor underlying the slow migration of NSCs. To enhance the therapeutic effect of NSCs, in the present study we transduced bone marrow (BM)-derived NSCs with CCR5, a receptor for CCL3, CCL4, and CCL5, chemokines that are abundantly produced in CNS-inflamed foci of MS/EAE. After i.v. injection, CCR5-NSCs rapidly reached EAE foci in larger numbers, and more effectively suppressed CNS inflammatory infiltration, myelin damage, and clinical EAE than GFP-NSCs used as controls. CCR5-NSC-treated mice also exhibited augmented remyelination and neuron/oligodendrocyte repopulation compared to PBS- or GFP-NSC-treated mice. We inferred that the critical mechanism underlying enhanced effect of CCR5-transduced NSCs on EAE is the early migration of chemokine receptor-transduced NSCs into the inflamed foci. Such migration at an earlier stage of inflammation enables NSCs to exert more effective immunomodulation, to reduce the extent of early myelin/neuron damage by creating a less hostile environment for remyelinating cells, and possibly to participate in the remyelination/neural repopulation process. These features of BM-derived transduced NSCs, combined with their easy availability (the subject's own BM) and autologous properties, may lay the groundwork for an innovative approach to rapid and highly effective MS therapy.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Differentiation/immunology
- Chemotaxis, Leukocyte/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Immunohistochemistry
- Immunomodulation
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Neural Stem Cells/cytology
- Neural Stem Cells/immunology
- Neural Stem Cells/metabolism
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Jingxian Yang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Cognitive and neuropsychiatric disease manifestations in MS. Mult Scler Relat Disord 2012; 2:4-12. [PMID: 25877449 DOI: 10.1016/j.msard.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis is associated with a wide array of behavioral problems. This brief overview begins with a summary of the pathophysiology and treatment of MS. Thereafter, sections are devoted to psychiatric syndromes and cognitive decline linked to MS. The immune basis and brain imaging data associated with these changes are subsequently reviewed. The frequency and severity of these changes in mentation highlight the point that MS patients should, as part of their routine care, have access to psychiatrists, neuropsychologists and allied mental health specialists.
Collapse
|
210
|
Wilhelmus MMM, Nijland PG, Drukarch B, de Vries HE, van Horssen J. Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radic Biol Med 2012; 53:983-92. [PMID: 22687462 DOI: 10.1016/j.freeradbiomed.2012.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
The involvement of parkin, PINK1, and DJ1 in mitochondrial dysfunction, oxidative injury, and impaired functioning of the ubiquitin-proteasome system (UPS) has been intensively investigated in light of Parkinson's disease (PD) pathogenesis. However, these pathological mechanisms are not restricted to PD, but are common denominators of various neurodegenerative and neuroinflammatory disorders. It is therefore conceivable that parkin, PINK1, and DJ1 are also linked to the pathogenesis of other neurological diseases, including Alzheimer's disease (AD) and multiple sclerosis (MS). The importance of these proteins in mechanisms underlying neurodegeneration is reflected by the neuroprotective properties of parkin, DJ1, and PINK1 in counteracting oxidative stress and improvement of mitochondrial and UPS functioning. This review provides a concise overview on the cellular functions of the E3 ubiquitin ligase parkin, the mitochondrial kinase PINK1, and the cytoprotective protein DJ1 and their involvement and interplay in processes underlying neurodegeneration in common neurological disorders.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
211
|
van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ, Witte ME, Geurts JJG, de Vries HE, Peferoen-Baert R, van den Elsen PJ, van der Valk P, Amor S. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 2012; 9:156. [PMID: 22747960 PMCID: PMC3411485 DOI: 10.1186/1742-2094-9-156] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/02/2012] [Indexed: 12/03/2022] Open
Abstract
Background In brain tissues from multiple sclerosis (MS) patients, clusters of activated HLA-DR-expressing microglia, also referred to as preactive lesions, are located throughout the normal-appearing white matter. The aim of this study was to gain more insight into the frequency, distribution and cellular architecture of preactive lesions using a large cohort of well-characterized MS brain samples. Methods Here, we document the frequency of preactive lesions and their association with distinct white matter lesions in a cohort of 21 MS patients. Immunohistochemistry was used to gain further insight into the cellular and molecular composition of preactive lesions. Results Preactive lesions were observed in a majority of MS patients (67%) irrespective of disease duration, gender or subtype of disease. Microglial clusters were predominantly observed in the vicinity of active demyelinating lesions and are not associated with T cell infiltrates, axonal alterations, activated astrocytes or blood–brain barrier disruption. Microglia in preactive lesions consistently express interleukin-10 and TNF-α, but not interleukin-4, whereas matrix metalloproteases-2 and −9 are virtually absent in microglial nodules. Interestingly, key subunits of the free-radical-generating enzyme NADPH oxidase-2 were abundantly expressed in microglial clusters. Conclusions The high frequency of preactive lesions suggests that it is unlikely that most of them will progress into full-blown demyelinating lesions. Preactive lesions are not associated with blood–brain barrier disruption, suggesting that an intrinsic trigger of innate immune activation, rather than extrinsic factors crossing a damaged blood–brain barrier, induces the formation of clusters of activated microglia.
Collapse
Affiliation(s)
- Jack van Horssen
- Department of Molecular Cell Biology and Immunology/Neuropathology, VU University Medical Center, Van der Boechorststraat 7, 1081, BT, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
van Horssen J, Witte ME, Ciccarelli O. The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler 2012; 18:1058-67. [PMID: 22723572 DOI: 10.1177/1352458512452924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central role of mitochondrial dysfunction in axonal degeneration and associated neurodegeneration. The aim of this topical review is to provide a concise overview on the involvement of mitochondrial dysfunction in axonal damage and destruction in MS. Hereto, we will discuss putative pathological mechanisms leading to mitochondrial dysfunction and recent imaging studies performed in vivo in patients with MS. Moreover, we will focus on molecular mechanisms and novel imaging studies that address the role of mitochondrial metabolism in tissue repair. Finally, we will briefly review therapeutic strategies aimed at improving mitochondrial metabolism and function under neuroinflammatory conditions.
Collapse
Affiliation(s)
- J van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, The Netherlands.
| | | | | |
Collapse
|
213
|
Rice CM, Sun M, Kemp K, Gray E, Wilkins A, Scolding NJ. Mitochondrial sirtuins - a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci 2012; 35:1887-93. [DOI: 10.1111/j.1460-9568.2012.08150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
214
|
Garden GA, La Spada AR. Intercellular (mis)communication in neurodegenerative disease. Neuron 2012; 73:886-901. [PMID: 22405200 DOI: 10.1016/j.neuron.2012.02.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases have been intensively studied, but a comprehensive understanding of their pathogenesis remains elusive. An increasing body of evidence suggests that non-cell-autonomous processes play critical roles during the initiation and spatiotemporal progression or propagation of the dominant pathology. Here, we review findings highlighting the importance of pathological cell-cell communication in neurodegenerative disease. We focus primarily on the accumulating evidence suggesting dysfunctional crosstalk between neurons and astroglia, neurons and innate immune system cells, as well as cellular processes leading to transmission of pathogenic proteins between cells. Insights into the complex intercellular perturbations underlying neurodegeneration will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression in this devastating class of human diseases.
Collapse
Affiliation(s)
- Gwenn A Garden
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
215
|
Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. ACTA ACUST UNITED AC 2012; 135:886-99. [PMID: 22366799 PMCID: PMC3286337 DOI: 10.1093/brain/aws012] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and free radical-mediated tissue injury in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Marie T Fischer
- Centre for Brain Research, Medical University of Vienna, A-1090 Wien, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Horakova D, Kalincik T, Dusankova JB, Dolezal O. Clinical correlates of grey matter pathology in multiple sclerosis. BMC Neurol 2012; 12:10. [PMID: 22397707 PMCID: PMC3311149 DOI: 10.1186/1471-2377-12-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 03/07/2012] [Indexed: 12/26/2022] Open
Abstract
Traditionally, multiple sclerosis has been viewed as a disease predominantly affecting white matter. However, this view has lately been subject to numerous changes, as new evidence of anatomical and histological changes as well as of molecular targets within the grey matter has arisen. This advance was driven mainly by novel imaging techniques, however, these have not yet been implemented in routine clinical practice. The changes in the grey matter are related to physical and cognitive disability seen in individuals with multiple sclerosis. Furthermore, damage to several grey matter structures can be associated with impairment of specific functions. Therefore, we conclude that grey matter damage - global and regional - has the potential to become a marker of disease activity, complementary to the currently used magnetic resonance markers (global brain atrophy and T2 hyperintense lesions). Furthermore, it may improve the prediction of the future disease course and response to therapy in individual patients and may also become a reliable additional surrogate marker of treatment effect.
Collapse
Affiliation(s)
- Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|