201
|
Mohammadzada F, Zipser CM, Easthope CA, Halliday DM, Conway BA, Curt A, Schubert M. Mind your step: Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury. J Neuroeng Rehabil 2022; 19:36. [PMID: 35337335 PMCID: PMC8957135 DOI: 10.1186/s12984-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Walking over obstacles requires precise foot placement while maintaining balance control of the center of mass (CoM) and the flexibility to adapt the gait patterns. Most individuals with incomplete spinal cord injury (iSCI) are capable of overground walking on level ground; however, gait stability and adaptation may be compromised. CoM control was investigated during a challenging target walking (TW) task in individuals with iSCI compared to healthy controls. The hypothesis was that individuals with iSCI, when challenged with TW, show a lack of gait pattern adaptability which is reflected by an impaired adaptation of CoM movement compared to healthy controls. Methods A single-center controlled diagnostic clinical trial with thirteen participants with iSCI (0.3–24 years post injury; one subacute and twelve chronic) and twelve healthy controls was conducted where foot and pelvis kinematics were acquired during two conditions: normal treadmill walking (NW) and visually guided target walking (TW) with handrail support, during which participants stepped onto projected virtual targets synchronized with the moving treadmill surface. Approximated CoM was calculated from pelvis markers and used to calculate CoM trajectory length and mean CoM Euclidean distance TW-NW (primary outcome). Nonparametric statistics, including spearman rank correlations, were performed to evaluate the relationship between clinical parameter, outdoor mobility score, performance, and CoM parameters (secondary outcome). Results Healthy controls adapted to TW by decreasing anterior–posterior and vertical CoM trajectory length (p < 0.001), whereas participants with iSCI reduced CoM trajectory length only in the vertical direction (p = 0.002). Mean CoM Euclidean distance TW-NW correlated with participants’ neurological level of injury (R = 0.76, p = 0.002) and CoM trajectory length (during TW) correlated with outdoor mobility score (R = − 0.64, p = 0.026). Conclusions This study demonstrated that reduction of CoM movement is a common strategy to cope with TW challenge in controls, but it is impaired in individuals with iSCI. In the iSCI group, the ability to cope with gait challenges worsened the more rostral the level of injury. Thus, the TW task could be used as a gait challenge paradigm in ambulatory iSCI individuals. Trial registration Registry number/ ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01013-7.
Collapse
Affiliation(s)
- Freschta Mohammadzada
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Chris A Easthope
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.,Cereneo Foundation, Center for Interdisciplinary Research, 6354, Vitznau, Switzerland
| | - David M Halliday
- Department of Electronic Engineering, University of York, York, YO10 5DD, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Bernard A Conway
- Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Armin Curt
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
202
|
Middleton K, Vickery-Howe D, Dascombe B, Clarke A, Wheat J, McClelland J, Drain J. Mechanical Differences between Men and Women during Overground Load Carriage at Self-Selected Walking Speeds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3927. [PMID: 35409609 PMCID: PMC8997774 DOI: 10.3390/ijerph19073927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Few studies have directly compared physical responses to relative loading strategies between men and women during overground walking. This study aimed to compare gait mechanics of men and women during overground load carriage. A total of 30 participants (15 male, 15 female) completed three 10-min walking trials while carrying external loads of 0%, 20% and 40% of body mass at a self-selected walking speed. Lower-body motion and ground reaction forces were collected using a three-dimensional motion capture system and force plates, respectively. Female participants walked with a higher cadence (p = 0.002) and spent less absolute time in stance (p = 0.010) but had similar self-selected walking speed (p = 0.750), which was likely due to the female participants being shorter than the male participants. Except for ankle plantarflexion moments, there were no sex differences in spatiotemporal, kinematic, or kinetic variables (p > 0.05). Increasing loads resulted in significantly lower self-selected walking speed, greater stance time, and changes in all joint kinematics and kinetics across the gait cycle (p < 0.05). In conclusion, there were few differences between sexes in walking mechanics during overground load carriage. The changes identified in this study may inform training programs to increase load carriage performance.
Collapse
Affiliation(s)
- Kane Middleton
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Danielle Vickery-Howe
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Ben Dascombe
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah 2258, Australia;
| | - Anthea Clarke
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Jon Wheat
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK;
| | - Jodie McClelland
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia;
| | - Jace Drain
- Land Division, Defence Science and Technology Group, Fishermans Bend 3207, Australia;
| |
Collapse
|
203
|
Pálya Z, Rácz K, Nagymáté G, Kiss RM. Development of a detailed canine gait analysis method for evaluating harnesses: A pilot study. PLoS One 2022; 17:e0264299. [PMID: 35263359 PMCID: PMC8906618 DOI: 10.1371/journal.pone.0264299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Dog harnesses are becoming more popular, with their large variety stemming from the idea that different dogs and scenarios require different types of harnesses. While their benefits over collars are self-explanatory, there is a lack of research on their effect on gait, and even the existing studies examine only a limited set of parameters. The goal of present study was to establish a method capable of quantifying canine gait in detail. Based on 3D motion capture, the developed method allows for the examination of 18 joint angles and 35 spatio-temporal parameters throughout multiple gait cycles, and can be used to analyze canine movement in detail in any kind of scenario (e.g. comparing healthy and lame dogs, or measuring the effect of training). The method is presented through the measurement of how different harnesses affect walking kinematics compared to free (unleashed) movements. Four dogs with varying body sizes and breeds and multiple types of harnesses were included. Marker data was filtered using a zero-lag 6th order Butterworth-filter with a cutoff frequency of 20 Hz. The normality of the spatio-temporal and joint range of motion parameters was tested using the Anderson-Darling test (p = 0.05), with most parameters passing in 60+% of test cases. Swing time and range of motion of the sagittal aspect of spinal angle at T1 vertebrae failed more regularly, both resulting from the measurement setup rather than the actual parameters being not normally distributed. Two-sample Kolmogorov-Smirnov tests (p = 0.05) were used to compare each parameter’s distribution between cases, showing that most parameters are significantly altered by the harnesses in about 2/3rd of the cases. Based on the results, there’s no absolute superior harness, however, it is possible to select the best fit for a specific dog and application, justifying their large variety.
Collapse
Affiliation(s)
- Zsófia Pálya
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kristóf Rácz
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gergely Nagymáté
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Rita M. Kiss
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail:
| |
Collapse
|
204
|
Fernandez-Carmona M, Ballesteros J, Díaz-Boladeras M, Parra-Llanas X, Urdiales C, Gómez-de-Gabriel JM. Walk-IT: An Open-Source Modular Low-Cost Smart Rollator. SENSORS (BASEL, SWITZERLAND) 2022; 22:2086. [PMID: 35336255 PMCID: PMC8950926 DOI: 10.3390/s22062086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Rollators are widely used in clinical rehabilitation for gait assessment, but gait analysis usually requires a great deal of expertise and focus from medical staff. Smart rollators can capture gait parameters autonomously while avoiding complex setups. However, commercial smart rollators, as closed systems, can not be modified; plus, they are often expensive and not widely available. This work presents a low cost open-source modular rollator for monitorization of gait parameters and support. The whole system is based on commercial components and its software architecture runs over ROS2 to allow further customization and expansion. This paper describes the overall software and hardware architecture and, as an example of extended capabilities, modules for monitoring dynamic partial weight bearing and for estimation of spatiotemporal gait parameters of clinical interest. All presented tests are coherent from a clinical point of view and consistent with input data.
Collapse
Affiliation(s)
- Manuel Fernandez-Carmona
- Ingeniería de Sistemas Integrados Group, Electronics Technology Department, University of Málaga—UMA, Complejo Tecnológico, 29071 Málaga, Spain;
| | - Joaquin Ballesteros
- Department of Computer Science and Programming Languages, ITIS Software, University of Málaga—UMA, Complejo Tecnológico, 29071 Málaga, Spain;
| | - Marta Díaz-Boladeras
- Technical Research Centre for Dependency Care and Autonomous Living—CETpD, Technical University of Catalonia—UPC, 08800 Barcelona, Spain; (M.D.-B.); (X.P.-L.)
| | - Xavier Parra-Llanas
- Technical Research Centre for Dependency Care and Autonomous Living—CETpD, Technical University of Catalonia—UPC, 08800 Barcelona, Spain; (M.D.-B.); (X.P.-L.)
| | - Cristina Urdiales
- Ingeniería de Sistemas Integrados Group, Electronics Technology Department, University of Málaga—UMA, Complejo Tecnológico, 29071 Málaga, Spain;
| | | |
Collapse
|
205
|
Tabard-Fougère A, Rutz D, Pouliot-Laforte A, De Coulon G, Newman CJ, Armand S, Wegrzyk J. Are Clinical Impairments Related to Kinematic Gait Variability in Children and Young Adults With Cerebral Palsy? Front Hum Neurosci 2022; 16:816088. [PMID: 35308609 PMCID: PMC8926298 DOI: 10.3389/fnhum.2022.816088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Intrinsic gait variability (GV), i.e., fluctuations in the regularity of gait patterns between repetitive cycles, is inherent to the sensorimotor system and influenced by factors such as age and pathology. Increased GV is associated with gait impairments in individuals with cerebral palsy (CP) and has been mainly studied based on spatiotemporal parameters. The present study aimed to describe kinematic GV in young people with CP and its associations with clinical impairments [i.e., passive range of motion (pROM), muscle weakness, reduced selective motor control (selectivity), and spasticity]. This retrospective study included 177 participants with CP (age range 5-25 years; Gross Motor Function Classification System I-III) representing 289 clinical gait analyses [n = 172 for unilateral CP (uCP) vs. 117 for bilateral CP (bCP)]. As variability metrics, Root Mean Square Deviation (RMSD) for nine lower-limb kinematic parameters and Gait Standard Deviation (GaitSD) - as composite score of the kinematic parameters - were computed for the affected (unilateral = uCP) and most affected side (bilateral = bCP), respectively, as defined by clinical scores. GaitSD was then computed for the non/less-affected side for between leg comparisons. Uni- and multivariate linear regressions were subsequently performed on GaitSD of the affected/most affected side with all clinical impairments (composite scores) as independent variables. Highest RMSD were found in the transverse plane (hip, pelvis), for distal joints in the sagittal plane (knee, ankle) and for foot progression. GaitSD was not different between uCP and bCP (affected/most affected side) but higher in the non-affected vs. affected side in uCP. GaitSD was associated with age (p < 0.001), gait deviation index (GDI) (p < 0.05), muscle weakness (p < 0.001), selectivity (p < 0.05), and pROM (p < 0.001). After adjustment for age and GDI, GaitSD remained associated with muscle weakness (uCP: p = 0.003, bCP: p < 0.001) and selectivity (bCP: p = 0.024). Kinematic GV can be expressed as global indicator of variability (GaitSD) in young people with CP given the strong correlation of RMSD for lower-limb kinematic parameters. In terms of asymmetry, increased variability of the non-affected vs. affected side may indicate contralateral compensation mechanisms in uCP. Notably muscle weakness (uCP, bCP) and selectivity (bCP) - but not spasticity - were associated with GaitSD. Further studies need to explore the clinical relevance of kinematic GV in CP to support the interpretation of clinical gait analyses and therapeutic decision-making.
Collapse
Affiliation(s)
- Anne Tabard-Fougère
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Dionys Rutz
- Physical Therapy Unit, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Annie Pouliot-Laforte
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Geraldo De Coulon
- Pediatric Orthopaedic Surgery Unit, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Christopher J. Newman
- Pediatric Neurology and Neurorehabilitation Unit, Department of Pediatrics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Armand
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Jennifer Wegrzyk
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| |
Collapse
|
206
|
Simple rule to automatically recognize the orientation of the sagittal plane foot angular velocity for gait analysis using IMUs on the feet of individuals with heterogeneous motor disabilities. J Biomech 2022; 135:111055. [DOI: 10.1016/j.jbiomech.2022.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
207
|
Pariser KM, Donlin MC, Downer KE, Higginson JS. Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed. J Biomech 2022; 133:110971. [PMID: 35121382 PMCID: PMC8891055 DOI: 10.1016/j.jbiomech.2022.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Adaptive treadmills (ATM) designed to promote increased propulsion may be an effective tool for gait training since propulsion is often impaired post-stroke. Our lab developed a novel ATM controller that adjusts belt speed via real-time changes in step length, propulsive impulse, and position. This study modified the relative importance of propulsion to step length in the controller to determine the effect of increased propulsive feedback gain on measures of propulsion and walking speed. Twenty-two participants completed five trials at their self-selected speed, each with a unique ATM controller. Walking speed, peak AGRF and PGRF, and AGRF, PGRF, and net impulse were compared between the modifications using one-way repeated measures ANOVAs at a significance level of 0.05. Participants chose similar walking speeds across all conditions (all p > 0.2730). There were no significant differences in peak AGRF (p = 0.1956) or PGRF (p = 0.5159) between conditions. AGRF impulse significantly increased as the gain on the propulsive impulse term was increased relative to the gain on step length (p < 0.0001) while PGRF and net impulse were similar across all conditions (p = 0.5487). Increasing the propulsive impulse gain essentially alters the treadmill environment by providing a controlled amount of resistance to increases in propulsive forces. Our findings demonstrate that the ATM can be modified to promote increased propulsive impulse while maintaining a consistent walking speed. Since increasing propulsion is a common goal of post-stroke gait training, these ATM modifications may improve the efficacy of the ATM for gait rehabilitation.
Collapse
Affiliation(s)
- Kayla M Pariser
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| | - Margo C Donlin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kaitlyn E Downer
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Jill S Higginson
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
208
|
Donlin MC, Pariser KM, Downer KE, Higginson JS. Adaptive treadmill walking encourages persistent propulsion. Gait Posture 2022; 93:246-251. [PMID: 35190317 PMCID: PMC8930561 DOI: 10.1016/j.gaitpost.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Adaptive treadmills allow real-time changes in walking speed by responding to changes in step length, propulsion, or position on the treadmill. The stride-to-stride variability, or persistence, of stride time during overground, fixed-speed, and adaptive treadmill walking has been studied, but persistence of propulsion during adaptive treadmill walking remains unknown. Because increased propulsion is often a goal of post-stroke rehabilitation, knowledge of the stride-to-stride variability may aid rehabilitation protocol design. RESEARCH QUESTION How do spatiotemporal and propulsive gait variables vary from stride to stride during adaptive treadmill walking, and how do they compare to fixed-speed treadmill walking? METHODS Eighteen young healthy subjects walked on an instrumented split-belt treadmill in the adaptive and fixed-speed modes for 10 minutes at their comfortable speed. Kinetic data was collected from the treadmill. Detrended fluctuation analysis was applied to the time series data. Shapiro-Wilk tests assessed normality and one-way repeated measures ANOVAs compared between adaptive, fixed-speed, and randomly shuffled conditions at a Bonferroni-corrected significance level of 0.0055. RESULTS Stride time, stride length, step length, and braking impulse were persistent (α > 0.5) in the adaptive and fixed-speed conditions. Adaptive and fixed-speed were different from each other. Stride speed was persistent in the adaptive condition and anti-persistent (α < 0.5) in the fixed-speed condition. Peak propulsive force, peak braking force, and propulsive impulse were persistent in the adaptive condition but not the fixed-speed condition (α ≈ 0.5). Net impulse was non-persistent in the adaptive and fixed-speed conditions. All variables were non-persistent in the shuffled condition. SIGNIFICANCE During adaptive treadmill walking, increases in propulsive force and impulse persist for multiple strides. Persistence was stronger on the adaptive treadmill, where increased propulsion translates into increased walking speed. For post-stroke gait rehabilitation where increasing propulsion and speed are goals, the stronger persistence of adaptive treadmill walking may be beneficial.
Collapse
Affiliation(s)
- Margo C. Donlin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Corresponding author at: University of Delaware, 540 S. College Ave., STAR Health Sciences Complex, Rm. 201, Newark, DE, USA. (Margo Donlin)
| | - Kayla M. Pariser
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Kaitlyn E. Downer
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Jill S. Higginson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
209
|
Gottlieb U, Hoffman JR, Springer S. The Immediate Carryover Effects of Peroneal Functional Electrical Stimulation Differ between People with and without Chronic Ankle Instability. SENSORS (BASEL, SWITZERLAND) 2022; 22:1622. [PMID: 35214526 PMCID: PMC8874504 DOI: 10.3390/s22041622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Chronic ankle instability (CAI) is a common condition that may develop after an ankle sprain. Compared with healthy individuals, those with CAI demonstrate excessive ankle inversion and increased peroneal electromyography (EMG) activity throughout the stance phase of gait, which may put them at greater risk for re-injury. Functional electrical stimulation (FES) of targeted muscles may provide benefits as a treatment modality to stimulate immediate adaptation of the neuromuscular system. The present study investigated the effect of a single, 10 min peroneal FES session on ankle kinematics and peroneal EMG activity in individuals with (n = 24) or without (n = 24) CAI. There were no significant differences in ankle kinematics between the groups before the intervention. However, after the intervention, healthy controls demonstrated significantly less ankle inversion between 0-9% (p = 0.009) and 82-87% (p = 0.011) of the stance phase. Furthermore, a significant within-group difference was observed only in the control group, demonstrating increased ankle eversion between 0-7% (p = 0.011) and 67-81% (p = 0.006) of the stance phase after the intervention. Peroneal EMG activity did not differ between groups or measurements. These findings, which demonstrate that peroneal FES can induce ankle kinematics adaptations during gait, can help to develop future interventions for people with CAI.
Collapse
Affiliation(s)
| | | | - Shmuel Springer
- Neuromuscular and Human Performance Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel; (U.G.); (J.R.H.)
| |
Collapse
|
210
|
Pathak P, Moon J, Roh SG, Roh C, Shim Y, Ahn J. Application of vibration to the soles reduces minimum toe clearance variability during walking. PLoS One 2022; 17:e0261732. [PMID: 34982783 PMCID: PMC8726470 DOI: 10.1371/journal.pone.0261732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Minimum toe clearance (MTC) is an important indicator of the risk of tripping. Aging and neuromuscular diseases often decrease MTC height and increase its variability, leading to a higher risk of tripping. Previous studies have developed visual feedback-based gait training systems to modify MTC. However, these systems are bulky and expensive, and the effects of the training continue only for a short time. We paid attention to the efficacy of vibration in decreasing the variability of gait parameters, and hypothesized that proper vibration applied to soles can reduce the MTC variability. Using shoes embedded with active vibrating insoles, we assessed the efficacy of both sub- and supra-threshold vibration in affecting MTC distribution. Experiment results with 17 young and healthy adults showed that vibration applied throughout the walking task with constant intensity of 130% of sensory threshold significantly decreased MTC variability, whereas sub-threshold vibration yielded no significant effect. These results demonstrate that a properly designed tactile sensory input which is controlled and delivered by a simple wearable device, the active insole, can reduce the MTC variability during walking.
Collapse
Affiliation(s)
- Prabhat Pathak
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Jeongin Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Se-gon Roh
- Robot Center in Samsung Seoul R&D Campus, Samsung Electronics Co., Ltd., Seoul, Republic of Korea
| | | | | | - Jooeun Ahn
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
211
|
Terrell ZT, Moudy SC, Hensel KL, Patterson RM. Effects of osteopathic manipulative treatment vs. osteopathic cranial manipulative medicine on Parkinsonian gait. J Osteopath Med 2022; 122:243-251. [PMID: 35148036 DOI: 10.1515/jom-2021-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022]
Abstract
CONTEXT Sixty thousand people are diagnosed with Parkinson's disease (PD) each year, making it the second most common neurodegenerative disorder. PD results in a variety of gait disturbances, including muscular rigidity and decreased range of motion (ROM), that increase the fall risk of those afflicted. Osteopathic manipulative treatment (OMT) emphasizes the central role of the musculoskeletal system, which could be ideal for addressing the somatic dysfunction associated with neurodegeneration in PD. The close anatomical relationship of structures implicated in PD within the skull and the increased frequency of strain patterns raise the question of whether osteopathic cranial manipulative medicine (OCMM) can improve gait performance by improving circulation to the affected nervous tissue. However, there have been few studies in recent years that explore the effects of a standardized OMT protocol on Parkinsonian gait characteristics, and there have been few studies that include OCMM techniques. OBJECTIVES This study aims to determine whether a single session of OMT or OMT + OCMM can improve the gait of individuals with PD by addressing joint restrictions in the sagittal plane and by increasing ROM in the lower limb. METHODS The following study is a two-group, randomized controlled trial in which individuals with PD (n=45) and age-matched healthy control participants (n=45) were recruited from the community. PD participants were included if they were otherwise healthy, able to stand and walk independently, had not received OMT or physical therapy (PT) within 30 days of data collection, and had idiopathic PD in Hoehn and Yahr stages 1.0-3.0. PD participants were randomly assigned to one of three experimental treatment protocols: a 'whole-body' OMT protocol (OMT-WB), which included OMT and OCMM techniques; a 'neck-down' OMT protocol (OMT-ND), including only OMT techniques; and a sham treatment protocol. Control participants were age-matched to a PD participant and were provided the same OMT experimental protocol. An 18-camera motion analysis system was utilized to capture 3-dimensional (3D) position data in a treadmill walking trial before and after the assigned treatment protocol. Pretreatment and posttreatment hip, knee, and ankle ROM were compared with paired t-tests, and joint angle waveforms during the gait cycle were analyzed with statistical parametric mapping (SPM), which is a type of waveform analysis. RESULTS Individuals with PD had significantly reduced hip and knee extension in the stance phase compared to controls (32.9-71.2% and 32.4-56.0% of the gait cycle, respectively). Individuals with PD experienced a significant increase in total sagittal hip ROM (p=0.038) following a single session of the standardized OMT-WB treatment protocol. However, waveform analysis found no significant differences in sagittal hip, knee, or ankle angles at individual points of the gait cycle following OMT-WB, OMT-ND, or sham treatment protocols. CONCLUSIONS The increase in hip ROM observed following a single session of OMT-WB suggests that OCMM in conjunction with OMT may be useful for improving gait kinematics in individuals with PD. Longitudinal studies over multiple visits are needed to determine the long-term effect of regular OMT and OMT+OCMM treatments on Parkinsonian gait characteristics.
Collapse
Affiliation(s)
- Zachary T Terrell
- Department of Structural Anatomy and Rehabilitation Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sarah C Moudy
- Department of Family and Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kendi L Hensel
- Department of Osteopathic Manipulative Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rita M Patterson
- Department of Family and Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
212
|
Kim J, Lee J, Lee D, Jeong J, Kim P, Shin CS. Design and investigation of the effectiveness of a metatarsophalangeal assistive device on the muscle activities of the lower extremity. PLoS One 2022; 17:e0263176. [PMID: 35143528 PMCID: PMC8830714 DOI: 10.1371/journal.pone.0263176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
The metatarsophalangeal (MTP) joint is not considered in most current walking assistive devices even though it plays an important role during walking. The purpose of this study was to develop a new MTP assistive device and investigate its effectiveness on the muscle activities of the lower extremities during walking while wearing the device. The MTP assistive device is designed to support MTP flexion by transmitting force through a cable that runs parallel with the plantar fascia. Eight participants were instructed to walk at a constant speed on a treadmill while wearing the device. The muscle activities of their lower extremities and MTP joint kinematics were obtained during walking under both actuated and non-actuated conditions. Paired t-tests were performed to compare the differences in each dependent variable between the two conditions. The muscle activity of the MTP flexor was significantly reduced during walking under actuated conditions (p = 0.013), whereas no differences were found in the muscle activities of other muscles or in the MTP joint angle between actuated and non-actuated conditions (p > 0.05 for all comparisons). In conclusion, the cable-driven MTP assistive device is able to properly assist the MTP flexor without interfering with the action of other muscles in the lower extremities; as such, this MTP assistive device, when integrated into existing exoskeleton designs, has the potential to offer improved walking assistance by reducing the amount of muscle activity needed from the MTP flexor.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Jinkyu Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Donghwan Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Jiyoung Jeong
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Pankwon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Choongsoo S. Shin
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
213
|
Theunissen K, Van Hooren B, Plasqui G, Meijer K. Self-paced and fixed speed treadmill walking yield similar energetics and biomechanics across different speeds. Gait Posture 2022; 92:2-7. [PMID: 34801952 DOI: 10.1016/j.gaitpost.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Treadmill assessments are often performed at a fixed speed. Feedback-controlled algorithms allow users to adjust the treadmill speed, hereby potentially better resembling natural self-paced locomotion. However, it is currently unknown whether the energetics and biomechanics of self-paced differ from fixed-paced treadmill walking. Such information is important for clinicians and researchers using self-paced locomotion for assessing gait. RESEARCH QUESTION To investigate whether energy cost and biomechanics are different between self-paced and matched-speed fixed-paced locomotion. METHODS 18 healthy participants (9 males/9 females, mean ± standard deviation age 24.8 ± 3.3 years, height 1.71 ± 0.81 m, weight 65.9 ± 8.1 kg) walked at four different self-paced speeds (comfortable, slow, very slow, fast) in randomized order on an instrumented treadmill while three-dimensional motion capture and gas exchange were measured continuously. The average walking speed during the last 2 min of the self-paced trials was used to match the speed in fixed-paced conditions. Linear mixed models were used to assess differences in mean values and within-subject variations between conditions (self-paced and fixed-paced) and speeds. Statistical Parametric Mapping was used to assess differences in kinematics of the lower limb between conditions. RESULTS Although self-paced walking consistently resulted in a 4-6% higher net cost of walking, there were no significant differences in the net cost of walking between conditions. Further, there were also no differences of clinical relevance in spatiotemporal outcomes and sagittal-plane lower-limb kinematics between the self-paced and fixed-paced conditions. Within-trial variability was also not significantly different between conditions. SIGNIFICANCE Self-paced and fixed-paced treadmill walking yield similar energetics and kinematics in healthy young individuals when mean values or linear measures of variation are of interest.
Collapse
Affiliation(s)
- Kyra Theunissen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands; Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Belgium; School of Care and Public Health Research Institute, Maastricht University Medical Centre, The Netherlands.
| | - Bas Van Hooren
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
214
|
Song K, Franz JR, Wikstrom EA. Optical flow balance perturbations alter gait kinematics and variability in chronic ankle instability patients. Gait Posture 2022; 92:271-276. [PMID: 34896838 DOI: 10.1016/j.gaitpost.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with chronic ankle instability (CAI) have known balance impairments thought to be the result of an inability to reweight sensory information. CAI patients place greater emphasis on visual information during single-limb stance than healthy controls but this evidence is based on removing visual information during static conditions. RESEARCH QUESTION Does perturbed optical flow effect step kinematics and variability in those with CAI differently than healthy controls? What is the relationship among ankle laxity, plantar cutaneous sensation, and susceptibility to perturbed optical flow in those with CAI? METHODS 17 CAI patients and 17 healthy individuals participated in a crossover experimental study. Participants walked on a treadmill at 1.25 m/s while watching a speed-matched virtual hallway with and without continuous mediolateral (ML) optical flow perturbations. Three-dimensional pelvic and foot kinematics were recorded at 100 Hz for at least 300 consecutive steps in each condition. Step width (SW) and step length (SL) values were calculated from consecutive heel positions. Gait variability was characterized as the standard deviation of step width (SWV), step length (SLV), and ML sacrum motion (SMV) across all steps performed in each condition. RESULTS The CAI group exhibited a greater change in SWV (p = 0.037), SLV (p = 0.040), and ML SMV (p = 0.047) from the perturbed to unperturbed conditions relative to the healthy controls. A condition main effect was also noted for SW (p < 0.001) and SL (p < 0.001) as ML optical flow perturbations resulted in significant changes in SW and SL relative to the normal walking condition. SIGNIFICANCE Walking with ML optical flow perturbations induced greater variability changes in those with CAI relative to controls. When combined with the existing literature, this finding suggests that CAI individuals have a greater reliance on visual information in both static and dynamic (i.e. walking gait) conditions relative to healthy individuals.
Collapse
Affiliation(s)
- Kyeongtak Song
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, KY, USA; MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA.
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Erik A Wikstrom
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
215
|
Wasser JG, Acasio JC, Miller RH, Hendershot BD. Lumbopelvic coordination while walking in service members with unilateral lower limb loss: Comparing variabilities derived from vector coding and continuous relative phase. Gait Posture 2022; 92:284-289. [PMID: 34896840 DOI: 10.1016/j.gaitpost.2021.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Continuous relative phase and vector coding are two common approaches for quantifying lumbopelvic coordination and variability. Evaluating the application of such methodologies to the lower limb loss population is important for better understanding reported asymmetrical movement dynamics of the lumbopelvic region. RESEARCH QUESTION How do coordination variabilities derived from trunk-pelvic coupling angles and continuous relative phases compare among individuals with and without unilateral lower limb loss walking at self-selected speeds? METHODS Full-body kinematics were obtained from thirty-eight males with unilateral lower limb loss (23 transtibial and 15 transfemoral) and fifteen males without limb loss while walking along a 15 m walkway. Coordination variabilities were derived from trunk-pelvic coupling angles and continuous relative phases and compared using a multivariate approach, as well as in unilateral outcome measures between control participants and participants with lower limb loss. RESULTS Overall, tri-planar measures of continuous relative phase variability were 19-43% larger compared to coupling angle variabilities for individuals without limb loss and individuals with transtibial limb loss. Individuals with transfemoral limb loss had 27% and 31% larger sagittal and transverse variabilities from continuous relative phases compared to coupling angles, respectively. During both prosthetic and intact limb stance, individuals with transtibial limb loss had 19-35% greater tri-planar measures of continuous relative phase variability compared to coupling angle variabilities. During intact stance phase, tri-planar measures of continuous relative phase variability were 27%- 42% larger compared to coupling angle variabilities for individuals without limb loss. SIGNIFICANCE While both methods provide valid estimates of lumbopelvic movement variability during gait, continuous relative phase variability may provide a more sensitive estimate in the lower limb loss population capturing velocity-specific motions of the trunk and pelvis.
Collapse
Affiliation(s)
- Joseph G Wasser
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; Henry M. Jackson Foundation, for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda 20817, USA.
| | - Julian C Acasio
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; Henry M. Jackson Foundation, for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda 20817, USA.
| | - Ross H Miller
- Department of Kinesiology, University of Maryland, 2351 SPH Building, 4200 Valley Dr, College Park 20742, USA; Neuroscience & Cognitive Science Program, University of Maryland, College Park, USA.
| | - Brad D Hendershot
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; DoD-VA Extremity Trauma & Amputation Center of Excellence, USA; Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda 20814, USA.
| |
Collapse
|
216
|
Park JH, Kim S, Nussbaum MA, Srinivasan D. Effects of back-support exoskeleton use on gait performance and stability during level walking. Gait Posture 2022; 92:181-190. [PMID: 34864386 DOI: 10.1016/j.gaitpost.2021.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Back-support exoskeletons (BSEs) are a promising intervention to mitigate physical demands at work. Although growing evidence indicates that BSEs can reduce low-back physical demands, there is limited understanding of potential unintended consequences of BSE use, including the risk of falls. RESEARCH QUESTION Does using a BSE adversely affect gait performance and stability, and are such effects dependent on specific BSE external torque characteristics? METHODS Twenty participants (10 M, 10 F) completed five level over-ground walking trials and a five-minute treadmill walking trial while wearing a BSE (backX™) with three different levels of external torque (i.e., no torque, low torque, and high torque) and in a control (no-exoskeleton) condition. Spatiotemporal gait patterns, stride-to-stride gait variability measures, required coefficient-of-friction (RCoF), and minimum foot clearance (MFC) were determined, to assess gait performance. Gait stability was quantified using the maximum Lyapunov exponent (MLE) of trunk kinematics and the margin-of-stability (MoS). RESULTS Using the backX™ with high supportive torque decreased slip risk (7% decrease in RCoF) and slightly improved trunk stability (3% decrease in MLE). However, it also decreased step length (1%), increased step width (10%) and increased gait variability (8-19%). Changes in MoS were complex: while MoS at heel strike decreased in the AP direction, it increased in the ML direction. There was a rather large decrease in MoS (26%) in the ML direction during the swing phase. SIGNIFICANCE This is the first study to quantify the effects of wearing a passive BSE with multiple supportive torque levels on gait performance and stability during level walking. Our results, showing that the external torque of the BSE may adversely affect gait step width, variability, and dynamic stability, can contribute to better design and practice guidelines to facilitate the safe adoption of BSEs in the workplace.
Collapse
Affiliation(s)
- Jang-Ho Park
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
217
|
MacDonald ME, Siragy T, Hill A, Nantel J. Walking on Mild Slopes and Altering Arm Swing Each Induce Specific Strategies in Healthy Young Adults. Front Sports Act Living 2022; 3:805147. [PMID: 35146424 PMCID: PMC8821106 DOI: 10.3389/fspor.2021.805147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Slopes are present in everyday environments and require specific postural strategies for successful navigation; different arm strategies may be used to manage external perturbations while walking. It has yet to be determined what impact arm swing has on postural strategies and gait stability during sloped walking. We investigated the potentially interacting effects of surface slope and arm motion on gait stability and postural strategies in healthy young adults. We tested 15 healthy adults, using the CAREN-Extended system to simulate a rolling-hills environment which imparted both incline (uphill) and decline (downhill) slopes (± 3°). This protocol was completed under three imposed arm swing conditions: held, normal, active. Spatiotemporal gait parameters, mediolateral margin of stability, and postural kinematics in anteroposterior (AP), mediolateral (ML), and vertical (VT) directions were assessed. Main effects of conditions and interactions were evaluated by 2-way repeated measures analysis of variance. Our results showed no interactions between arm swing and slope; however, we found main effects of arm swing and main effects of slope. As expected, uphill and downhill sections of the rolling-hills yielded opposite stepping and postural strategies compared to level walking, and active and held arm swings led to opposite postural strategies compared to normal arm swing. Arm swing effects were consistent across slope conditions. Walking with arms held decreased gait speed, indicating a level of caution, but maintained stability comparable to that of walking with normal arm swing. Active arm swing increased both step width variability and ML-MoS during downhill sections. Alternately, ML-MoS was larger with increased step width and double support time during uphill sections compared to level, which demonstrates that distinct base of support strategies are used to manage arm swing compared to slope. The variability of the rolling-hills also required proactive base of support changes despite the mild slopes to maintain balance.
Collapse
|
218
|
Moll I, Marcellis RGJ, Coenen MLP, Fleuren SM, Willems PJB, Speth LAWM, Witlox MA, Meijer K, Vermeulen RJ. A randomized crossover study of functional electrical stimulation during walking in spastic cerebral palsy: the FES on participation (FESPa) trial. BMC Pediatr 2022; 22:37. [PMID: 35027013 PMCID: PMC8756646 DOI: 10.1186/s12887-021-03037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background Spastic cerebral palsy is the most common cause of motor disability in children. It often leads to foot drop or equinus, interfering with walking. Ankle-foot orthoses (AFOs) are commonly used in these cases. However, AFOs can be too restrictive for mildly impaired patients. Functional electrical stimulation (FES) of the ankle-dorsiflexors is an alternative treatment as it could function as a dynamic functional orthosis. Despite previous research, high level evidence on the effects of FES on activities and participation in daily life is missing. The primary aim of this study is to evaluate whether FES improves the activity and participation level in daily life according to patients, and the secondary aim is to provide evidence of the effect of FES at the level of body functions and activities. Furthermore, we aim to collect relevant information for decisions on its clinical implementation. Methods A randomized crossover trial will be performed on 25 children with unilateral spastic cerebral palsy. Patients aged between 4 and 18 years, with Gross Motor Functioning Classification System level I or II and unilateral foot drop of central origin, currently treated with AFO or adapted shoes, will be included. All participants will undergo twelve weeks of conventional treatment (AFO/adapted shoes) and 12 weeks of FES treatment, separated by a six-week washout-phase. FES treatment consists of wearing the WalkAide® device, with surface electrodes stimulating the peroneal nerve during swing phase of gait. For the primary objective, the Goal Attainment Scale is used to test whether FES improves activities and participation in daily life. The secondary objective is to prove whether FES is effective at the level of body functions and structures, and activities, including ankle kinematics and kinetics measured during 3D-gait analysis and questionnaire-based frequency of falling. The tertiary objective is to collect relevant information for clinical implementation, including acceptability using the device log file and side effect registration, cost-effectiveness based on quality adjusted life years (QALYs) and clinical characteristics for patient selection. Discussion We anticipate that the results of this study will allow evidence-based use of FES during walking in children with unilateral spastic cerebral palsy. Trial registration ClinicalTrials.gov: NCT03440632. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-03037-9.
Collapse
|
219
|
McCrum C, Vaes AW, Delbressine JM, Koopman M, Liu WY, Willems P, Meijer K, Spruit MA. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease. Clin Biomech (Bristol, Avon) 2022; 91:105538. [PMID: 34823220 DOI: 10.1016/j.clinbiomech.2021.105538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Falls risk is elevated in chronic obstructive pulmonary disease (COPD). However, there is a lack of evidence regarding the contributing factors. Here, we examined the feasibility of, and initial responses to, large walking perturbations in COPD, as well as the adaptation potential of people with COPD to repeated walking perturbations that might indicate potential for perturbation-based balance training in COPD. METHODS 12 participants with COPD undergoing inpatient pulmonary rehabilitation and 12 age-gender-matched healthy control participants walked on an instrumented treadmill and experienced repeated treadmill-belt acceleration perturbations (leading to a forward balance loss). Three-dimensional motion capture was used to quantify the stability of participants body position during perturbed walking. Feasibility, stability following the initial perturbations and adaptation to repeated perturbations were assessed. FINDINGS Using perturbations in this manner was feasible in this population (no harness assists and participants completed the minimum number of perturbations). No clear, specific deficit in reactive walking stability in COPD was found (no significant effects of participant group on stability or recovery step outcomes). There were mixed results for the adaptability outcomes which overall indicated some adaptability to repeated perturbations, but not to the same extent as the healthy control participants. INTERPRETATION Treadmill-based perturbations during walking are feasible in COPD. COPD does not appear to result in significant deficits in stability following sudden perturbations and patients do demonstrate some adaptability to repeated perturbations. Perturbation-based balance training may be considered for fall prevention in research and practice in people with COPD.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Anouk W Vaes
- Research and Development, CIRO, Horn, the Netherlands
| | | | - Maud Koopman
- Research and Development, CIRO, Horn, the Netherlands; Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Wai-Yan Liu
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; Research and Development, CIRO, Horn, the Netherlands; Department of Orthopaedic Surgery, Máxima Medical Center, Eindhoven, the Netherlands; Department of Orthopaedic Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - Paul Willems
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Martijn A Spruit
- Research and Development, CIRO, Horn, the Netherlands; Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
220
|
Siebers HL, Eschweiler J, Michalik R, Migliorini F, Tingart M, Betsch M. Biomechanical compensation mechanisms during stair climbing - The effect of leg length inequalities. Gait Posture 2022; 91:290-296. [PMID: 34798420 DOI: 10.1016/j.gaitpost.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Stair climbing is a complex and demanding daily activity with increased physical loads. Therefore, analyzing stair climbing abilities is a frequently used diagnostic tool. Leg length inequalities (LLIs) are a common condition in the population, with individual consequences like lower back pain, scoliosis, and osteoarthritis. Despite its high prevalence, the necessary treatment, for mild LLIs, is still controversial. Previously, the focus was to analyze the effects of LLIs during static standing and walking. To create a holistic view on the dynamic effects of LLIs, and since climbing stairs produces a similar biomechanical imbalance as LLIs, the compensation mechanics during stair climbing are of special interest. RESEARCH QUESTION What are the biomechanical compensation mechanisms of (simulated) LLIs during ascending and descending stairs? METHODS Thirty-five healthy participants were measured with the inertial measurement system MyoMotion during stair climbing with simulated LLIs of 0-3 cm. The maximum estimated lower limb joint angles of the long and short leg were analyzed with statistically repeated measurement models. RESULTS The long leg showed significantly increased hip and knee flexion, while the short leg showed decreased hip and knee flexion, decreased dorsiflexion, and significantly increased plantarflexion. Different mechanisms were found in the case of 1 cm LLI when compared to greater LLIs. In the former, increased hip and knee flexion in the short leg accompanied by increased dorsiflexion in the long leg was observed. In the latter, the dorsiflexion of the long leg was reduced. SIGNIFICANCE Except for the reduced dorsiflexion of the long leg (LLI >1 cm), during stair climbing compared compensation mechanisms as during walking were presented, with the long leg functionally shortened and the short leg lengthened. Although the feet were already on different levels, during stair climbing with the step-over-step technique, significant compensation mechanisms were found as a consequence of LLIs.
Collapse
Affiliation(s)
- Hannah Lena Siebers
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany.
| | - Jörg Eschweiler
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Roman Michalik
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim of the University Heidelberg, Mannheim, Germany
| |
Collapse
|
221
|
Weighted Vest Loads Do Not Elicit Changes in Spatial-Temporal Gait Parameters in Children and Adolescents With Autism. J Appl Biomech 2022; 38:391-397. [DOI: 10.1123/jab.2021-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
Weighted vests have been used primarily as behavioral interventions for children and adolescents with autism. Contemporary research has begun to examine weighted vest effects on movement. Previous research in children with neurotypical development revealed 15% body mass loads modified spatial-temporal gait characteristics; however, a value applicable to children and adolescents with autism has not been established. The purpose of this study was to establish an appropriate mass value by examining spatial-temporal gait parameters in children and adolescents with autism with various loads in a weighted vest. Nine children and adolescents with autism, aged 8–17, walked without a weighted vest, with 5%, 10%, 15%, and 20% body mass while spatial-temporal data were captured. Repeated-measures analysis of variance (α = .05) were conducted among conditions for each variable, with a Holm–Bonferroni method correction. Analysis revealed significant decreases in right step length, but no differences in stride width, left step length, double-limb support time, or stride velocity were observed. Due to insignificant findings, an appropriate mass value could not be determined for weighted vests for children with autism. However, unchanged spatial-temporal gait parameters with increasing loads could be clinically relevant as weighted vest loads of 10% are typically used for behavioral interventions.
Collapse
|
222
|
Yamamoto M, Shimatani K, Hasegawa M, Kurita Y, Ishige Y, Takemura H. Accuracy of Temporo-Spatial and Lower Limb Joint Kinematics Parameters Using OpenPose for Various Gait Patterns With Orthosis. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2666-2675. [PMID: 34914592 DOI: 10.1109/tnsre.2021.3135879] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A cost-effective gait analysis system without attachments and specialized large environments can provide useful information to determine effective treatment in clinical sites. This study investigates the capability of a single camera-based pose estimation system using OpenPose (OP) to measure the temporo-spatial and joint kinematics parameters during gait with orthosis. Eleven healthy adult males walked under different conditions of speed and foot progression angle (FPA). Temporo-spatial and joint kinematics parameters were measured using a single camera-based system with OP and a three-dimensional motion capture system. The limit of agreement, mean absolute error, absolute agreement (ICC2, 1), and relative consistency (ICC3, 1) between the systems under each condition were assessed for reliability and validity. The results demonstrated that most of the ICC for temporo-spatial parameters and hip and knee kinematics parameters were good to excellent (0.60 - 0.98). Conversely, most of the ICC for ankle kinematics in all conditions were poor to fair (< 0.60). Thus, the gait analysis using OP can be used as a clinical assessment tool for determining the temporo-spatial, hip, and knee sagittal plane angles during gait.
Collapse
|
223
|
Longitudinal Changes in Temporospatial Gait Characteristics during the First Year Post-Stroke. Brain Sci 2021; 11:brainsci11121648. [PMID: 34942950 PMCID: PMC8699066 DOI: 10.3390/brainsci11121648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Given the paucity of longitudinal data in gait recovery after stroke, we compared temporospatial gait characteristics of stroke patients during subacute (<2 months post-onset, T0) and at approximately 6 and 12 months post-onset (T1 and T2, respectively) and explored the relationship between gait characteristics at T0 and the changes in gait speed from T0 to T1. Forty-six participants were assessed at T0 and a subsample of twenty-four participants were assessed at T2. Outcome measures included Fugl-Meyer lower-extremity motor score, 14 temporospatial gait parameters, and symmetry indices of 5 step parameters. Except for step width, all temporospatial parameters improved from T0 to T1 (p ≤ 0.0001). Additionally, significant improvements in symmetry were found for the initial double-support time and single-support time (p ≤ 0.0001). As a group, no significant differences were found between T1 and T2 in any of the temporospatial measures. However, the individual analysis revealed that 42% (10/24) of the subsample showed a significant increase in gait speed (Welch’s t-test, p ≤ 0.002). Yet, only 5/24 (21%) of the participants improved speed from T1 to T2 according to speed-based minimum detectable change criteria. The increase in gait speed from T0 to T1 was negatively correlated with gait speed and stride length and positively correlated with the symmetry indices of stance and single-support times at T0 (p ≤ 0.002). Temporospatial gait parameters and stance time symmetry improved over the first 6 months after stroke with an apparent plateau thereafter. A greater increase in gait speed during the first 6 months post-stroke is associated with initially slower walking, shorter stride length, and more pronounced asymmetry in stance and single-support times. The improvement in lower-extremity motor function and bilateral improvements in step parameters collectively suggest that gait changes over the first 6 months after stroke are likely due to a combination of neurological recovery, compensatory strategies, and physical therapy received during that time.
Collapse
|
224
|
Djun MHT, Chay JTC. The Association Between Foot Structure and Foot Kinematics During Slow Running. J Am Podiatr Med Assoc 2021; 111. [PMID: 32780124 DOI: 10.7547/18-098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Clinicians routinely assess foot posture as part of their assessment and management of foot pathologies. Flat or high-arched foot postures have been linked to kinematic deviations and increased risk of foot injuries. The Foot Posture Index (FPI) is a valid clinical tool used to classify feet into high-arched, normal-arched, and flat foot groups and predicts foot function during walking well. Walking and running are distinct locomotion styles, and studies have not been performed to correlate FPI to foot function during running. This study aims to investigate the association of FPI scores to foot kinematics during running. The results will further inform clinicians who perform static assessment of feet of individuals who are runners. METHODS Sixty-nine participants had their feet assessed using the FPI scoring system. Based on these scores, the feet were categorized as flat foot, normal-arched, and high-arched. Rearfoot eversion and forefoot dorsiflexion (arch flattening) of the foot were analysed during slow running between 1.4 and 2.2 m/sec. The Pearson correlation was used to analyse the FPI scores on an interval scale, with Cohen's d used to report effect size. One-way analysis of variance and a Bonferroni post hoc test was used to analyze data by category. Level of significance was set at P < .05. RESULTS Thirty-four flat feet, 26 normal-arched feet, and nine high-arched feet were analyzed. The FPI scores correlated significantly with rearfoot eversion (moderate effect size) and forefoot dorsiflexion (low effect size). Rearfoot eversion was greatest in the flat foot, followed by the normal-arched foot and the high-arched foot. Forefoot dorsiflexion was significantly higher in the flat foot compared with the high-arched group. CONCLUSIONS Foot Posture Index scores are positively correlated with rearfoot eversion and forefoot dorsiflexion during running. Clinicians can use this information to aid their foot assessment and management of individuals who are runners.
Collapse
|
225
|
Nazarahari M, Khandan A, Khan A, Rouhani H. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection. J Biomech 2021; 130:110880. [PMID: 34871897 DOI: 10.1016/j.jbiomech.2021.110880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Accurate and reliable real-time detection of gait events using inertial measurement units (IMUs) is crucial for (1) developing clinically meaningful gait parameters to differentiate normal and impaired gait or (2) creating patient-tailored gait rehabilitation strategies or control of prosthetic devices using feedback from gait phases. However, most previous studies focused only on algorithms with high temporal accuracy and neglected the importance of (1) high reliability, i.e., detecting only and all true gait events, and (2) real-time implementation. Thus, in this study, we presented a novel approach for initial contact (IC) and terminal contact (TC) detection in real-time based on the measurement of the foot orientation. Unlike foot/shank angular velocity and acceleration, foot orientation provides physiologically meaningful kinematic features corresponding to our observational recognition of IC and TC, regardless of the walking modality. We conducted an experimental study to validate our algorithm, including seven participants performing four walking/running activities. By analyzing 5,555 ICs/TCs recorded during the tests, only our algorithm achieved a sensitivity and precision of 100%. Our obtained temporal accuracy (mean ± standard deviation of errors ranging from 0 ± 3 to 6 ± 5 time samples; sampling frequency: 100 Hz) was better than or comparable to those reported in the literature. Our algorithm's performance does not depend on thresholds and gait speed/modality, and it can be used for feedback-based therapeutic gait training or real-time control of assistive or prosthetic technologies. Nevertheless, its performance for pathological gait must be validated in the future. Finally, we shared the codes and sample data on https://www.ncbl.ualberta.ca/codes.
Collapse
Affiliation(s)
- Milad Nazarahari
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, Edmonton, Alberta, T6G-1H9, Canada.
| | - Aminreza Khandan
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, Edmonton, Alberta, T6G-1H9, Canada.
| | - Atif Khan
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, Edmonton, Alberta, T6G-1H9, Canada.
| | - Hossein Rouhani
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, Edmonton, Alberta, T6G-1H9, Canada.
| |
Collapse
|
226
|
Murai A, Washino S, Mochimaru M. DATSURYOKU: designing environment–body interaction for implicit muscle relief*. Adv Robot 2021. [DOI: 10.1080/01691864.2021.2008487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Akihiko Murai
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa, Chiba, JAPAN
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, JAPAN
| | - Sohei Washino
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa, Chiba, JAPAN
| | - Masaaki Mochimaru
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa, Chiba, JAPAN
| |
Collapse
|
227
|
Filtjens B, Ginis P, Nieuwboer A, Afzal MR, Spildooren J, Vanrumste B, Slaets P. Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation. BMC Med Inform Decis Mak 2021; 21:341. [PMID: 34876110 PMCID: PMC8650332 DOI: 10.1186/s12911-021-01699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although deep neural networks (DNNs) are showing state of the art performance in clinical gait analysis, they are considered to be black-box algorithms. In other words, there is a lack of direct understanding of a DNN's ability to identify relevant features, hindering clinical acceptance. Interpretability methods have been developed to ameliorate this concern by providing a way to explain DNN predictions. METHODS This paper proposes the use of an interpretability method to explain DNN decisions for classifying the movement that precedes freezing of gait (FOG), one of the most debilitating symptoms of Parkinson's disease (PD). The proposed two-stage pipeline consists of (1) a convolutional neural network (CNN) to model the reduction of movement present before a FOG episode, and (2) layer-wise relevance propagation (LRP) to visualize the underlying features that the CNN perceives as important to model the pathology. The CNN was trained with the sagittal plane kinematics from a motion capture dataset of fourteen PD patients with FOG. The robustness of the model predictions and learned features was further assessed on fourteen PD patients without FOG and fourteen age-matched healthy controls. RESULTS The CNN proved highly accurate in modelling the movement that precedes FOG, with 86.8% of the strides being correctly identified. However, the CNN model was unable to model the movement for one of the seven patients that froze during the protocol. The LRP interpretability case study shows that (1) the kinematic features perceived as most relevant by the CNN are the reduced peak knee flexion and the fixed ankle dorsiflexion during the swing phase, (2) very little relevance for FOG is observed in the PD patients without FOG and the healthy control subjects, and (3) the poor predictive performance of one subject is attributed to the patient's unique and severely flexed gait signature. CONCLUSIONS The proposed pipeline can aid clinicians in explaining DNN decisions in clinical gait analysis and aid machine learning practitioners in assessing the generalization of their models by ensuring that the predictions are based on meaningful kinematic features.
Collapse
Affiliation(s)
- Benjamin Filtjens
- Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
| | - Pieter Ginis
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Alice Nieuwboer
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, 3001, Heverlee, Belgium
| | - Muhammad Raheel Afzal
- Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Joke Spildooren
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Agoralaan Building A, 3590, Diepenbeek, Belgium
| | - Bart Vanrumste
- eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| | - Peter Slaets
- Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium
| |
Collapse
|
228
|
Golyski PR, Vazquez E, Leestma JK, Sawicki GS. Onset timing of treadmill belt perturbations influences stability during walking. J Biomech 2021; 130:110800. [PMID: 34864443 DOI: 10.1016/j.jbiomech.2021.110800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Split-belt treadmills have become popular tools for investigating stability during walking by using belt accelerations to induce slip-like perturbations. While the onset timing of destabilizing perturbations is a critical determinant of an individual's stabilizing response, previous studies have predominantly delivered belt acceleration perturbations at heel strike or have not explicitly controlled onset as a percentage of the gait cycle. To address this gap, we 1) developed an algorithm to target transient increases in unilateral belt speed to begin at specific percentages of the walking gait cycle, 2) validated the algorithm's accuracy and precision, and 3) investigated the influence of different onset timings on spatial stability measures. We evaluated desired onset timings of 10, 15, 20, and 30% of the gait cycle during walking at 1.25 m/s and measured step lengths and widths, as well as anteroposterior and mediolateral margins of stability during the perturbed and four recovery steps in 10 able-bodied participants. From 800 perturbations, we found a mean (standard deviation) delay in onset timing of 5.2% (0.9%) of the gait cycle, or 56 (9) ms. We hypothesized later onset timings would elicit more stabilizing responses due to the less stable configuration of the body during late vs. early single stance. Our data generally supported this hypothesis - in comparison to earlier onset timings, later onset timings precipitated greater stabilizing responses, including larger step lengths, step widths, and anteroposterior/mediolateral margins of stability on the perturbed step, in addition to shorter step lengths and wider step widths on the first step post-perturbation.
Collapse
Affiliation(s)
- Pawel R Golyski
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | - Jennifer K Leestma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S Sawicki
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
229
|
Video-Based Deep Learning Approach for 3D Human Movement Analysis in Institutional Hallways: A Smart Hallway. COMPUTATION 2021. [DOI: 10.3390/computation9120130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New artificial intelligence- (AI) based marker-less motion capture models provide a basis for quantitative movement analysis within healthcare and eldercare institutions, increasing clinician access to quantitative movement data and improving decision making. This research modelled, simulated, designed, and implemented a novel marker-less AI motion-analysis approach for institutional hallways, a Smart Hallway. Computer simulations were used to develop a system configuration with four ceiling-mounted cameras. After implementing camera synchronization and calibration methods, OpenPose was used to generate body keypoints for each frame. OpenPose BODY25 generated 2D keypoints, and 3D keypoints were calculated and postprocessed to extract outcome measures. The system was validated by comparing ground-truth body-segment length measurements to calculated body-segment lengths and ground-truth foot events to foot events detected using the system. Body-segment length measurements were within 1.56 (SD = 2.77) cm and foot-event detection was within four frames (67 ms), with an absolute error of three frames (50 ms) from ground-truth foot event labels. This Smart Hallway delivers stride parameters, limb angles, and limb measurements to aid in clinical decision making, providing relevant information without user intervention for data extraction, thereby increasing access to high-quality gait analysis for healthcare and eldercare institutions.
Collapse
|
230
|
Karakasis C, Artemiadis P. Real-time kinematic-based detection of foot-strike during walking. J Biomech 2021; 129:110849. [PMID: 34800744 DOI: 10.1016/j.jbiomech.2021.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Detection of foot-strike events is an integral part of gait analysis, as it allows the temporal registration of gait cycles. At the same time, it is necessary to register gait phases in real-time for applications such as wearable assistive devices and gait biofeedback that work synchronously with the human gait. Although many algorithms have been proposed for detecting foot-strikes with either wearable (e.g. Inertial Measurement Units (IMUs)) or non-wearable (e.g. force plates) sensors, there is a great need for real-time algorithms that rely only on recording the kinematics of the leg motion. This work proposes a novel and efficient kinematic algorithm, called the Foot VErtical & Sagittal Position Algorithm (F-VESPA), which has several advantages over existing methods. First, it accurately estimates foot-strike events using kinematic data without requiring access to future data points, hence achieving reduced latency during real-time implementation. Moreover, it does not require tuning of the utilized parameters, rendering it robust to different subjects and treadmill speeds. The algorithm is tested in a large set of subjects across various treadmill speeds, and it is shown to outperform even offline implementations of existing prominent kinematic algorithms. Using a 150 Hz data collection system, the F-VESPA achieved a median of 33 ms for the total true errors in detecting foot-strike. The F-VESPA is a highly responsive kinematic algorithm that can detect foot-strike events in real-time, with high accuracy, robustness and reduced latency, enabling real-time temporal registration of gait cycles.
Collapse
|
231
|
Gómez-Pérez C, Martori JC, Puig Diví A, Medina Casanovas J, Vidal Samsó J, Font-Llagunes JM. Gait event detection using kinematic data in children with bilateral spastic cerebral palsy. Clin Biomech (Bristol, Avon) 2021; 90:105492. [PMID: 34627071 DOI: 10.1016/j.clinbiomech.2021.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ground reaction forces are the gold standard for detecting gait events, but they are not always applicable in cerebral palsy. Ghoussayni's algorithm is an event detection method based on the sagittal plane velocity of heel and toe markers. We aimed to evaluate whether Ghoussayni's algorithm, using two different thresholds, was a valid event detection method in children with bilateral spastic cerebral palsy. We also aimed to define a new adaptation of Ghoussayni's algorithm for detecting foot strike in cerebral palsy, and study the effect of event detection methods on spatiotemporal parameters. METHODS Synchronized kinematic and kinetic data were collected retrospectively from 16 children with bilateral spastic cerebral palsy (7 males and 9 females; age 8.9 ± 2.7 years) walking barefoot at self-selected speed. Gait events were detected using methods: 1) ground reaction forces, 2) Ghoussayni's algorithm with a threshold of 0.5 m/s, and 3) Ghoussayni's algorithm with a walking speed dependent threshold. The new adaptation distinguished how foot strikes were performed (heel and/or toe) comparing the timing when the foot markers velocities fell below the threshold. Differences between the three methods, and between spatiotemporal parameters calculated from the two Ghoussayni's thresholds were analyzed. FINDINGS There were statistically significant (P < 0.05) differences between methods 1 and 3, and between some spatiotemporal parameters calculated from methods 2 and 3. Ghoussayni's algorithm showed better performance for foot strike than for toe off. INTERPRETATION Ghoussayni's algorithm using 0.5 m/s is valid in children with bilateral spastic cerebral palsy. Event detection methods affect spatiotemporal parameters.
Collapse
Affiliation(s)
- Cristina Gómez-Pérez
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M(3)O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVIC-UCC), C. Sagrada Família 7, 08500 Vic, Spain.
| | - Joan Carles Martori
- Data Analysis and Modeling Research Group, Department of Economics and Business, Faculty of Business and Communication Studies, University of Vic - Central University of Catalonia (UVic-UCC), C. Sagrada Família 7, 08500 Vic, Spain.
| | - Albert Puig Diví
- Blanquerna School of Health Sciences - Ramon Llull University, C. Padilla 326, 08025 Barcelona, Spain.
| | - Josep Medina Casanovas
- Institut Guttmann, Hospital de Neurorehabilitació, Camí de Can Ruti, 08916 Badalona, Spain; Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Carretera Canyet, 08916 Badalona, Spain.
| | - Joan Vidal Samsó
- Institut Guttmann, Hospital de Neurorehabilitació, Camí de Can Ruti, 08916 Badalona, Spain; Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain; Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Carretera Canyet, 08916 Badalona, Spain.
| | - Josep M Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C. Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
232
|
Liu J, Stewart H, Wiens C, Mcnitt-Gray J, Liu B. Development of an integrated biomechanics informatics system with knowledge discovery and decision support tools for research of injury prevention and performance enhancement. Comput Biol Med 2021; 141:105062. [PMID: 34836623 DOI: 10.1016/j.compbiomed.2021.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 11/03/2022]
Abstract
The field of biomechanics involves integrating a variety of data types such as waveform, video, discrete, and performance. These different sources of data must be efficiently and accurately associated to provide meaningful feedback to athletes, coaches, and healthcare professionals to prevent injury and improve rehabilitation/performance. There are many challenges in biomechanics research such as data storage, standardization, review, sharing, and accessibility. Data is stored in different formats, structures, and locations such as physical hard drives or Dropbox/Google Drive, leading to issues during sharing and collaboration. Data is reviewed and analyzed through different software applications that need to be downloaded and installed locally before they are available for use. An integrated biomechanics informatics system (IBIS) built based on the core principles in medical imaging informatics provides a solution to many of these challenges. The system provides a secure web-based platform that will be accessible remotely for authenticated users to upload, share, and download data. The web-based application includes built-in data viewers that are streamlined for reviewing multimedia data and decision support/knowledge discovery tools. These tools include automatic foot contact detection for pre-processing, built-in statistical analysis applications for longitudinal and cross-study analysis, and a multi-institutional collaboration module. The IBIS system creates a centralized hub to support multi-institutional collaborative biomechanics research and analysis that is remotely accessible to all users including athletes, coaches, researchers, and clinicians generating a novel streamlined research workflow, data analysis, and knowledge discovery process.
Collapse
Affiliation(s)
- Joseph Liu
- Image Processing and Informatics Laboratory, Department of Biomedical Engineering, Univ. of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
| | - Harper Stewart
- USC Biomechanics Lab, Department of Biological Sciences, Univ. of Southern California, Los Angeles, CA, 90089, USA
| | - Casey Wiens
- USC Biomechanics Lab, Department of Biological Sciences, Univ. of Southern California, Los Angeles, CA, 90089, USA
| | - Jill Mcnitt-Gray
- USC Biomechanics Lab, Department of Biological Sciences, Univ. of Southern California, Los Angeles, CA, 90089, USA
| | - Brent Liu
- Image Processing and Informatics Laboratory, Department of Biomedical Engineering, Univ. of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| |
Collapse
|
233
|
Datta S, Begg R, Rao AS, Karmakar C, Bajelan S, Said C, Palaniswami M. Measures of Bipedal Toe-Ground Clearance Asymmetry to Characterize Gait in Stroke Survivors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6015-6018. [PMID: 34892488 DOI: 10.1109/embc46164.2021.9629740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-stroke hemiparesis often impairs gait and increases the risks of falls. Low and variable Minimum Toe Clearance (MTC) from the ground during the swing phase of the gait cycle has been identified as a major cause of such falls. In this paper, we study MTC characteristics in 30 chronic stroke patients, extracted from gait patterns during treadmill walking, using infrared sensors and motion analysis camera units. We propose objective measures to quantify MTC asymmetry between the paretic and non-paretic limbs using Poincaré analysis. We show that these subject independent Gait Asymmetry Indices (GAIs) represent temporal variations of relative MTC differences between the two limbs and can distinguish between healthy and stroke participants. Compared to traditional measures of cross-correlation between the MTC of the two limbs, these measures are better suited to automate gait monitoring during stroke rehabilitation. Further, we explore possible clusters within the stroke data by analysing temporal dispersion of MTC features, which reveals that the proposed GAIs can also be potentially used to quantify the severity of lower limb hemiparesis in chronic stroke.
Collapse
|
234
|
Salis F, Bertuletti S, Scott K, Caruso M, Bonci T, Buckley E, Croce UD, Mazza C, Cereatti A. A wearable multi-sensor system for real world gait analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7020-7023. [PMID: 34892719 DOI: 10.1109/embc46164.2021.9630392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gait analysis is commonly performed in standardized environments, but there is a growing interest in assessing gait also in ecological conditions. In this regard, an important limitation is the lack of an accurate mobile gold standard for validating any wearable system, such as continuous monitoring devices mounted on the trunk or wrist. This study therefore deals with the development and validation of a new wearable multi-sensor-based system for digital gait assessment in free-living conditions. In particular, results obtained from five healthy subjects during lab-based and real-world experiments were presented and discussed. The in-lab validation, which assessed the accuracy and reliability of the proposed system, shows median percentage errors smaller than 2% in the estimation of spatio-temporal parameters. The system also proved to be easy to use, comfortable to wear and robust during the out-of-lab acquisitions, showing its feasibility for free-living applications.
Collapse
|
235
|
Overall Greater Demands on the Musculoskeletal System at Multiple Walking Speeds in Service Members With Lower Limb Loss. J Appl Biomech 2021; 37:522-530. [PMID: 34689127 DOI: 10.1123/jab.2020-0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Individuals with lower limb loss often walk with altered/asymmetric movement mechanics, postulated as a catalyst for development of low back and knee pain. Here, the authors simultaneously investigated trunk-pelvic movement patterns and lower limb joint kinematics and kinetics among 38 males with traumatic, unilateral lower limb loss (23 transtibial and 15 transfemoral), and 15 males without limb loss, at a self-selected and 2 standardized (1.0 and 1.6 m/s) speeds. Individuals with versus without lower limb loss walked with greater trunk range of motion in the frontal and transverse planes at all speeds (despite ∼10% slower self-selected speeds). At all speeds, individuals with versus without limb loss exhibited +29% larger medial ground reaction forces, and at 1.6 m/s also exhibited +50% to 110% larger vertical hip power generation, +27% to 80% larger vertical hip power absorption, and +21% to 90% larger medial-lateral hip power absorption. Moreover, pervasive biomechanical differences between transtibial versus transfemoral limb loss identify amputation-level movement strategies. Overall, greater demands on the musculoskeletal system across walking speeds, particularly at the hip, knee, and low back, highlight potential risk factors for the development/recurrence of prevalent secondary musculoskeletal conditions (eg, joint degeneration and pain) following limb loss.
Collapse
|
236
|
Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. SENSORS 2021; 21:s21216976. [PMID: 34770283 PMCID: PMC8587282 DOI: 10.3390/s21216976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
We present the use of a single inertial measurement unit (IMU) worn on the thigh to produce stride-by-stride estimates of walking speed and its spatiotemporal determinants (i.e., stride time and stride length). Ten healthy and eight post-stroke individuals completed a 6-min walk test with an 18-camera motion capture system used for ground truth measurements. Subject-specific estimation models were trained to estimate walking speed using the polar radius extracted from phase portraits produced from the IMU-measured thigh angular position and velocity. Consecutive flexion peaks in the thigh angular position data were used to define each stride and compute stride times. Stride-by-stride estimates of walking speed and stride time were then used to compute stride length. In both the healthy and post-stroke cohorts, low error and high consistency were observed for the IMU estimates of walking speed (MAE < 0.035 m/s; ICC > 0.98), stride time (MAE < 30 ms; ICC > 0.97), and stride length (MAE < 0.037 m; ICC > 0.96). This study advances the use of a single wearable sensor to accurately estimate walking speed and its spatiotemporal determinants during both healthy and hemiparetic walking.
Collapse
|
237
|
Siebers HL, Alrawashdeh W, Betsch M, Migliorini F, Hildebrand F, Eschweiler J. Comparison of different symmetry indices for the quantification of dynamic joint angles. BMC Sports Sci Med Rehabil 2021; 13:130. [PMID: 34666818 PMCID: PMC8527670 DOI: 10.1186/s13102-021-00355-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Symmetry is a sign of physiological and healthy movements, as pathologies are often described by increased asymmetries. Nevertheless, based on precisely measured data, even healthy individuals will show small asymmetries in their movements. However, so far there do not exist commonly accepted methods and reference values for gait symmetry in a healthy collective. Therefore, a comparison and presentation of reference values calculated by 3 different methods of symmetry indices for lower limb joint angles during walking, ascending, and descending stairs were shown. METHODS Thirty-five healthy participants were analyzed during walking, ascending, and descending stairs with the help of the inertial measurement system MyoMotion. Using the normalized symmetry index (SInorm), the symmetry index (SI) as the integral of the symmetry function, and another normalized symmetry index (NSI), the symmetry of joint angles was evaluated. For statistical evaluation of differences, repeated measurement models and Bland-Altman-Plots were used. RESULTS Apart from a bias between the symmetry indices, they were comparable in the predefined limits of 5%. For all parameters, significantly higher asymmetry was found for ankle dorsi/-plantarflexion, compared with the hip and knee flexion. Moreover, the interaction effect of the joint and movement factors was significant, with an increased asymmetry of the hip and knee during descending stairs greater than while ascending stairs or walking, but a reduced symmetry of the ankle during walking when compared to descending. The movement only showed significant effects when analyzing the SInorm. CONCLUSION Even for healthy individuals, small asymmetries of movements were found and presented as reference values using 3 different symmetry indices for dynamic lower limb joint angles during 3 different movements. For the quantification of symmetrical movements differences between the joints, movements, and especially their interaction, are necessary to be taken into account. Moreover, a bias between the methods should be noted. The potential for each presented symmetry index to identify pathological movements or track a rehabilitation process was shown but has to be proven in further research. TRIAL REGISTRATION DRKS00025878.
Collapse
Affiliation(s)
- Hannah Lena Siebers
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Waleed Alrawashdeh
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim of the University Heidelberg, Mannheim, Germany
| | - Filippo Migliorini
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
238
|
Flux E, van der Krogt MM, Harlaar J, Buizer AI, Sloot LH. Functional assessment of stretch hyperreflexia in children with cerebral palsy using treadmill perturbations. J Neuroeng Rehabil 2021; 18:151. [PMID: 34663392 PMCID: PMC8522046 DOI: 10.1186/s12984-021-00940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As hyperactive muscle stretch reflexes hinder movement in patients with central nervous system disorders, they are a common target of treatment. To improve treatment evaluation, hyperactive reflexes should be assessed during activities as walking rather than passively. This study systematically explores the feasibility, reliability and validity of sudden treadmill perturbations to evoke and quantify calf muscle stretch reflexes during walking in children with neurological disorders. METHODS We performed an observational cross-sectional study including 24 children with cerebral palsy (CP; 6-16 years) and 14 typically developing children (TD; 6-15 years). Short belt accelerations were applied at three different intensities while children walked at comfortable speed. Lower leg kinematics, musculo-tendon lengthening and velocity, muscle activity and spatiotemporal parameters were measured to analyze perturbation responses. RESULTS We first demonstrated protocol feasibility: the protocol was completed by all but three children who ceased participation due to fatigue. All remaining children were able to maintain their gait pattern during perturbation trials without anticipatory adaptations in ankle kinematics, spatiotemporal parameters and muscle activity. Second, we showed the protocol's reliability: there was no systematic change in muscle response over time (P = 0.21-0.54) and a bootstrapping procedure indicated sufficient number of perturbations, as the last perturbation repetition only reduced variability by ~ 2%. Third, we evaluated construct validity by showing that responses comply with neurophysiological criteria for stretch reflexes: perturbations superimposed calf muscle lengthening (P < 0.001 for both CP and TD) in all but one participant. This elicited increased calf muscle activity (359 ± 190% for CP and 231 ± 68% for TD, both P < 0.001) in the gastrocnemius medialis muscle, which increased with perturbation intensity (P < 0.001), according to the velocity-dependent nature of stretch reflexes. Finally, construct validity was shown from a clinical perspective: stretch reflexes were 1.7 times higher for CP than TD for the gastrocnemius medialis muscle (P = 0.017). CONCLUSIONS The feasibility and reliability of the protocol, as well as the construct validity-shown by the exaggerated velocity-dependent nature of the measured responses-strongly support the use of treadmill perturbations to quantify stretch hyperreflexia during gait. We therefore provided a framework which can be used to inform clinical decision making and treatment evaluation.
Collapse
Affiliation(s)
- Eline Flux
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
- Department Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department Orthopedics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lizeth H Sloot
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
- Institute for Computer Engineering, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
239
|
DATSURYOKU Sensor-A Capacitive-Sensor-Based Belt for Predicting Muscle Tension: Preliminary Results. SENSORS 2021; 21:s21196669. [PMID: 34640988 PMCID: PMC8512158 DOI: 10.3390/s21196669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
Excessive muscle tension is implicitly caused by inactivity or tension in daily activities, and it results in increased joint stiffness and vibration, and thus, poor performance, failure, and injury in sports. Therefore, the routine measurement of muscle tension is important. However, a co-contraction observed in excessive muscle tension cannot be easily detected because it does not appear in motion owing to the counteracting muscle tension, and it cannot be measured by conventional motion capture systems. Therefore, we focused on the physiological characteristics of muscle, that is, the increase in muscle belly cross-sectional area during activity and softening during relaxation. Furthermore, we measured muscle tension, especially co-contraction and relaxation, using a DATSURYOKU sensor, which measures the circumference of the applied part. The experiments showed high interclass correlation between muscle activities and circumference across maximal voluntary co-contractions of the thigh muscles and squats. Moreover, the circumference sensor can measure passive muscle deformation that does not appear in muscle activities. Therefore, the DATSURYOKU sensor showed the potential to routinely measure muscle tension and relaxation, thus avoiding the risk of failure and injury owing to excessive muscle tension and can contribute to the realization of preemptive medicine by measuring daily changes.
Collapse
|
240
|
A Brake-Based Overground Gait Rehabilitation Device for Altering Propulsion Impulse Symmetry. SENSORS 2021; 21:s21196617. [PMID: 34640938 PMCID: PMC8512803 DOI: 10.3390/s21196617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
This paper introduces a new device for gait rehabilitation, the gait propulsion trainer (GPT). It consists of two main components (a stationary device and a wearable system) that work together to apply periodic stance-phase resistance as the user walks overground. The stationary device provides the resistance forces via a cable that tethers the user’s pelvis to a magnetic-particle brake. The wearable system detects gait events via foot switches to control the timing of the resistance forces. A hardware verification test confirmed that the GPT functions as intended. We conducted a pilot study in which one healthy adult and one stroke survivor walked with the GPT with increasing resistance levels. As hypothesized, the periodic stance-phase resistance caused the healthy participant to walk asymmetrically, with greatly reduced propulsion impulse symmetry; as GPT resistance increased, the walking speed also decreased, and the propulsion impulse appeared to increase for both legs. In contrast, the stroke participant responded to GPT resistance by walking faster and more symmetrically in terms of both propulsion impulse and step length. Thus, this paper shows promising results of short-term training with the GPT, and more studies will follow to explore its long-term effects on hemiparetic gait.
Collapse
|
241
|
Bakker NF, Schrijvers JC, van den Noort JC, Hall M, van der Krogt MM, Harlaar J, van der Esch M. A most painful knee does not induce interlimb differences in knee and hip moments during gait in patients with knee osteoarthritis. Clin Biomech (Bristol, Avon) 2021; 89:105455. [PMID: 34454328 DOI: 10.1016/j.clinbiomech.2021.105455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with knee osteoarthritis can adapt their gait to unload the most painful knee joint in order to try to reduce pain and improve physical function. However, these gait adaptations can cause higher loads on the contralateral joints. The aim of the study was to investigate the interlimb differences in knee and hip frontal plane moments during gait in patients with knee osteoarthritis and in healthy controls. METHODS Forty patients with knee osteoarthritis and 19 healthy matched controls were measured during comfortable treadmill walking. Frontal plane joint moments were obtained of both hip and knee joints. Differences in interlimb moments within each group were assessed using statistical parametric mapping and discrete gait parameters. FINDINGS No interlimb differences were observed in patients with knee osteoarthritis and control subjects at group level. Furthermore, the patients presented similar interlimb variability as the controls. In a small subgroup (n = 12) of patients, the moments in the most painful knee were lower than in the contralateral knee, while the other patients (n = 28) showed higher moments in the most painful knee compared to the contralateral knee. However, no interlimb differences in the hip moments were observed within the subgroups. INTERPRETATION Patients with knee osteoarthritis do not have interlimb differences in knee and hip joint moments. Patients and healthy subjects demonstrate a similar interlimb variability in the moments of the lower extremities. In this context, differences in knee pain in patients with knee osteoarthritis did not induce any interlimb differences in the frontal plane knee and hip moments.
Collapse
Affiliation(s)
- Nienke F Bakker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Jim C Schrijvers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Josien C van den Noort
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Medical Imaging Quantification Center (MIQC), Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Michelle Hall
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marjolein M van der Krogt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Jaap Harlaar
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Delft University of Technology, Department of Biomechanical Engineering, Delft, the Netherlands; Erasmus Medical Center, Department of Orthopedics, Rotterdam, the Netherlands
| | - Martin van der Esch
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, the Netherlands; Centre of Expertise Urban vitality, Center of Applied Research, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
242
|
Kim H, Franz JR. Age-related differences in calf muscle recruitment strategies in the time-frequency domain during walking as a function of task demand. J Appl Physiol (1985) 2021; 131:1348-1360. [PMID: 34473576 DOI: 10.1152/japplphysiol.00262.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the plantar flexors is critical in governing ankle push-off power during walking, which decreases due to age. However, electromyographic (EMG) signal amplitude alone is unable to fully characterize motor unit recruitment during functional activity. Although not yet studied in walking, EMG frequency content may also vary due to age-related differences in muscle morphology and neural signaling. Our purpose was to quantify plantar flexor activation differences in the time-frequency domain between young and older adults during walking across a range of speeds and with and without horizontal aiding and impeding forces. Ten healthy young (24.0 ± 3.4 yr) and older adults (73.7 ± 3.9 yr) walked at three speeds and walked with horizontal aiding and impeding force while muscle activations of soleus (SOL) and gastrocnemius (GAS) were recorded. The EMG signals were decomposed in the time-frequency domain with wavelet transformation. Principal component analyses extracted principal components (PCs) and PC scores. Compared with young adults, we observed that GAS activation in older adults: 1) was lower across all frequency ranges during midstance and in slow to middle frequency ranges during push-off, independent of walking speed and 2) shifted to slower frequencies with earlier timing as walking speed increased. Our results implicate GAS time-frequency content, and its morphological and neural origins, as a potential determinant of hallmark ankle push-off deficits due to aging, particularly at faster walking speeds. Rehabilitation specialists may attempt to restore GAS intensity across all frequency ranges during mid-to-late stance while avoiding disproportionate increases in slower frequencies during early stance.NEW & NOTEWORTHY We use time-frequency analyses of calf muscle activation to quantify age-related differences in motor recruitment in walking. Gastrocnemius activation in older versus young adults was lower across all frequencies during midstance and in slow-to-middle frequencies during push-off, independent of speed, and shifted to slower frequencies with earlier timing as speed increased. Our results implicate gastrocnemius time-frequency content as a potential determinant of hallmark ankle push-off deficits due to aging, particularly at faster speeds.
Collapse
Affiliation(s)
- Hoon Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
243
|
Gerstle EE, O'Connor K, Keenan KG, Slavens BA, Cobb SC. The influence of age and fall history on single transition step kinematics. Clin Biomech (Bristol, Avon) 2021; 89:105456. [PMID: 34474313 DOI: 10.1016/j.clinbiomech.2021.105456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Background The risk of falls during locomotion increases with age, and step negotiation is one of the most hazardous types of gait for older adults. Further, a history of a fall is one of the strongest predictors of a future fall; and women fall more frequently, and incur greater medical costs, compared to men. The purpose of the study was to identify lower extremity kinematic factors associated with transition step clearance and foot placement in young women and older women with and without a fall history. Methods Forty-five female participants (15 per group) completed trials that consisted of walking barefoot along a raised walkway at a self-selected speed, descending a 17 cm step, and continued level ground walking. Variables of interest included lead and trail limb minimum step clearance and foot placement, and bilateral lower extremity joint positions at step clearance and at lead foot initial contact. Findings Significant group differences, with large effect sizes, were found in lead foot placement and knee flexion position at initial contact. Both older groups landed more closely to the step and made initial contact with the lead knee in a more flexed position compared to the young group. Interpretation The kinematic differences may be a strategy utilized by older adults to create an early landing to minimize time in single limb stance and compensate for age-related loss of lower extremity strength, range of motion, and/or balance. However, the greater knee flexion may also increase the risk a fall due to lead limb collapse.
Collapse
Affiliation(s)
- Emily E Gerstle
- Human Motion Laboratory, University of Scranton, Leahy Hall, 237 Jefferson Avenue, Scranton, PA 18510, USA.
| | - Kristian O'Connor
- Musculoskeletal Injury Biomechanics Laboratory, University of Wisconsin-Milwaukee, Enderis Hall, PO Box 413, Milwaukee, WI 53201, USA.
| | - Kevin G Keenan
- Neuromuscular Control Laboratory, University of Wisconsin-Milwaukee, Enderis Hall, PO Box 413, Milwaukee, WI 53201, USA.
| | - Brooke A Slavens
- Mobility Laboratory, University of Wisconsin-Milwaukee, Innovation Campus Accelerator, Room 140, 1225 Discovery Parkway, Wauwatosa, WI 53226, USA.
| | - Stephen C Cobb
- Gait & Biodynamics Laboratory, University of Wisconsin-Milwaukee, Enderis Hall, PO Box 413, Milwaukee, WI 53201, USA.
| |
Collapse
|
244
|
Visscher RMS, Freslier M, Moissenet F, Sansgiri S, Singh NB, Viehweger E, Taylor WR, Brunner R. Impact of the Marker Set Configuration on the Accuracy of Gait Event Detection in Healthy and Pathological Subjects. Front Hum Neurosci 2021; 15:720699. [PMID: 34588967 PMCID: PMC8475178 DOI: 10.3389/fnhum.2021.720699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
For interpreting outcomes of clinical gait analysis, an accurate estimation of gait events, such as initial contact (IC) and toe-off (TO), is essential. Numerous algorithms to automatically identify timing of gait events have been developed based on various marker set configurations as input. However, a systematic overview of the effect of the marker selection on the accuracy of estimating gait event timing is lacking. Therefore, we aim to evaluate (1) if the marker selection influences the accuracy of kinematic algorithms for estimating gait event timings and (2) what the best marker location is to ensure the highest event timing accuracy across various gait patterns. 104 individuals with cerebral palsy (16.0 ± 8.6 years) and 31 typically developing controls (age 20.6 ± 7.8) performed clinical gait analysis, and were divided into two out of eight groups based on the orientation of their foot, in sagittal and frontal plane at mid-stance. 3D marker trajectories of 11 foot/ankle markers were used to estimate the gait event timings (IC, TO) using five commonly used kinematic algorithms. Heatmaps, for IC and TO timing per group were created showing the median detection error, compared to detection using vertical ground reaction forces, for each marker. Our findings indicate that median detection errors can be kept within 7 ms for IC and 13 ms for TO when optimizing the choice of marker and detection algorithm toward foot orientation in midstance. Our results highlight that the use of markers located on the midfoot is robust for detecting gait events across different gait patterns.
Collapse
Affiliation(s)
- Rosa M S Visscher
- Laboratory for Movement Biomechanics, Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland.,Biomechanics of Movement Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marie Freslier
- Laboratory for Movement Analysis, Department of Orthopedics, University Children's Hospital Basel, Basel, Switzerland
| | - Florent Moissenet
- Laboratory for Kinesiology, University of Geneva and Geneva University Hospitals, Geneva, Switzerland
| | - Sailee Sansgiri
- Department of Biomedical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Navrag B Singh
- Laboratory for Movement Biomechanics, Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland
| | - Elke Viehweger
- Biomechanics of Movement Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Laboratory for Movement Analysis, Department of Orthopedics, University Children's Hospital Basel, Basel, Switzerland
| | - William R Taylor
- Laboratory for Movement Biomechanics, Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland
| | - Reinald Brunner
- Biomechanics of Movement Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Laboratory for Movement Analysis, Department of Orthopedics, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
245
|
Feldhege F, Richter K, Bruhn S, Fischer DC, Mittlmeier T. MATLAB-based tools for automated processing of motion tracking data provided by the GRAIL. Gait Posture 2021; 90:422-426. [PMID: 34597983 DOI: 10.1016/j.gaitpost.2021.09.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The ability for independent bipedal locomotion is an important prerequisite for autonomous mobility and participation in everyday life. Walking requires not only a functional musculoskeletal unit but relies on coordinated activation of muscles and may even require cognitive resources. The time-resolved monitoring of the position of joints, feet, legs and other body segments relative to each other alone or in combination with simultaneous recording of ground reaction forces and concurrent measurement of electrical muscle activity, using surface electromyography, are well-established tools for the objective assessment of gait. RESEARCH QUESTION The Gait Real-time Analysis Interactive Lab (GRAIL) has been introduced for gait analysis in a highly standardized and well-controlled virtual environment. However, apart from high computing capacity and sophisticated software required to run the system, handling of GRAIL data is challenging due to the utilization of different software packages resulting in a huge amount of data stored using different file formats and different sampling rates. These issues make gait analysis even with such a sophisticated instrument rather tedious, especially within the frame of an experimental or clinical study. METHODS A user-friendly Matlab based toolset for automated processing of motion capturing data recorded using the GRAIL, with the inherent option for batch analysis was developed. RESULTS The toolset allows the reading, resampling, filtering and synchronization of data stored in different input files recorded with the GRAIL. It includes a coordinate-based algorithm for the detection of initial contact and toe-off events to split and normalize data relative to gait cycles. Batch processing of multiple measurements and automatic detection of outliers is possible. SIGNIFICANCE The authors hope that the toolset will be useful to the research community and invite everyone to use, modify or implement it in their own work.
Collapse
Affiliation(s)
- Frank Feldhege
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Centre, Rostock, Germany; Department of Paediatrics, Rostock University Medical Centre, Rostock, Germany.
| | - Katherina Richter
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Centre, Rostock, Germany; Department of Paediatrics, Rostock University Medical Centre, Rostock, Germany.
| | - Sven Bruhn
- Institute of Sports Science, University of Rostock, Germany.
| | - Dagmar-C Fischer
- Department of Paediatrics, Rostock University Medical Centre, Rostock, Germany.
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Centre, Rostock, Germany.
| |
Collapse
|
246
|
Pagnon D, Domalain M, Reveret L. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 1: Robustness. SENSORS (BASEL, SWITZERLAND) 2021; 21:6530. [PMID: 34640862 PMCID: PMC8512754 DOI: 10.3390/s21196530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Being able to capture relevant information about elite athletes' movement "in the wild" is challenging, especially because reference marker-based approaches hinder natural movement and are highly sensitive to environmental conditions. We propose Pose2Sim, a markerless kinematics workflow that uses OpenPose 2D pose detections from multiple views as inputs, identifies the person of interest, robustly triangulates joint coordinates from calibrated cameras, and feeds those to a 3D inverse kinematic full-body OpenSim model in order to compute biomechanically congruent joint angles. We assessed the robustness of this workflow when facing simulated challenging conditions: (Im) degrades image quality (11-pixel Gaussian blur and 0.5 gamma compression); (4c) uses few cameras (4 vs. 8); and (Cal) introduces calibration errors (1 cm vs. perfect calibration). Three physical activities were investigated: walking, running, and cycling. When averaged over all joint angles, stride-to-stride standard deviations lay between 1.7° and 3.2° for all conditions and tasks, and mean absolute errors (compared to the reference condition-Ref) ranged between 0.35° and 1.6°. For walking, errors in the sagittal plane were: 1.5°, 0.90°, 0.19° for (Im), (4c), and (Cal), respectively. In conclusion, Pose2Sim provides a simple and robust markerless kinematics analysis from a network of calibrated cameras.
Collapse
Affiliation(s)
- David Pagnon
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, UMR CNRS 5224, 38330 Montbonnot-Saint-Martin, France;
| | - Mathieu Domalain
- Institut Pprime, Université de Poitiers, CNRS UPR 3346, 86360 Chasseneuil-du-Poitou, France;
| | - Lionel Reveret
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, UMR CNRS 5224, 38330 Montbonnot-Saint-Martin, France;
- INRIA Grenoble Rhône-Alpes, 38330 Montbonnot-Saint-Martin, France
| |
Collapse
|
247
|
Knapp HA, Sobolewski BA, Dean JC. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2017-2026. [PMID: 34550889 DOI: 10.1109/tnsre.2021.3114991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hip abductor proprioception contributes to the control of mediolateral foot placement, which varies with step-by-step fluctuations in pelvis dynamics. Prior work has used hip abductor vibration as a sensory probe to investigate the link between vibration within a single step and subsequent foot placement. Here, we extended prior findings by applying time and location varying vibration in every step, seeking to predictably manipulate the continuous, step-by-step relationship between pelvis dynamics and foot placement. We compared participants' (n = 32; divided into two groups of 16 with slightly different vibration control) gait behavior across four treadmill walking conditions: 1) No feedback; 2) Random feedback, with vibration unrelated to pelvis motion; 3) Augmented feedback, with vibration designed to evoke proprioceptive feedback paralleling the actual pelvis motion; 4) Disrupted feedback, with vibration designed to evoke proprioceptive feedback inversely related to pelvis motion. We hypothesized that the relationship between pelvis dynamics and foot placement would be strengthened by Augmented feedback but weakened by Disrupted feedback. For both participant groups, the strength of the relationship between pelvis dynamics at the start of a step and foot placement at the end of a step was significantly (p ≤ 0.0002) influenced by the feedback condition. The link between pelvis dynamics and foot placement was strongest with Augmented feedback, but not significantly weakened with Disrupted feedback, partially supporting our hypotheses. Our approach to augmenting proprioceptive feedback during gait may have implications for clinical populations with a weakened relationship between pelvis motion and foot placement.
Collapse
|
248
|
The Role of Surface Electromyography in Data Fusion with Inertial Sensors to Enhance Locomotion Recognition and Prediction. SENSORS 2021; 21:s21186291. [PMID: 34577498 PMCID: PMC8473357 DOI: 10.3390/s21186291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Locomotion recognition and prediction is essential for real-time human–machine interactive control. The integration of electromyography (EMG) with mechanical sensors could improve the performance of locomotion recognition. However, the potential of EMG in motion prediction is rarely discussed. This paper firstly investigated the effect of surface EMG on the prediction of locomotion while integrated with inertial data. We collected EMG signals of lower limb muscle groups and linear acceleration data of lower limb segments from ten healthy participants in seven locomotion activities. Classification models were built based on four machine learning methods—support vector machine (SVM), k-nearest neighbor (KNN), artificial neural network (ANN), and linear discriminant analysis (LDA)—where a major vote strategy and a content constraint rule were utilized for improving the online performance of the classification decision. We compared four classifiers and further investigated the effect of data fusion on the online locomotion classification. The results showed that the SVM model with a sliding window size of 80 ms achieved the best recognition performance. The fusion of EMG signals does not only improve the recognition accuracy of steady-state locomotion activity from 90% (using acceleration data only) to 98% (using data fusion) but also enables the prediction of the next steady locomotion (∼370 ms). The study demonstrates that the employment of EMG in locomotion recognition could enhance online prediction performance.
Collapse
|
249
|
Forward and backward walking share the same motor modules and locomotor adaptation strategies. Heliyon 2021; 7:e07864. [PMID: 34485742 PMCID: PMC8405989 DOI: 10.1016/j.heliyon.2021.e07864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
Forward and backward walking are remarkably similar motor behaviors to the extent that backward walking has been described as a time-reversed version of forward walking. However, because they display different muscle activity patterns, it has been questioned if forward and backward walking share common control strategies. To investigate this point, we used a split-belt treadmill experimental paradigm designed to elicit healthy individuals' motor adaptation by changing the speed of one of the treadmill belts, while keeping the speed of the other belt constant. We applied this experimental paradigm to both forward and backward walking. We analyzed several adaptation parameters including step symmetry, stability, and energy expenditure as well as the characteristics of the synergies of lower-limb muscles. We found that forward and backward walking share the same muscle synergy modules. We showed that these modules are marked by similar patterns of adaptation driven by stability and energy consumption minimization criteria, both relying on modulating the temporal activation of the muscle synergies. Our results provide evidence that forward and backward walking are governed by the same control and adaptation mechanisms.
Collapse
|
250
|
Malloy P, Dr Neumann D, Leung A, Kipp K. Hip Joint Kinematic Covariation During Gait Before and 1-Year After Hip Arthroscopic Surgery for Femoroacetabular Impingement Syndrome. Front Surg 2021; 8:614329. [PMID: 34485370 PMCID: PMC8416035 DOI: 10.3389/fsurg.2021.614329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
The primary aim of this study was to determine if the three-dimensional (3D) hip joint motion coordination during gait changes after arthroscopic surgery for femoroacetabular impingement syndrome (FAIS). Three-dimensional hip joint kinematic data were collected with a 12-camera motion capture system. Five trials of level walking were collected preoperatively (PRE) and at 1-year postoperatively (POST) in 8 patients diagnosed with FAIS and at a single time point in 8 healthy controls. Planar covariation analysis was performed to quantify the 3D hip joint motion coordination strategy during gait. Independent sample's t-test were used to determine differences between the FAIS group at the preoperative time point (PRE) and healthy controls. Paired samples t-tests were used to determine differences between the PRE and POST time points within the FAIS group. The %VAF by PC 1 for the FAIS group at the PRE time point was significantly less than that of healthy controls (PRE: 77.2 ± 8.7% vs. Control: 96.1 ± 2.8%; p = 0.0001), and the % VAF of the second PC (PC2) was significantly greater [PRE: 22.8 (8.7)%; Control: 3.9 (2.8)%; p = 0.0001]. No differences in %VAF were found between the PRE and POST time points within the FAIS group for PC1 [PRE: 77.2 (8.7)% vs. POST: 79.3 (11.1)%; p = 0.472] or PC2 [PRE: 22.7 (8.7)%; POST: 20.7 (11.1)%; p = 0.472]. Significant differences in the plane specific contribution to the 3D motion coordination strategy were found between the FAIS patients at the PRE and POST time points for the sagittal plane [PRE: 5.6 (2.7) vs. POST: 0.91 (6.1); p = 0.012] and frontal plane [PRE: −10.4 (2.2) and −1.5 (6.3); p = 0.005]. Patients with FAIS demonstrated a more complex coordination strategy of 3D hip joint motion than controls and this strategy remains unchanged after hip arthroscopic surgery despite changes in the plane specific contribution to this strategy. These findings indicate that motor control impairments in FAIS patients do exist and seem to persist for at least 1 year after hip arthroscopic surgery.
Collapse
Affiliation(s)
- Philip Malloy
- Department of Physical Therapy, Arcadia University, Glenside, PA, United States.,Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Donald Dr Neumann
- Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Anne Leung
- Department of Physical Therapy, Arcadia University, Glenside, PA, United States
| | - Kristof Kipp
- Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|