201
|
Zipser-Mohammadzada F, Conway BA, Halliday DM, Zipser CM, Easthope CA, Curt A, Schubert M. Intramuscular coherence during challenging walking in incomplete spinal cord injury: Reduced high-frequency coherence reflects impaired supra-spinal control. Front Hum Neurosci 2022; 16:927704. [PMID: 35992941 PMCID: PMC9387543 DOI: 10.3389/fnhum.2022.927704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals regaining reliable day-to-day walking function after incomplete spinal cord injury (iSCI) report persisting unsteadiness when confronted with walking challenges. However, quantifiable measures of walking capacity lack the sensitivity to reveal underlying impairments of supra-spinal locomotor control. This study investigates the relationship between intramuscular coherence and corticospinal dynamic balance control during a visually guided Target walking treadmill task. In thirteen individuals with iSCI and 24 controls, intramuscular coherence and cumulant densities were estimated from pairs of Tibialis anterior surface EMG recordings during normal treadmill walking and a Target walking task. The approximate center of mass was calculated from pelvis markers. Spearman rank correlations were performed to evaluate the relationship between intramuscular coherence, clinical parameters, and center of mass parameters. In controls, we found that the Target walking task results in increased high-frequency (21–44 Hz) intramuscular coherence, which negatively related to changes in the center of mass movement, whereas this modulation was largely reduced in individuals with iSCI. The impaired modulation of high-frequency intramuscular coherence during the Target walking task correlated with neurophysiological and functional readouts, such as motor-evoked potential amplitude and outdoor mobility score, as well as center of mass trajectory length. The Target walking effect, the difference between Target and Normal walking intramuscular coherence, was significantly higher in controls than in individuals with iSCI [F(1.0,35.0) = 13.042, p < 0.001]. Intramuscular coherence obtained during challenging walking in individuals with iSCI may provide information on corticospinal gait control. The relationships between biomechanics, clinical scores, and neurophysiology suggest that intramuscular coherence assessed during challenging tasks may be meaningful for understanding impaired supra-spinal control in individuals with iSCI.
Collapse
Affiliation(s)
- Freschta Zipser-Mohammadzada
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- *Correspondence: Freschta Zipser-Mohammadzada,
| | - Bernard A. Conway
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - David M. Halliday
- Department of Electronic Engineering, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Chris A. Easthope
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Cereneo Foundation, Center for Interdisciplinary Research, Vitznau, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
202
|
Sinitski E, Baddour N, Gholizadeh H, Besemann M, Dudek N, Lemaire E. Cross slope gait biomechanics for individuals with and without a unilateral transtibial amputation. Clin Biomech (Bristol, Avon) 2022; 98:105734. [PMID: 35964385 DOI: 10.1016/j.clinbiomech.2022.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND This research was conducted to better understand compensatory strategies during cross-slope walking for adults with and without a unilateral transtibial amputation. METHODS Fourteen individuals with unilateral transtibial amputation and 14 individuals with no lower limb amputation participated in this study. Motion and force data were captured while participants walked on a treadmill in a virtual reality environment for level and ± 5° cross slopes. Temporal-spatial parameters, kinematics (ankle, knee, hip, pelvis, trunk), and ground reaction forces were examined. FINDINGS Compared to level, participants had similar step width but slightly longer steps for top-cross-slope and slightly shorter steps for bottom-cross-slope. Top-cross-slope required a more flexed limb with ankle eversion, and bottom-cross-slope required a more extended limb with ankle inversion. Participants had similar lateral pelvis and trunk motion for all walking conditions, but slightly more anterior trunk lean for top cross-slope with more anterior trunk lean observed for individuals with a lower limb amputation than without lower limb amputation. Participants with a lower limb amputation compensated for limited prosthetic ankle-foot dorsiflexion on the top-cross-slope by increasing prosthetic side hip flexion, reducing intact ankle/knee flexion, and increasing intact push-off force. INTERPRETATION Gait adaptations during cross-slope walking were primarily in the lower extremities and were largely similar for those with and without a transtibial amputation. The information presented in this paper provides a better understanding of gait strategies adopted during cross-slope walking and can guide researchers and industry in prosthetic development.
Collapse
Affiliation(s)
| | - Natalie Baddour
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada
| | - Hossein Gholizadeh
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada; Ottawa Hospital Research Institute, Centre for Rehabilitation Research and Development, Ottawa, Canada
| | | | - Nancy Dudek
- Department of Medicine (Division of Physical Medicine & Rehabilitation) and The Ottawa Hospital, University of Ottawa, Canada
| | - Edward Lemaire
- Ottawa Hospital Research Institute, Centre for Rehabilitation Research and Development, Ottawa, Canada; Department of Medicine (Division of Physical Medicine & Rehabilitation) and The Ottawa Hospital, University of Ottawa, Canada
| |
Collapse
|
203
|
Dobson JA, Riddiford-Harland DL, Bell AF, Wegener C, Steele JR. Effect of work boot shaft stiffness and sole flexibility on boot clearance and shank muscle activity when walking on simulated coal mining surfaces: implications for reducing trip risk. ERGONOMICS 2022; 65:1071-1085. [PMID: 34882520 DOI: 10.1080/00140139.2021.2016996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Mining work boot shaft stiffness and sole flexibility variations are likely to affect how a miner moves their foot to clear the ground thus influencing their risk of tripping. Despite the potential negative consequences associated with tripping, limited research has investigated how these boot design features might contribute to a miner's trip risk. Therefore, this study aimed to investigate the effects of systematic variations to boot shaft stiffness and sole flexibility on lower limb alignment and shank muscle activity at toe off and boot clearance during initial swing when 20 males walked across two simulated coal mining surfaces. Although knee and hip alignment remained constant, changes to boot shaft stiffness and sole flexibility significantly interacted to influence the shank muscle activity and ankle alignment displayed at toe off. To reduce the risk of tripping, underground coal miners should avoid a boot with a stiff shaft, regardless of the sole flexibility.
Collapse
Affiliation(s)
- Jessica A Dobson
- Biomechanics Research Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, Australia
| | - Diane L Riddiford-Harland
- Biomechanics Research Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, Australia
| | - Alison F Bell
- School of Health & Society, Faculty of Arts, Social Sciences & Humanities, University of Wollongong, Wollongong, Australia
| | - Caleb Wegener
- Discipline of Exercise & Sport Science, Faculty of Health Sciences, University of Sydney, Sydney, Australia
- Mack Boots, Bunzl Brands and Operations, Erskine Park, Australia
| | - Julie R Steele
- Biomechanics Research Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|
204
|
Tillman M, Molino J, Zaferiou AM. Frontal plane balance during pre-planned and late-cued 90 degree turns while walking. J Biomech 2022; 141:111206. [PMID: 35772242 PMCID: PMC10722562 DOI: 10.1016/j.jbiomech.2022.111206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022]
Abstract
This study evaluated frontal-plane dynamic balance control during 90° left turns while walking. Ten healthy young adults performed straight-line gait, pre-planned turns, and turns cued visually (late-cued turns). We quantified rotational balance control via the range of frontal-plane angular momentum (Hf) about the center of mass (COM), and the relative positioning of the COM and the feet using the horizontal distance from the COM to the lateral edge of the base of support (lateral distance) and the mediolateral margin of stability (MOSml). We hypothesized that the Hf range would increase and the lateral distance and MOSml minima would decrease during each turn type vs. straight-line gait and during late-cued vs. pre-planned turns. We found that the range of Hf was significantly greater during each turn type vs. straight-line gait and during late-cued vs. pre-planned turns. Also, the lateral distance minima were significantly smaller during turns vs. straight-line gait, and during pre-planned vs. late-cued turns. Our hypotheses about MOSml were partially supported because the MOSml minima patterns were specific to right or left steps and were not significantly different between straight-line gait and pre-planned turns overall, but the right step's MOSml minima were more negative during late-cued vs. pre-planned turns and between either turn and straight-line gait. Finally, we observed slower gait speeds, fewer footfalls, shorter turn phase duration, and different turn strategies used during late-cued vs. pre-planned turns. Overall, these findings reveal multifaceted control of frontal-plane balance during turns encountered during everyday mobility.
Collapse
Affiliation(s)
- Mitchell Tillman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Janine Molino
- Department of Orthopaedics, Brown University, Providence, RI, USA; Lifespan Biostatistics, Epidemiology, and Research Design Core, Rhode Island Hospital, Providence, RI, USA
| | - Antonia M Zaferiou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
205
|
Carcreff L, Payen G, Grouvel G, Massé F, Armand S. Three-Dimensional Lower-Limb Kinematics from Accelerometers and Gyroscopes with Simple and Minimal Functional Calibration Tasks: Validation on Asymptomatic Participants. SENSORS 2022; 22:s22155657. [PMID: 35957218 PMCID: PMC9370908 DOI: 10.3390/s22155657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
The use of inertial measurement units (IMUs) to compute gait outputs, such as the 3D lower-limb kinematics is of huge potential, but no consensus on the procedures and algorithms exists. This study aimed at evaluating the validity of a 7-IMUs system against the optoelectronic system. Ten asymptomatic subjects were included. They wore IMUs on their feet, shanks, thighs and pelvis. The IMUs were embedded in clusters with reflective markers. Reference kinematics was computed from anatomical markers. Gait kinematics was obtained from accelerometer and gyroscope data after sensor orientation estimation and sensor-to-segment (S2S) calibration steps. The S2S calibration steps were also applied to the cluster data. IMU-based and cluster-based kinematics were compared to the reference through root mean square errors (RMSEs), centered RMSEs (after mean removal), correlation coefficients (CCs) and differences in amplitude. The mean RMSE and centered RMSE were, respectively, 7.5° and 4.0° for IMU-kinematics, and 7.9° and 3.8° for cluster-kinematics. Very good CCs were found in the sagittal plane for both IMUs and cluster-based kinematics at the hip, knee and ankle levels (CCs > 0.85). The overall mean amplitude difference was about 7°. These results reflected good accordance in our system with the reference, especially in the sagittal plane, but the presence of offsets requires caution for clinical use.
Collapse
Affiliation(s)
- Lena Carcreff
- Kinesiology Laboratory, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland; (G.G.); (S.A.)
- Nantes Université, Movement-Interactions-Performance, MIP, UR4334, F-44000 Nantes, France
- Correspondence:
| | - Gabriel Payen
- Kinesiology Laboratory, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland; (G.G.); (S.A.)
- Gait Up SA, 1020 Renens, Switzerland; (G.P.); (F.M.)
| | - Gautier Grouvel
- Kinesiology Laboratory, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland; (G.G.); (S.A.)
| | - Fabien Massé
- Gait Up SA, 1020 Renens, Switzerland; (G.P.); (F.M.)
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland; (G.G.); (S.A.)
| |
Collapse
|
206
|
Angle-Angle Diagrams in the Assessment of Locomotion in Persons with Multiple Sclerosis: A Preliminary Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gait analysis is clinically relevant in persons with multiple sclerosis (PwMS) and consists of several joint angular displacement–time relationships and spatiotemporal parameters. However, it lacks representation by means of diagrams in which knee-angle/hip-angle and knee-angle/ankle-angle variations are plotted against each other at the same points of time. Three-dimensional kinematic analysis was performed on 20 subjects (10 PwMS/10 healthy controls, HCs), and the knee-angle/hip-angle and knee-angle/ankle-angle diagrams of both lower limbs were determined in the sagittal plane while walking on a motorized treadmill. The area (a quantifier of range of motion) and the perimeter (a quantifier of coordination) of angle-angle diagram loops were calculated. PwMS showed reduced knee-angle/ankle-angle loops compared to HCs (p < 0.05), whereas the hip-angle/ankle-angle loops between the PwMS and HCs was not significant (p > 0.05). Similarly, the activation of leg muscles showed significant differences between PwMS and HCs (p ranged from 0.05 to 0.001). The results indicate that the proposed knee-angle/hip-angle diagram is feasible and could be applied as a reliable tool in future studies aimed at assessing the acute and long-term effects of specific exercise programmes and/or pharmacological treatment in PwMS.
Collapse
|
207
|
Bertaux A, Gueugnon M, Moissenet F, Orliac B, Martz P, Maillefert JF, Ornetti P, Laroche D. Gait analysis dataset of healthy volunteers and patients before and 6 months after total hip arthroplasty. Sci Data 2022; 9:399. [PMID: 35821499 PMCID: PMC9276684 DOI: 10.1038/s41597-022-01483-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Clinical gait analysis is a promising approach for quantifying gait deviations and assessing the impairments altering gait in patients with osteoarthritis. There is a lack of consensus on the identification of kinematic outcomes that could be used for the diagnosis and follow up in patients. The proposed dataset has been established on 80 asymptomatic participants and 106 patients with unilateral hip osteoarthritis before and 6 months after arthroplasty. All volunteers walked along a 6 meters straight line at their self-selected speed. Three dimensional trajectories of 35 reflective markers were simultaneously recorded and Plugin Gait Bones, angles, Center of Mass trajectories and ground reaction forces were computed. Gait video recordings, when available, anthropometric and demographic descriptions are also available. A minimum of 10 trials have been made available in the weka file format and C3D file to enhance the use of machine learning algorithms. We aim to share this dataset to facilitate the identification of new movement-related kinematic outcomes for improving the diagnosis and follow up in patients with hip OA.
Collapse
Affiliation(s)
- Aurélie Bertaux
- CIAD UMR 7533, Univ. Bourgogne Franche-Comté, UB, F-21000, Dijon, France
| | - Mathieu Gueugnon
- INSERM, UMR1093-CAPS, Univ. Bourgogne Franche-Comté, UB, 21000, Dijon, France.,INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, 21000, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, 21000, Dijon, France
| | | | - Baptiste Orliac
- INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, 21000, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, 21000, Dijon, France
| | - Pierre Martz
- INSERM, UMR1093-CAPS, Univ. Bourgogne Franche-Comté, UB, 21000, Dijon, France.,INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, 21000, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, 21000, Dijon, France.,Orthopaedics department, CHU Dijon-Bourgogne, 21000, Dijon, France
| | - Jean-Francis Maillefert
- INSERM, UMR1093-CAPS, Univ. Bourgogne Franche-Comté, UB, 21000, Dijon, France.,Rheumatology department, CHU Dijon-Bourgogne, 21000, Dijon, France
| | - Paul Ornetti
- INSERM, UMR1093-CAPS, Univ. Bourgogne Franche-Comté, UB, 21000, Dijon, France.,INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, 21000, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, 21000, Dijon, France.,Rheumatology department, CHU Dijon-Bourgogne, 21000, Dijon, France
| | - Davy Laroche
- INSERM, UMR1093-CAPS, Univ. Bourgogne Franche-Comté, UB, 21000, Dijon, France. .,INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, 21000, Dijon, France. .,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, 21000, Dijon, France.
| |
Collapse
|
208
|
Fonseca M, Dumas R, Armand S. Automatic gait event detection in pathologic gait using an auto-selection approach among concurrent methods. Gait Posture 2022; 96:271-274. [PMID: 35716485 DOI: 10.1016/j.gaitpost.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/01/2022] [Accepted: 06/02/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Accurate gait event detection is crucial to analyze pathological gait data. Existing methods relying on marker trajectories were reported to be sensitive to different gait patterns, which is an inherent characteristic of pathologic gait. RESEARCH QUESTION We propose a new approach based on auto-selection among different methods, original and taken from the literature. METHODS The auto-selection approach evaluates the accuracy of the implemented methods for both foot-strike and foot-off on all available events detected by the force platforms, independently, and automatically selects the most accurate one to be used on the whole gait session. Pathological gait data from 272 patients with cerebral palsy and idiopathic toe walking were used retrospectively to evaluate the accuracy of this approach. Three methods previously reported in literature together with original methods developed based on auto-correlation were implemented and constituted our auto-selection approach. The accuracy and precision were compared to a recently reported method based on deep events as it is the method that showed the best performance in literature. RESULTS Results showed that the proposed approach outperformed all implemented methods used alone, with an accuracy of - 2.0 ms and - 0.9 ms for foot strike and foot-off, respectively. Additionally, more than 99% and 93% of events detected were detected within 20 ms and 10 ms of accuracy, respectively. SIGNIFICANCE The proposed methodology has demonstrated to improve the accuracy and precision of gait event detection in gait analysis.
Collapse
Affiliation(s)
- Mickael Fonseca
- Geneva University Hospitals and University of Geneva, Rue Gabrielle Perret Gentil 4, 1205 Geneva, Switzerland; Université Gustave Eiffel, 25 avenue François Mitterand, Case 24, 77454 Marne-la-Vallée cedex 2, France.
| | - Raphaël Dumas
- Université Gustave Eiffel, 25 avenue François Mitterand, Case 24, 77454 Marne-la-Vallée cedex 2, France.
| | - Stéphane Armand
- Geneva University Hospitals and University of Geneva, Rue Gabrielle Perret Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
209
|
Ahuja S, Franz JR. The metabolic cost of walking balance control and adaptation in young adults. Gait Posture 2022; 96:190-194. [PMID: 35696824 DOI: 10.1016/j.gaitpost.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Our aim was to quantify the role of metabolic energy cost in governing neuromuscular adaptation to prolonged exposure to optical flow walking balance perturbations in young adults. RESEARCH QUESTION We hypothesized that metabolic cost would increase at the onset of balance perturbations in a manner consistent with wider and shorter steps and increased step-to-step variability. We also hypothesized that metabolic cost would decrease with prolonged exposure in a manner consistent with a return of step width and step length to values seen during normal, unperturbed walking. METHODS Healthy young adults (n = 18) walked on a treadmill while viewing a virtual hallway. Optical flow balance perturbations were introduced over a 10-minute interval during a 20-minute walking bout while measuring step kinematics and metabolic energy cost. For all outcome measures, we computed average values during the following four time periods of interest: Pre (minutes 3-5), Early Perturbation (minutes 5-7), Late Perturbation (minutes 13-15), and Post (minutes 18-20). A repeated-measures ANOVA tested for main effects of time, following by post-hoc pairwise comparisons. RESULTS With the onset of perturbations, participants walked with 3% shorter, 17% wider, and 53-73% more variable steps. These changes were accompanied by a significant 12% increase in net metabolic power compared to walking normally. With prolonged exposure to perturbations, step width and step length tended toward values seen during normal, unperturbed walking - changes accompanied by a 5% reduction in metabolic power (p-values≤0.05). SIGNIFICANCE Our study reveals that the adoption of generalized anticipatory control at the onset of optical flow balance perturbations and the subsequent shift to task-specific reactive control following prolonged exposure have meaningful metabolic consequences. Moreover, our findings suggest that metabolic energy cost may shape the strategies we use to adapt walking balance in response to perturbations.
Collapse
Affiliation(s)
- Shawn Ahuja
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
210
|
Papachatzis N, Slivka DR, Pipinos II, Schmid KK, Takahashi KZ. Does the Heel’s Dissipative Energetic Behavior Affect Its Thermodynamic Responses During Walking? Front Bioeng Biotechnol 2022; 10:908725. [PMID: 35832413 PMCID: PMC9271620 DOI: 10.3389/fbioe.2022.908725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Most of the terrestrial legged locomotion gaits, like human walking, necessitate energy dissipation upon ground collision. In humans, the heel mostly performs net-negative work during collisions, and it is currently unclear how it dissipates that energy. Based on the laws of thermodynamics, one possibility is that the net-negative collision work may be dissipated as heat. If supported, such a finding would inform the thermoregulation capacity of human feet, which may have implications for understanding foot complications and tissue damage. Here, we examined the correlation between energy dissipation and thermal responses by experimentally increasing the heel’s collisional forces. Twenty healthy young adults walked overground on force plates and for 10 min on a treadmill (both at 1.25 ms−1) while wearing a vest with three different levels of added mass (+0%, +15%, & +30% of their body mass). We estimated the heel’s work using a unified deformable segment analysis during overground walking. We measured the heel’s temperature immediately before and after each treadmill trial. We hypothesized that the heel’s temperature and net-negative work would increase when walking with added mass, and the temperature change is correlated with the increased net-negative work. We found that walking with +30% added mass significantly increased the heel’s temperature change by 0.72 ± 1.91 ℃ (p = 0.009) and the magnitude of net-negative work (extrapolated to 10 min of walking) by 326.94 ± 379.92 J (p = 0.005). However, we found no correlation between the heel’s net-negative work and temperature changes (p = 0.277). While this result refuted our second hypothesis, our findings likely demonstrate the heel’s dynamic thermoregulatory capacity. If all the negative work were dissipated as heat, we would expect excessive skin temperature elevation during prolonged walking, which may cause skin complications. Therefore, our results likely indicate that various heat dissipation mechanisms control the heel’s thermodynamic responses, which may protect the health and integrity of the surrounding tissue. Also, our results indicate that additional mechanical factors, besides energy dissipation, explain the heel’s temperature rise. Therefore, future experiments may explore alternative factors affecting thermodynamic responses, including mechanical (e.g., sound & shear-stress) and physiological mechanisms (e.g., sweating, local metabolic rate, & blood flow).
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kendra K. Schmid
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kota Z. Takahashi
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
- *Correspondence: Kota Z. Takahashi,
| |
Collapse
|
211
|
Riazati S, McGuirk TE, Perry ES, Sihanath WB, Patten C. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains. Front Hum Neurosci 2022; 16:867474. [PMID: 35782037 PMCID: PMC9245068 DOI: 10.3389/fnhum.2022.867474] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose: To examine the between-day absolute reliability of gait parameters acquired with Theia3D markerless motion capture for use in biomechanical and clinical settings. Methods: Twenty-one (7 M,14 F) participants aged between 18 and 73 years were recruited in community locations to perform two walking tasks: self-selected and fastest-comfortable walking speed. Participants walked along a designated walkway on two separate days.Joint angle kinematics for the hip, knee, and ankle, for all planes of motion, and spatiotemporal parameters were extracted to determine absolute reliability between-days. For kinematics, absolute reliability was examined using: full curve analysis [root mean square difference (RMSD)] and discrete point analysis at defined gait events using standard error of measurement (SEM). The absolute reliability of spatiotemporal parameters was also examined using SEM and SEM%. Results: Markerless motion capture produced low measurement error for kinematic full curve analysis with RMSDs ranging between 0.96° and 3.71° across all joints and planes for both walking tasks. Similarly, discrete point analysis within the gait cycle produced SEM values ranging between 0.91° and 3.25° for both sagittal and frontal plane angles of the hip, knee, and ankle. The highest measurement errors were observed in the transverse plane, with SEM >5° for ankle and knee range of motion. For the majority of spatiotemporal parameters, markerless motion capture produced low SEM values and SEM% below 10%. Conclusion: Markerless motion capture using Theia3D offers reliable gait analysis suitable for biomechanical and clinical use.
Collapse
Affiliation(s)
- Sherveen Riazati
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
| | - Theresa E. McGuirk
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
- VA Northern California Health Care System, Martinez, CA, United States
| | - Elliott S. Perry
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- VA Northern California Health Care System, Martinez, CA, United States
| | - Wandasun B. Sihanath
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
- VA Northern California Health Care System, Martinez, CA, United States
| |
Collapse
|
212
|
Ren X, Lutter C, Kebbach M, Bruhn S, Yang Q, Bader R, Tischer T. Compensatory Responses During Slip-Induced Perturbation in Patients With Knee Osteoarthritis Compared With Healthy Older Adults: An Increased Risk of Falls? Front Bioeng Biotechnol 2022; 10:893840. [PMID: 35782515 PMCID: PMC9240265 DOI: 10.3389/fbioe.2022.893840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Functional impairment of the knee joint affected by osteoarthritis and loss of muscle strength leads to a significant increase in the number of falls. Nevertheless, little is known about strategies for coping with gait perturbations in patients with knee osteoarthritis (KOA). Thus, this study aimed to examine the compensatory strategies of patients with KOA in response to a backward slip perturbation compared with healthy older adults. Methods: An automated perturbation program was developed by using D-Flow software based on the Gait Real-time Analysis Interactive Lab, and an induced backward slip perturbation was implemented on nine patients with severe KOA (68.89 ± 3.59 years) and 15 age-matched healthy older adults (68.33 ± 3.29 years). Step length, gait speed, range of motion, vertical ground reaction forces, lower extremity joint angles, and joint moments were computed and analyzed. Results: Compared with older adults, patients with KOA had significantly lower step length, gait speed, and vertical ground reaction forces in both normal walking and the first recovery step following backward slip perturbations. Inadequate flexion and extension of joint angles and insufficient generation of joint moments predispose patients with KOA to fall. Hip extension angle and flexion moment, knee range of motion, and vertical ground reaction forces are key monitoring variables. Conclusion: The risk of falls for patients with KOA in response to backward slip perturbations is higher. Patients with KOA should focus not only on quadriceps muscle strength related to knee range of motion but also on improving hip extensor strength and activation through specific exercises. Targeted resistance training and perturbation-based gait training could be better options.
Collapse
Affiliation(s)
- Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Christoph Lutter
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Maeruan Kebbach
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, Faculty of Philosophy, University of Rostock, Rostock, Germany
| | - Qining Yang
- Department of Joint Surgery, The affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Thomas Tischer
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
213
|
Clothing condition does not affect meaningful clinical interpretation in markerless motion capture. J Biomech 2022; 141:111182. [PMID: 35749889 DOI: 10.1016/j.jbiomech.2022.111182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Markerless motion capture allows whole-body movements to be captured without the need for physical markers to be placed on the body. This enables motion capture analyses to be conducted in more ecologically valid environments. However, the influences of varied clothing on video-based markerless motion capture assessments remain largely unexplored. This study investigated two types of clothing conditions, "Sport" (gym shirt and shorts) and "Street" (unrestricted casual clothing), on gait parameters during overground walking by 29 participants at self-selected speeds using markerless motion capture. Segment lengths, gait spatiotemporal parameters, and lower-limb kinematics were compared between the two clothing conditions. Mean differences in segment length for the forearm, upper arm, thigh, and shank between clothing conditions ranged from 0.2 cm for the forearm to 0.9 cm for the thigh (p < 0.05 for thigh and shank) but below typical marker placement errors (1 - 2 cm). Seven out of 9 gait spatiotemporal parameters demonstrated statistically significant differences between clothing conditions (p < 0.05), however, these differences were approximately ten times smaller than minimal detectable changes in movement-related pathologies including multiple sclerosis and cerebral palsy. Hip, knee, and ankle joint angle root-mean-square deviation values averaged 2.6° and were comparable to previously reported average inter-session variability for this markerless system (2.8°). The results indicate that clothing, a potential limiting factor in markerless motion capture performance, would negligibly alter meaningful clinical interpretations under the conditions investigated.
Collapse
|
214
|
McGuirk TE, Perry ES, Sihanath WB, Riazati S, Patten C. Feasibility of Markerless Motion Capture for Three-Dimensional Gait Assessment in Community Settings. Front Hum Neurosci 2022; 16:867485. [PMID: 35754772 PMCID: PMC9224754 DOI: 10.3389/fnhum.2022.867485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Three-dimensional (3D) kinematic analysis of gait holds potential as a digital biomarker to identify neuropathologies, monitor disease progression, and provide a high-resolution outcome measure to monitor neurorehabilitation efficacy by characterizing the mechanisms underlying gait impairments. There is a need for 3D motion capture technologies accessible to community, clinical, and rehabilitation settings. Image-based markerless motion capture (MLMC) using neural network-based deep learning algorithms shows promise as an accessible technology in these settings. In this study, we assessed the feasibility of implementing 3D MLMC technology outside the traditional laboratory environment to evaluate its potential as a tool for outcomes assessment in neurorehabilitation. A sample population of 166 individuals aged 9-87 years (mean 43.7, S.D. 20.4) of varied health history were evaluated at six different locations in the community over a 3-month period. Participants walked overground at self-selected (SS) and fastest comfortable (FC) speeds. Feasibility measures considered the expansion, implementation, and practicality of this MLMC system. A subset of the sample population (46 individuals) walked over a pressure-sensitive walkway (PSW) concurrently with MLMC to assess agreement of the spatiotemporal gait parameters measured between the two systems. Twelve spatiotemporal parameters were compared using mean differences, Bland-Altman analysis, and intraclass correlation coefficients for agreement (ICC2,1) and consistency (ICC3,1). All measures showed good to excellent agreement between MLMC and the PSW system with cadence, speed, step length, step time, stride length, and stride time showing strong similarity. Furthermore, this information can inform the development of rehabilitation strategies targeting gait dysfunction. These first experiments provide evidence for feasibility of using MLMC in community and clinical practice environments to acquire robust 3D kinematic data from a diverse population. This foundational work enables future investigation with MLMC especially its use as a digital biomarker of disease progression and rehabilitation outcome.
Collapse
Affiliation(s)
- Theresa E. McGuirk
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Elliott S. Perry
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Wandasun B. Sihanath
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
| | - Sherveen Riazati
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
| | - Carolynn Patten
- Biomechanics, Rehabilitation, and Integrative Neuroscience Lab, Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Healthy Aging in a Digital World Initiative, a UC Davis “Big Idea”, Sacramento, CA, United States
- Center for Neuroengineering and Medicine, University of California, Davis, Davis, CA, United States
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| |
Collapse
|
215
|
Bonci T, Salis F, Scott K, Alcock L, Becker C, Bertuletti S, Buckley E, Caruso M, Cereatti A, Del Din S, Gazit E, Hansen C, Hausdorff JM, Maetzler W, Palmerini L, Rochester L, Schwickert L, Sharrack B, Vogiatzis I, Mazzà C. An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks. Front Bioeng Biotechnol 2022; 10:868928. [PMID: 35721859 PMCID: PMC9201978 DOI: 10.3389/fbioe.2022.868928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in the quantification of gait as part of complex motor tasks. This requires gait events (GEs) to be detected under conditions different from straight walking. This study aimed to propose and validate a new marker-based GE detection method, which is also suitable for curvilinear walking and step negotiation. The method was first tested against existing algorithms using data from healthy young adults (YA, n = 20) and then assessed in data from 10 individuals from the following five cohorts: older adults, chronic obstructive pulmonary disease, multiple sclerosis, Parkinson’s disease, and proximal femur fracture. The propagation of the errors associated with GE detection on the calculation of stride length, duration, speed, and stance/swing durations was investigated. All participants performed a variety of motor tasks including curvilinear walking and step negotiation, while reference GEs were identified using a validated methodology exploiting pressure insole signals. Sensitivity, positive predictive values (PPV), F1-score, bias, precision, and accuracy were calculated. Absolute agreement [intraclass correlation coefficient (ICC2,1)] between marker-based and pressure insole stride parameters was also tested. In the YA cohort, the proposed method outperformed the existing ones, with sensitivity, PPV, and F1 scores ≥ 99% for both GEs and conditions, with a virtually null bias (<10 ms). Overall, temporal inaccuracies minimally impacted stride duration, length, and speed (median absolute errors ≤1%). Similar algorithm performances were obtained for all the other five cohorts in GE detection and propagation to the stride parameters, where an excellent absolute agreement with the pressure insoles was also found (ICC2,1=0.817− 0.999). In conclusion, the proposed method accurately detects GE from marker data under different walking conditions and for a variety of gait impairments.
Collapse
Affiliation(s)
- Tecla Bonci
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Tecla Bonci,
| | - Francesca Salis
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Kirsty Scott
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Clemens Becker
- Department for Geriatric Rehabilitation, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Stefano Bertuletti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ellen Buckley
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Caruso
- Department of Electronics and Telecommunications, Politecnico Di Torino, Torino, Italy
| | - Andrea Cereatti
- Department of Electronics and Telecommunications, Politecnico Di Torino, Torino, Italy
| | - Silvia Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Eran Gazit
- Centre for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Jeffrey M. Hausdorff
- Centre for the Study of Movement, Cognition and Mobility, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Orthopaedic Surgery, Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, Kiel, Germany
| | - Luca Palmerini
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
- Health Sciences and Technologies–Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Lars Schwickert
- Department for Geriatric Rehabilitation, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Basil Sharrack
- Department of Neuroscience, Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Claudia Mazzà
- Department of Mechanical Engineering, Insigno Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
216
|
Acute effect of traditional and adaptive metronomes on gait variability in older individuals with a history of falls. Aging Clin Exp Res 2022; 34:1349-1356. [PMID: 35020171 PMCID: PMC9151579 DOI: 10.1007/s40520-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/26/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Metronome cueing has been shown to reduce gait variability and thereby potentially reduce falls risk in individuals with Parkinson's disease. It is unclear however, if metronome cueing has a similar effect in healthy older adults with a history of falls. AIM To investigate whether a traditional and/or an adaptive metronome, based on an individual's gait pattern, were effective in reducing gait variability in older adults with a history of falls. METHODS Twenty older adults (15 women, 71 ± 4.9 years) with a history of falls were included in this cross-over study. Participants received two types of cueing (adaptive and traditional metronome) 1 week apart. The variability of the participants' stride time, stride length, walking speed and duration of double leg support were recorded during three walking conditions (baseline, during feedback and post-feedback gait). Repeated-measures ANOVA was used to assess the possible effects of the two cueing strategies on gait variables. RESULTS Compared with the baseline condition, participants had significantly increased stride time variability during feedback (F (2) = 9.83, p < 0.001) and decreased double leg support time variability post-feedback (F (2) 3.69, p = 0.034). Increased stride time variability was observed with the adaptive metronome in comparison to the traditional metronome. CONCLUSION Metronome cueing strategies may reduce double leg support variability in older adults with a history of falls but seem to increase stride time variability. Further studies are needed to investigate if metronome cueing is more beneficial for individuals with greater baseline gait variability than those included in the current study.
Collapse
|
217
|
Ripic Z, Kuenze C, Andersen MS, Theodorakos I, Signorile J, Eltoukhy M. Ground reaction force and joint moment estimation during gait using an Azure Kinect-driven musculoskeletal modeling approach. Gait Posture 2022; 95:49-55. [PMID: 35428024 DOI: 10.1016/j.gaitpost.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gait analysis is burdened by time and equipment costs, interpretation, and accessibility of three-dimensional motion analysis systems. Evidence suggests growing adoption of gait testing in the shift toward evidence-based medicine. Further developments addressing these barriers will aid its efficacy in clinical practice. Previous research aiming to develop gait analysis systems for kinetics estimation using the Kinect V2 have provided promising results yet modified approaches using the latest hardware may further aid kinetics estimation accuracy RESEARCH QUESTION: Can a single Azure Kinect sensor combined with a musculoskeletal modeling approach provide kinetics estimations during gait similar to those obtained from marker-based systems with embedded force platforms? METHODS Ten subjects were recruited to perform three walking trials at their normal speed. Trials were recorded using an eight-camera optoelectronic system with two embedded force plates and a single Azure Kinect sensor. Marker and depth data were both used to drive a musculoskeletal model using the AnyBody Modeling System. Predicted kinetics from the Azure Kinect-driven model, including ground reaction force (GRF) and joint moments, were compared to measured values using root meansquared error (RMSE), normalized RMSE, Pearson correlation, concordance correlation, and statistical parametric mapping RESULTS: High to very high correlations were observed for anteroposterior GRF (ρ = 0.889), vertical GRF (ρ = 0.940), and sagittal hip (ρ = 0.805) and ankle (ρ = 0.876) moments. RMSEs were 1.2 ± 2.2 (%BW), 3.2 ± 5.7 (%BW), 0.7 ± 0.1.3 (%BWH), and 0.6 ± 1.0 (%BWH) SIGNIFICANCE: The proposed approach using the Azure Kinect provided higher accuracy compared to previous studies using the Kinect V2 potentially due to improved foot tracking by the Azure Kinect. Future studies should seek to optimize ground contact parameters and focus on regions of error between predicted and measured kinetics highlighted currently for further improvements in kinetic estimations.
Collapse
Affiliation(s)
- Zachary Ripic
- Department of Kinesiology and Sport Sciences, School of Education & Human Development, University of Miami, Coral Gables, FL 33143, USA
| | - Christopher Kuenze
- Department of Kinesiology, School of Education, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Skipper Andersen
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg East, Denmark
| | - Ilias Theodorakos
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg East, Denmark
| | - Joseph Signorile
- Department of Kinesiology and Sport Sciences, School of Education & Human Development, University of Miami, Coral Gables, FL 33143, USA; Center on Aging, Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA
| | - Moataz Eltoukhy
- Department of Kinesiology and Sport Sciences, School of Education & Human Development, University of Miami, Coral Gables, FL 33143, USA.
| |
Collapse
|
218
|
Li J, Wang Y, Wei Y, Kong D, Lin Y, Wang D, Cheng S, Yin P, Wei M. The effect of talus osteochondral defects of different area size on ankle joint stability: a finite element analysis. BMC Musculoskelet Disord 2022; 23:500. [PMID: 35624444 PMCID: PMC9137113 DOI: 10.1186/s12891-022-05450-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Osteochondral lesion of the talus (OLT) is one of the most common ankle injuries, which will lead to biomechanical changes in the ankle joint and ultimately affect ankle function. Finite element analysis (FEA) is used to clarify the effect of talus osteochondral defects on the stability of the ankle joint at different depths. However, no research has been conducted on talus osteochondral defect areas that require prompt intervention. In this research, FEA was used to simulate the effect of the area size of talus osteochondral defect on the stress and stability of the ankle joint under a specific depth defect. METHODS Different area sizes (normal, 2 mm* 2 mm, 4 mm* 4 mm, 6 mm* 6 mm, 8 mm* 8 mm, 10 mm* 10 mm, and 12 mm* 12 mm) of the three-dimensional finite element model of osteochondral defects were established. The model was used to simulate and calculate joint stress and displacement of the articular surface of the distal tibia and the proximal talus when the ankle joint was in the heel-strike, midstance, and push-off phases. RESULTS When OLT occurred, the contact pressure of the articular surface, the equivalent stress of the proximal talus, the tibial cartilage, and the talus cartilage did not change significantly with an increase in the size of the osteochondral defect area when the heel-strike phase was below 6 mm * 6 mm. Gradual increases started at 6 mm * 6 mm in the midstance and push-off phases. Maximum changes were reached when the defect area size was 12 mm * 12 mm. The same patterns were observed in the talus displacement. CONCLUSIONS The effect of the defect area of the ankle talus cartilage on the ankle biomechanics is evident in the midstance and push-off phases. When the size of the defect reaches 6 mm * 6 mm, the most apparent change in the stability of the ankle joint occurs, and the effect does not increase linearly with the increase in the size of the defect.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yezhou Wang
- Orthopedic Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Wei
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dan Kong
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Duanyang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengbin Yin
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China.
- The Faculty of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Min Wei
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China.
- The Faculty of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
219
|
Lin JT, Hsu CJ, Dee W, Chen D, Rymer WZ, Wu M. Anodal transcutaneous DC stimulation enhances learning of dynamic balance control during walking in humans with spinal cord injury. Exp Brain Res 2022; 240:1943-1955. [PMID: 35622090 PMCID: PMC9297533 DOI: 10.1007/s00221-022-06388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
Deficits in locomotor function, including impairments in walking speed and balance, are major problems for many individuals with incomplete spinal cord injury (iSCI). However, it remains unclear which type of training paradigms are more effective in improving balance, particularly dynamic balance, in individuals with iSCI. The purpose of this study was to determine whether anodal transcutaneous spinal direct current stimulation (tsDCS) can facilitate learning of balance control during walking in individuals with iSCI. Fifteen individuals with iSCI participated in this study and were tested in two sessions (i.e., tsDCS and sham conditions). Each session consisted of 1 min of treadmill walking without stimulation or perturbation (baseline), 10 min of walking with either anodal tsDCS or sham stimulation, paired with bilateral pelvis perturbation (adaptation), and finally 2 min of walking without stimulation and perturbation (post-adaptation). The outcome measures were the dynamic balance, assessed using the minimal margin of stability (MoS), and electromyography of leg muscles. Participants demonstrated a smaller MoS during the late adaptation period for the anodal tsDCS condition compared to sham (p = 0.041), and this MoS intended to retain during the early post-adaptation period (p = 0.05). In addition, muscle activity of hip abductors was greater for the anodal tsDCS condition compared to sham during the late adaptation period and post-adaptation period (p < 0.05). Results from this study suggest that anodal tsDCS may modulate motor adaptation to pelvis perturbation and facilitate learning of dynamic balance control in individuals with iSCI.
Collapse
Affiliation(s)
- Jui-Te Lin
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611, USA.,Seton Hall University, South Orange, NJ, USA
| | - Chao-Jung Hsu
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611, USA
| | - Weena Dee
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611, USA
| | - David Chen
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611, USA
| | - W Zev Rymer
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Ming Wu
- Legs and Walking Lab, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA. .,Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
220
|
Yen SC, Qian S, Folmar E, Hasson CJ, Chou CA. Recurrence Quantification Analysis of Ankle Kinematics During Gait in Individuals With Chronic Ankle Instability. Front Sports Act Living 2022; 4:893745. [PMID: 35694321 PMCID: PMC9174592 DOI: 10.3389/fspor.2022.893745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose An investigation of the ankle dynamics in a motor task may generate insights into the etiology of chronic ankle instability (CAI). This study presents a novel application of recurrence quantification analysis (RQA) to examine the ankle dynamics during walking. We hypothesized that CAI is associated with changes in the ankle dynamics as assessed by measures of determinism and laminarity using RQA. Methods We recorded and analyzed the ankle position trajectories in the frontal and sagittal planes from 12 participants with CAI and 12 healthy controls during treadmill walking. We used time-delay embedding to reconstruct the position trajectories to a phase space that represents the states of the ankle dynamics. Based on the phase space trajectory, a recurrence plot was constructed and two RQA variables, the percent determinism (%DET) and the percent laminarity (%LAM), were derived from the recurrence plot to quantify the ankle dynamics. Results In the frontal plane, the %LAM in the CAI group was significantly lower than that in the control group (p < 0.05. effect size = 0.86). This indicated that the ankle dynamics in individuals with CAI is less likely to remain in the same state. No significant results were found in the %DET or in the sagittal plane. Conclusion A lower frontal-plane %LAM may reflect more frequent switching between different patterns of neuromuscular control states due to the instabilities associated with CAI. With further study and development, %LAM may have the potential to become a useful biomarker for CAI.
Collapse
Affiliation(s)
- Sheng-Che Yen
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
- *Correspondence: Sheng-Che Yen
| | - Shaodi Qian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Eric Folmar
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Christopher J. Hasson
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Chun-An Chou
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
221
|
Luz BC, Dos Santos AF, Serrão FV. Are Altered Kinematics in Runners With Patellofemoral Pain Sex Specific? Sports Health 2022; 14:822-828. [PMID: 35596521 DOI: 10.1177/19417381221088582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Altered kinematics have been frequently observed in runners with patellofemoral pain (PFP), and few studies have aimed to understand the influence of sex on kinematics of this population. The aim of this study was to investigate whether altered hip and knee kinematics in runners with PFP are sex specific. HYPOTHESIS Kinematics will be different between female and male runners with and without PFP. STUDY DESIGN Case-control study. LEVEL OF EVIDENCE Level 2. METHODS Eighty-four runners were divided into 4 groups: 42 runners with PFP (20 women, 22 men) and 42 asymptomatic runners (21 women, 21 men). Three-dimensional gait analyses of the hip in the frontal and transverse plane and the knee in the frontal plane were analyzed at self-selected running speed on a treadmill. One-way analysis of covariance was used to test for differences in kinematic variables between groups. RESULTS Women with PFP ran with a significantly greater peak hip adduction compared with men with PFP (mean difference [MD] = 4.45°; P = 0.00; effect size [ES] = 0.58) and male control subjects (MD = 4.2°; P = 0.01; ES = 0.54) and greater hip adduction range of motion (ROM) than men with PFP (MD = 3.44°; P = 0.01; ES = 0.49). No significant differences were identified between women with and without PFP. Female control subjects ran with greater peak hip adduction than men with PFP (MD = 5.46°; P < 0.01; ES = 0.58) and male control subjects (MD = 5.21°; P < 0.01; ES = 0.55); greater hip adduction ROM than men with PFP (MD = 4.02°; P = 0.00; ES = 0.52) and male control subjects (MD = 2.91°;P = 0.04; ES = 0.36); and greater peak knee abduction than men with PFP (MD = 3.35°; P = 0.02; ES = 0.44) and male control subjects (MD = 3.69°; P = 0.01; ES = 0.4). CONCLUSION Women have greater hip adduction than men regardless of the presence of PFP. There were no kinematics difference between women with and without PFP. Comparisons of hip internal rotation between all groups were nonsignificant. CLINICAL RELEVANCE Altered hip and knee kinematics does not appear to be sex specific in runners with PFP.
Collapse
Affiliation(s)
- Bruna Calazans Luz
- Department of Physiotherapy, São Carlos Federal University, São Carlos, Brazil
| | | | | |
Collapse
|
222
|
Banks JJ, Umberger BR, Caldwell GE. EMG optimization in OpenSim: A model for estimating lower back kinetics in gait. Med Eng Phys 2022; 103:103790. [PMID: 35500997 DOI: 10.1016/j.medengphy.2022.103790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Participant-specific musculoskeletal models are needed to accurately estimate lower back internal kinetic demands and injury risk. In this study we developed the framework for incorporating an electromyography optimization (EMGopt) approach within OpenSim (https://simtk.org/projects/emg_opt_tool) and evaluated lower back demands estimated from the model during gait. Kinematic, external kinetic, and EMG data were recorded from six participants as they performed walking and carrying tasks on a treadmill. For evaluation, predicted lumbar vertebral joint forces were compared to those from a generic static optimization approach (SOpt) and to previous studies. Further, model-estimated muscle activations were compared to recorded EMG, and model sensitivity to day-to-day EMG variability was evaluated. Results showed the vertebral joint forces from the model were qualitatively similar in pattern and magnitude to literature reports. Compared to SOpt, the EMGopt approach predicted larger joint loads (p<.01) with muscle activations better matching individual participant EMG patterns. L5/S1 vertebral joint forces from EMGopt were sensitive to the expected variability of recorded EMG, but the magnitude of these differences (±4%) did not impact between-task comparisons. Despite limitations inherent to such models, the proposed musculoskeletal model and EMGopt approach appears well-suited for evaluating internal lower back demands during gait tasks.
Collapse
Affiliation(s)
- Jacob J Banks
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States; Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, 330 Brookline Avenue, RN 115, Boston, MA 02215, United States; Harvard Medical School, Department of Orthopaedic Surgery, Boston, MA 02115, United States.
| | - Brian R Umberger
- University of Michigan, School of Kinesiology, 830 North University Avenue, Ann Arbor, MI 48109, United States.
| | - Graham E Caldwell
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States.
| |
Collapse
|
223
|
Vafadar S, Skalli W, Bonnet-Lebrun A, Assi A, Gajny L. Assessment of a novel deep learning-based marker-less motion capture system for gait study. Gait Posture 2022; 94:138-143. [PMID: 35306382 DOI: 10.1016/j.gaitpost.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Marker-less systems based on digital video cameras and deep learning for gait analysis could have a deep impact in clinical routine. A recently developed system has shown promising results in terms of joint center position but has not been yet evaluated in terms of gait outcomes. RESEARCH QUESTION How does this novel marker-less system compare to a marker-based reference system in terms of clinically relevant gait parameters? METHODS The deep learning method behind the developed marker-less system was trained on a dedicated dataset consisting of forty-one asymptomatic and pathological subjects each performing ten walking trials. The system could estimate the three-dimensional position of seventeen joint centers or keypoints (e.g., neck, shoulders, hip, knee, and ankles). We evaluated the marker-less system against a marker-based system in terms of differences in joint position (Euclidean distance), detection of gait events (e.g., heel strike and toe-off), spatiotemporal parameters (e.g., step length, time), kinematic parameters (e.g., hip and knee extension-flexion), and inter-trial reliability for kinematic parameters. RESULTS The marker-less system was able to estimate the three-dimensional position of joint centers with a mean difference of 13.1 mm (SD = 10.2 mm). 99% of the estimated gait events were estimated within 10 ms of the corresponding reference values. Estimated spatiotemporal parameters showed zero bias. The mean and standard deviation of the differences of the estimated kinematic parameters varied by parameter (for example, the mean and standard deviation for knee extension flexion angle were -3.0° and 2.7°). Inter-trial reliability of the measured parameters was similar to that of the marker-based references. SIGNIFICANCE The developed marker-less system can measure the spatiotemporal parameters within the range of the minimum detectable changes obtained using the marker-based reference system. Moreover, except for hip extension flexion, the system showed promising results in terms of several kinematic parameters.
Collapse
Affiliation(s)
- Saman Vafadar
- Institut de Biomecanique Humaine Georges Charpak, Arts et Metiers, Institute of Technology, Paris, France.
| | - Wafa Skalli
- Institut de Biomecanique Humaine Georges Charpak, Arts et Metiers, Institute of Technology, Paris, France.
| | - Aurore Bonnet-Lebrun
- Institut de Biomecanique Humaine Georges Charpak, Arts et Metiers, Institute of Technology, Paris, France.
| | - Ayman Assi
- Faculty of Medicine, University of Saint-Joseph in Beirut, Beirut, Lebanon.
| | - Laurent Gajny
- Institut de Biomecanique Humaine Georges Charpak, Arts et Metiers, Institute of Technology, Paris, France.
| |
Collapse
|
224
|
Simpkins C, Ahn J, Yang F. Effects of anteriorly-loaded treadmill walking on dynamic gait stability in young adults. Gait Posture 2022; 94:79-84. [PMID: 35248916 DOI: 10.1016/j.gaitpost.2022.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anteriorly-loaded walking is common in many occupations and may increase fall risk. Dynamic gait stability, defined by the Feasible Stability Region (FSR) theory, quantifies the kinematic relationship between the body's center of mass (COM) and base of support (BOS). FSR-based dynamic gait stability has been used to evaluate the fall risk. RESEARCH QUESTION How does front load carriage affect dynamic gait stability, step length, and trunk angle among young adults during treadmill walking? METHODS In this between-subject design study, 30 healthy young adults were evenly randomized into three load groups (0%, 10%, or 20% of body weight). Participants carried their assigned load while walking on a treadmill at a speed of 1.2 m/s. Body kinematics were collected during treadmill walking. Dynamic gait stability (the primary variable) was calculated for two gait events: touchdown and liftoff. Step length and trunk angle were measured as secondary variables. One-way analysis of variance was conducted to detect any group-related differences for all variables. Post-hoc analysis with Bonferroni correction was performed when main group differences were found. RESULTS No significant differences but medium to large effect sizes were found between groups for dynamic gait stability at touchdown (p = 0.194, η2 = 0.114) and liftoff (p = 0.122, η2 = 0.139). Trunk angle significantly increased (indicating backward lean) with the front load at touchdown (p < 0.001, η2 = 0.648) and liftoff (p < 0.001, η2 = 0.543). No significant between-group difference was found related to the step length (p = 0.344, η2 = 0.076). SIGNIFICANCE Carrying a front load during walking significantly alters the trunk orientation and may change the COM-BOS kinematic relationship and, therefore, fall risk. The findings could inform the design of future studies focusing on the impact of anterior load carriage on fall risk during different locomotion.
Collapse
Affiliation(s)
- Caroline Simpkins
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| | - Jiyun Ahn
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| | - Feng Yang
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
225
|
Park JH, Lee Y, Madinei S, Kim S, Nussbaum MA, Srinivasan D. Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking. Ann Biomed Eng 2022; 50:964-977. [PMID: 35478066 DOI: 10.1007/s10439-022-02973-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
We assessed the effects of using a passive back-support exoskeleton (BSE) on lower limb joint kinematics and kinetics during level walking. Twenty young, healthy participants completed level walking trials while wearing a BSE (backXTM) with three different levels of hip-extension support torque (i.e., no torque, low, and high) and in a control condition (no-BSE). When hip extension torques were required for gait-initial 0-10% and final 75-100% of the gait cycle-the BSE with high supportive torque provided ~ 10 Nm of external hip extension torque at each hip, resulting in beneficial changes in participants' gait patterns. Specifically, there was a ~ 10% reduction in muscle-generated hip extension torque and ~ 15-20% reduction in extensor power. During the stance-swing transition, however, BSE use produced undesirable changes in lower limb kinematics (e.g., 5-20% increase in ankle joint velocity) and kinetics (e.g., ~ 10% increase in hip flexor, knee extensor, and ankle plantarflexor powers). These latter changes likely stemmed from the need to increase mechanical energy for propelling the leg into the swing phase. BSE use may thus increase the metabolic cost of walking. Whether such use also leads to muscle fatigue and/or postural instability in long-distance walking needs to be confirmed in future work.
Collapse
Affiliation(s)
- Jang-Ho Park
- Department of Industrial Engineering, Clemson University, Freeman Hall, Clemson, SC, 29634, USA
| | - Youngjae Lee
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Freeman Hall, Clemson, SC, 29634, USA.
| |
Collapse
|
226
|
Effects of orthopedic footwear on postural stability and walking in individuals with Hereditary Motor Sensory Neuropathy. Clin Biomech (Bristol, Avon) 2022; 94:105638. [PMID: 35405625 DOI: 10.1016/j.clinbiomech.2022.105638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Orthopedic footwear is often prescribed to improve postural stability during standing and walking in individuals with Hereditary Motor Sensory Neuropathy. However, supporting evidence in literature is scarce. The aim of this study was to investigate the effect of orthopedic footwear on quiet standing balance, gait speed, spatiotemporal parameters, kinematics, kinetics and dynamic balance in individuals with Hereditary Motor Sensory Neuropathy. METHODS Fifteen individuals with Hereditary Motor Sensory Neuropathy performed a quiet standing task and 2-min walk test on customized orthopedic footwear and standardized footwear. Primary outcome measures were the mean velocity of the center of pressure during quiet standing and gait speed during walking. Secondary outcome measures included center of pressure amplitude and frequency during quiet standing, and spatiotemporal parameters, kinematics, kinetics, and dynamic balance during walking. Two-way repeated measures ANOVA and paired t-tests were performed to identify differences between footwear conditions. FINDINGS Neither quiet standing balance nor dynamic balance differed between orthopedic and standardized footwear, but orthopedic footwear improved spatiotemporal parameters (higher gait speed, longer step length, shorter step time and smaller step width) during walking. Moreover, less sagittal shank-footwear range of motion, more frontal shank-footwear range of motion, more dorsiflexion of the footwear-to-horizontal angle at initial contact and more hip adduction during the stance phase were found. INTERPRETATION Orthopedic footwear improved walking in individuals with Hereditary Motor Sensory Neuropathy, whereas it did not affect postural stability during quiet standing or dynamic balance. Especially gait speed and spatiotemporal parameters improved. An improved heel landing at initial contact for all footwear and reduced foot drop during swing for mid and high orthopedic footwear contributed to the gait improvements wearing orthopedic footwear.
Collapse
|
227
|
Melo LM, Ansai JH, Ferreira ACVG, Silva DCP, Vale FAC, Takahashi ACM, Andrade LP. Correlation between changes in Timed Up and Go performance and cognition in older people with mild cognitive impairment: A longitudinal study. Clin Biomech (Bristol, Avon) 2022; 94:105620. [PMID: 35325714 DOI: 10.1016/j.clinbiomech.2022.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Compare changes in performance on subtasks of the Timed Up and Go test over 32 months in older adults with and without mild cognitive impairment; analyze the correlation between frontal cognitive functions at baseline and changes in Timed Up and Go subtasks over time. METHODS A longitudinal study was conducted involving 31 older adults (15 with and 16 without cognitive impairment). Functional mobility was assessed at both evaluations using an adapted version of the Timed Up and Go test and the Qualisys motion system. The test was divided into five subtasks: sit-to-stand, walking forward, turn-to-walk, walking back and turn-to-sit. Cognition was assessed at baseline using the Frontal Assessment Battery and the Clock Drawing Test. FINDINGS Significant differences in changes in the sit-to-stand subtask over time were found between groups. The difference in the time required to conclude this subtask was greater in the older adults with cognitive impairment. However, the difference in kinematic variables (peak trunk speed and range of motion) was greater in the group without cognitive impairment. Strong and moderate correlations were found between frontal cognitive functions and changes in Timed Up and Go subtasks, especially those involving transitions (sit-to-stand, turn-to-walk and turn-to-sit) in both groups. INTERPRETATION Motor intervention protocols should incorporate the sit-to-stand subtask in older adults with mild cognitive impairment. Moreover, changes in more complex subtasks seem to be related to frontal cognitive performance at baseline. Therefore, treatments that combine motor and cognitive functions should be administered to older adults regardless of cognitive impairment.
Collapse
Affiliation(s)
- Laura M Melo
- Postgraduate Program in Physical Therapy, Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana H Ansai
- Postgraduate Program in Gerontology, Gerontology Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil; Gerontology Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Ana C V G Ferreira
- Postgraduate Program in Physical Therapy, Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Danielle C P Silva
- Postgraduate Program in Physical Therapy, Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Francisco A C Vale
- Department of Medicine, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Anielle C M Takahashi
- Postgraduate Program in Physical Therapy, Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Larissa P Andrade
- Postgraduate Program in Physical Therapy, Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
228
|
Pagnon D, Domalain M, Reveret L. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics—Part 2: Accuracy. SENSORS 2022; 22:s22072712. [PMID: 35408326 PMCID: PMC9002957 DOI: 10.3390/s22072712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023]
Abstract
Two-dimensional deep-learning pose estimation algorithms can suffer from biases in joint pose localizations, which are reflected in triangulated coordinates, and then in 3D joint angle estimation. Pose2Sim, our robust markerless kinematics workflow, comes with a physically consistent OpenSim skeletal model, meant to mitigate these errors. Its accuracy was concurrently validated against a reference marker-based method. Lower-limb joint angles were estimated over three tasks (walking, running, and cycling) performed multiple times by one participant. When averaged over all joint angles, the coefficient of multiple correlation (CMC) remained above 0.9 in the sagittal plane, except for the hip in running, which suffered from a systematic 15° offset (CMC = 0.65), and for the ankle in cycling, which was partially occluded (CMC = 0.75). When averaged over all joint angles and all degrees of freedom, mean errors were 3.0°, 4.1°, and 4.0°, in walking, running, and cycling, respectively; and range of motion errors were 2.7°, 2.3°, and 4.3°, respectively. Given the magnitude of error traditionally reported in joint angles computed from a marker-based optoelectronic system, Pose2Sim is deemed accurate enough for the analysis of lower-body kinematics in walking, cycling, and running.
Collapse
Affiliation(s)
- David Pagnon
- Laboratoire Jean Kuntzmann, CNRS UMR 5224, Université Grenoble Alpes, 38400 Saint Martin d’Hères, France;
- Institut Pprime, CNRS UPR 3346, Université de Poitiers, 86360 Chasseneuil-du-Poitou, France;
- Correspondence:
| | - Mathieu Domalain
- Institut Pprime, CNRS UPR 3346, Université de Poitiers, 86360 Chasseneuil-du-Poitou, France;
| | - Lionel Reveret
- Laboratoire Jean Kuntzmann, CNRS UMR 5224, Université Grenoble Alpes, 38400 Saint Martin d’Hères, France;
- INRIA Grenoble Rhône-Alpes, 38330 Montbonnot-Saint-Martin, France
| |
Collapse
|
229
|
Zörner B, Hostettler P, Meyer C, Killeen T, Gut P, Linnebank M, Weller M, Straumann D, Filli L. Prognosis of walking function in multiple sclerosis supported by gait pattern analysis. Mult Scler Relat Disord 2022; 63:103802. [DOI: 10.1016/j.msard.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
230
|
Button K, Felemban M, Davies JL, Nicholas K, Parry-Williams J, Muaidi Q, Al-Amri M. A standardised template for reporting lower limb kinematic waveform movement compensations from a sensor-based portable clinical movement analysis toolkit. IPEM-TRANSLATION 2022; 1:None. [PMID: 35685912 PMCID: PMC9113669 DOI: 10.1016/j.ipemt.2021.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Standardised terminology for the interpretation of movement analysis waveforms is provided, to describe the amount, nature and timing of a compensation strategy. A stand-alone application have been created for users to generate a movement analysis report for lower limb joint kinematics. A digital, interactive version of the movement analysis report is now being created in the next iteration of the sensor based portable movement analysis toolkit.
Objectives To develop a standardised template to support physiotherapist reporting of lower limb kinematic waveform data Design Within and between user agreement identification of movement compensation strategies. Setting University Health Board Physiotherapy Department Participants Fourteen individuals with anterior cruciate ligament reconstruction performed overground gait, double-leg squat, and stair ascent wearing body-worn sensors. Six users viewed 252 kinematic waveforms of hip, knee and ankle joint angles in the sagittal and frontal planes. Main outcome measures Between and within-user observed agreement and themes from movement analysis reports Results Between-user observed agreement for presence of a movement compensation was 0.6–0.9 for the sagittal plane and 0.75–1.0 for the frontal place. Within-user observed agreement was 0.57–1.00 for the sagittal plane and 0.71–1.00 for the frontal plane. Three themes and seven categories were identified from the waveform interpretations: Amount (qualitative and quantitative description), timing (phase, discrete time point, cycle), and nature (peak, range of motion, timing) of the compensation. Conclusion There was good agreement between users at identifying the presence of movement compensation from the kinematic waveforms, but there was variation in how movement compensations were described. An interactive report, a standardised template for interpretation of kinematic waveforms, and training to support the clinical application of a movement analysis toolkit are proposed.
Collapse
|
231
|
Mohammadzada F, Zipser CM, Easthope CA, Halliday DM, Conway BA, Curt A, Schubert M. Mind your step: Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury. J Neuroeng Rehabil 2022; 19:36. [PMID: 35337335 PMCID: PMC8957135 DOI: 10.1186/s12984-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Walking over obstacles requires precise foot placement while maintaining balance control of the center of mass (CoM) and the flexibility to adapt the gait patterns. Most individuals with incomplete spinal cord injury (iSCI) are capable of overground walking on level ground; however, gait stability and adaptation may be compromised. CoM control was investigated during a challenging target walking (TW) task in individuals with iSCI compared to healthy controls. The hypothesis was that individuals with iSCI, when challenged with TW, show a lack of gait pattern adaptability which is reflected by an impaired adaptation of CoM movement compared to healthy controls. Methods A single-center controlled diagnostic clinical trial with thirteen participants with iSCI (0.3–24 years post injury; one subacute and twelve chronic) and twelve healthy controls was conducted where foot and pelvis kinematics were acquired during two conditions: normal treadmill walking (NW) and visually guided target walking (TW) with handrail support, during which participants stepped onto projected virtual targets synchronized with the moving treadmill surface. Approximated CoM was calculated from pelvis markers and used to calculate CoM trajectory length and mean CoM Euclidean distance TW-NW (primary outcome). Nonparametric statistics, including spearman rank correlations, were performed to evaluate the relationship between clinical parameter, outdoor mobility score, performance, and CoM parameters (secondary outcome). Results Healthy controls adapted to TW by decreasing anterior–posterior and vertical CoM trajectory length (p < 0.001), whereas participants with iSCI reduced CoM trajectory length only in the vertical direction (p = 0.002). Mean CoM Euclidean distance TW-NW correlated with participants’ neurological level of injury (R = 0.76, p = 0.002) and CoM trajectory length (during TW) correlated with outdoor mobility score (R = − 0.64, p = 0.026). Conclusions This study demonstrated that reduction of CoM movement is a common strategy to cope with TW challenge in controls, but it is impaired in individuals with iSCI. In the iSCI group, the ability to cope with gait challenges worsened the more rostral the level of injury. Thus, the TW task could be used as a gait challenge paradigm in ambulatory iSCI individuals. Trial registration Registry number/ ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01013-7.
Collapse
Affiliation(s)
- Freschta Mohammadzada
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Chris A Easthope
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.,Cereneo Foundation, Center for Interdisciplinary Research, 6354, Vitznau, Switzerland
| | - David M Halliday
- Department of Electronic Engineering, University of York, York, YO10 5DD, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Bernard A Conway
- Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Armin Curt
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Neurophysiology, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
232
|
Middleton K, Vickery-Howe D, Dascombe B, Clarke A, Wheat J, McClelland J, Drain J. Mechanical Differences between Men and Women during Overground Load Carriage at Self-Selected Walking Speeds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3927. [PMID: 35409609 PMCID: PMC8997774 DOI: 10.3390/ijerph19073927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Few studies have directly compared physical responses to relative loading strategies between men and women during overground walking. This study aimed to compare gait mechanics of men and women during overground load carriage. A total of 30 participants (15 male, 15 female) completed three 10-min walking trials while carrying external loads of 0%, 20% and 40% of body mass at a self-selected walking speed. Lower-body motion and ground reaction forces were collected using a three-dimensional motion capture system and force plates, respectively. Female participants walked with a higher cadence (p = 0.002) and spent less absolute time in stance (p = 0.010) but had similar self-selected walking speed (p = 0.750), which was likely due to the female participants being shorter than the male participants. Except for ankle plantarflexion moments, there were no sex differences in spatiotemporal, kinematic, or kinetic variables (p > 0.05). Increasing loads resulted in significantly lower self-selected walking speed, greater stance time, and changes in all joint kinematics and kinetics across the gait cycle (p < 0.05). In conclusion, there were few differences between sexes in walking mechanics during overground load carriage. The changes identified in this study may inform training programs to increase load carriage performance.
Collapse
Affiliation(s)
- Kane Middleton
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Danielle Vickery-Howe
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Ben Dascombe
- Applied Sport Science and Exercise Testing Laboratory, School of Life and Environmental Sciences, University of Newcastle, Ourimbah 2258, Australia;
| | - Anthea Clarke
- Discipline of Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia; (D.V.-H.); (A.C.)
| | - Jon Wheat
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK;
| | - Jodie McClelland
- Discipline of Physiotherapy, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora 3086, Australia;
| | - Jace Drain
- Land Division, Defence Science and Technology Group, Fishermans Bend 3207, Australia;
| |
Collapse
|
233
|
Pálya Z, Rácz K, Nagymáté G, Kiss RM. Development of a detailed canine gait analysis method for evaluating harnesses: A pilot study. PLoS One 2022; 17:e0264299. [PMID: 35263359 PMCID: PMC8906618 DOI: 10.1371/journal.pone.0264299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Dog harnesses are becoming more popular, with their large variety stemming from the idea that different dogs and scenarios require different types of harnesses. While their benefits over collars are self-explanatory, there is a lack of research on their effect on gait, and even the existing studies examine only a limited set of parameters. The goal of present study was to establish a method capable of quantifying canine gait in detail. Based on 3D motion capture, the developed method allows for the examination of 18 joint angles and 35 spatio-temporal parameters throughout multiple gait cycles, and can be used to analyze canine movement in detail in any kind of scenario (e.g. comparing healthy and lame dogs, or measuring the effect of training). The method is presented through the measurement of how different harnesses affect walking kinematics compared to free (unleashed) movements. Four dogs with varying body sizes and breeds and multiple types of harnesses were included. Marker data was filtered using a zero-lag 6th order Butterworth-filter with a cutoff frequency of 20 Hz. The normality of the spatio-temporal and joint range of motion parameters was tested using the Anderson-Darling test (p = 0.05), with most parameters passing in 60+% of test cases. Swing time and range of motion of the sagittal aspect of spinal angle at T1 vertebrae failed more regularly, both resulting from the measurement setup rather than the actual parameters being not normally distributed. Two-sample Kolmogorov-Smirnov tests (p = 0.05) were used to compare each parameter’s distribution between cases, showing that most parameters are significantly altered by the harnesses in about 2/3rd of the cases. Based on the results, there’s no absolute superior harness, however, it is possible to select the best fit for a specific dog and application, justifying their large variety.
Collapse
Affiliation(s)
- Zsófia Pálya
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kristóf Rácz
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gergely Nagymáté
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Rita M. Kiss
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail:
| |
Collapse
|
234
|
Fernandez-Carmona M, Ballesteros J, Díaz-Boladeras M, Parra-Llanas X, Urdiales C, Gómez-de-Gabriel JM. Walk-IT: An Open-Source Modular Low-Cost Smart Rollator. SENSORS (BASEL, SWITZERLAND) 2022; 22:2086. [PMID: 35336255 PMCID: PMC8950926 DOI: 10.3390/s22062086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Rollators are widely used in clinical rehabilitation for gait assessment, but gait analysis usually requires a great deal of expertise and focus from medical staff. Smart rollators can capture gait parameters autonomously while avoiding complex setups. However, commercial smart rollators, as closed systems, can not be modified; plus, they are often expensive and not widely available. This work presents a low cost open-source modular rollator for monitorization of gait parameters and support. The whole system is based on commercial components and its software architecture runs over ROS2 to allow further customization and expansion. This paper describes the overall software and hardware architecture and, as an example of extended capabilities, modules for monitoring dynamic partial weight bearing and for estimation of spatiotemporal gait parameters of clinical interest. All presented tests are coherent from a clinical point of view and consistent with input data.
Collapse
Affiliation(s)
- Manuel Fernandez-Carmona
- Ingeniería de Sistemas Integrados Group, Electronics Technology Department, University of Málaga—UMA, Complejo Tecnológico, 29071 Málaga, Spain;
| | - Joaquin Ballesteros
- Department of Computer Science and Programming Languages, ITIS Software, University of Málaga—UMA, Complejo Tecnológico, 29071 Málaga, Spain;
| | - Marta Díaz-Boladeras
- Technical Research Centre for Dependency Care and Autonomous Living—CETpD, Technical University of Catalonia—UPC, 08800 Barcelona, Spain; (M.D.-B.); (X.P.-L.)
| | - Xavier Parra-Llanas
- Technical Research Centre for Dependency Care and Autonomous Living—CETpD, Technical University of Catalonia—UPC, 08800 Barcelona, Spain; (M.D.-B.); (X.P.-L.)
| | - Cristina Urdiales
- Ingeniería de Sistemas Integrados Group, Electronics Technology Department, University of Málaga—UMA, Complejo Tecnológico, 29071 Málaga, Spain;
| | | |
Collapse
|
235
|
Tabard-Fougère A, Rutz D, Pouliot-Laforte A, De Coulon G, Newman CJ, Armand S, Wegrzyk J. Are Clinical Impairments Related to Kinematic Gait Variability in Children and Young Adults With Cerebral Palsy? Front Hum Neurosci 2022; 16:816088. [PMID: 35308609 PMCID: PMC8926298 DOI: 10.3389/fnhum.2022.816088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Intrinsic gait variability (GV), i.e., fluctuations in the regularity of gait patterns between repetitive cycles, is inherent to the sensorimotor system and influenced by factors such as age and pathology. Increased GV is associated with gait impairments in individuals with cerebral palsy (CP) and has been mainly studied based on spatiotemporal parameters. The present study aimed to describe kinematic GV in young people with CP and its associations with clinical impairments [i.e., passive range of motion (pROM), muscle weakness, reduced selective motor control (selectivity), and spasticity]. This retrospective study included 177 participants with CP (age range 5-25 years; Gross Motor Function Classification System I-III) representing 289 clinical gait analyses [n = 172 for unilateral CP (uCP) vs. 117 for bilateral CP (bCP)]. As variability metrics, Root Mean Square Deviation (RMSD) for nine lower-limb kinematic parameters and Gait Standard Deviation (GaitSD) - as composite score of the kinematic parameters - were computed for the affected (unilateral = uCP) and most affected side (bilateral = bCP), respectively, as defined by clinical scores. GaitSD was then computed for the non/less-affected side for between leg comparisons. Uni- and multivariate linear regressions were subsequently performed on GaitSD of the affected/most affected side with all clinical impairments (composite scores) as independent variables. Highest RMSD were found in the transverse plane (hip, pelvis), for distal joints in the sagittal plane (knee, ankle) and for foot progression. GaitSD was not different between uCP and bCP (affected/most affected side) but higher in the non-affected vs. affected side in uCP. GaitSD was associated with age (p < 0.001), gait deviation index (GDI) (p < 0.05), muscle weakness (p < 0.001), selectivity (p < 0.05), and pROM (p < 0.001). After adjustment for age and GDI, GaitSD remained associated with muscle weakness (uCP: p = 0.003, bCP: p < 0.001) and selectivity (bCP: p = 0.024). Kinematic GV can be expressed as global indicator of variability (GaitSD) in young people with CP given the strong correlation of RMSD for lower-limb kinematic parameters. In terms of asymmetry, increased variability of the non-affected vs. affected side may indicate contralateral compensation mechanisms in uCP. Notably muscle weakness (uCP, bCP) and selectivity (bCP) - but not spasticity - were associated with GaitSD. Further studies need to explore the clinical relevance of kinematic GV in CP to support the interpretation of clinical gait analyses and therapeutic decision-making.
Collapse
Affiliation(s)
- Anne Tabard-Fougère
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Dionys Rutz
- Physical Therapy Unit, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Annie Pouliot-Laforte
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Geraldo De Coulon
- Pediatric Orthopaedic Surgery Unit, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Christopher J. Newman
- Pediatric Neurology and Neurorehabilitation Unit, Department of Pediatrics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Armand
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Jennifer Wegrzyk
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| |
Collapse
|
236
|
Simple rule to automatically recognize the orientation of the sagittal plane foot angular velocity for gait analysis using IMUs on the feet of individuals with heterogeneous motor disabilities. J Biomech 2022; 135:111055. [DOI: 10.1016/j.jbiomech.2022.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
237
|
Pariser KM, Donlin MC, Downer KE, Higginson JS. Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed. J Biomech 2022; 133:110971. [PMID: 35121382 PMCID: PMC8891055 DOI: 10.1016/j.jbiomech.2022.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Adaptive treadmills (ATM) designed to promote increased propulsion may be an effective tool for gait training since propulsion is often impaired post-stroke. Our lab developed a novel ATM controller that adjusts belt speed via real-time changes in step length, propulsive impulse, and position. This study modified the relative importance of propulsion to step length in the controller to determine the effect of increased propulsive feedback gain on measures of propulsion and walking speed. Twenty-two participants completed five trials at their self-selected speed, each with a unique ATM controller. Walking speed, peak AGRF and PGRF, and AGRF, PGRF, and net impulse were compared between the modifications using one-way repeated measures ANOVAs at a significance level of 0.05. Participants chose similar walking speeds across all conditions (all p > 0.2730). There were no significant differences in peak AGRF (p = 0.1956) or PGRF (p = 0.5159) between conditions. AGRF impulse significantly increased as the gain on the propulsive impulse term was increased relative to the gain on step length (p < 0.0001) while PGRF and net impulse were similar across all conditions (p = 0.5487). Increasing the propulsive impulse gain essentially alters the treadmill environment by providing a controlled amount of resistance to increases in propulsive forces. Our findings demonstrate that the ATM can be modified to promote increased propulsive impulse while maintaining a consistent walking speed. Since increasing propulsion is a common goal of post-stroke gait training, these ATM modifications may improve the efficacy of the ATM for gait rehabilitation.
Collapse
Affiliation(s)
- Kayla M Pariser
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
| | - Margo C Donlin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kaitlyn E Downer
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Jill S Higginson
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
238
|
Donlin MC, Pariser KM, Downer KE, Higginson JS. Adaptive treadmill walking encourages persistent propulsion. Gait Posture 2022; 93:246-251. [PMID: 35190317 PMCID: PMC8930561 DOI: 10.1016/j.gaitpost.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Adaptive treadmills allow real-time changes in walking speed by responding to changes in step length, propulsion, or position on the treadmill. The stride-to-stride variability, or persistence, of stride time during overground, fixed-speed, and adaptive treadmill walking has been studied, but persistence of propulsion during adaptive treadmill walking remains unknown. Because increased propulsion is often a goal of post-stroke rehabilitation, knowledge of the stride-to-stride variability may aid rehabilitation protocol design. RESEARCH QUESTION How do spatiotemporal and propulsive gait variables vary from stride to stride during adaptive treadmill walking, and how do they compare to fixed-speed treadmill walking? METHODS Eighteen young healthy subjects walked on an instrumented split-belt treadmill in the adaptive and fixed-speed modes for 10 minutes at their comfortable speed. Kinetic data was collected from the treadmill. Detrended fluctuation analysis was applied to the time series data. Shapiro-Wilk tests assessed normality and one-way repeated measures ANOVAs compared between adaptive, fixed-speed, and randomly shuffled conditions at a Bonferroni-corrected significance level of 0.0055. RESULTS Stride time, stride length, step length, and braking impulse were persistent (α > 0.5) in the adaptive and fixed-speed conditions. Adaptive and fixed-speed were different from each other. Stride speed was persistent in the adaptive condition and anti-persistent (α < 0.5) in the fixed-speed condition. Peak propulsive force, peak braking force, and propulsive impulse were persistent in the adaptive condition but not the fixed-speed condition (α ≈ 0.5). Net impulse was non-persistent in the adaptive and fixed-speed conditions. All variables were non-persistent in the shuffled condition. SIGNIFICANCE During adaptive treadmill walking, increases in propulsive force and impulse persist for multiple strides. Persistence was stronger on the adaptive treadmill, where increased propulsion translates into increased walking speed. For post-stroke gait rehabilitation where increasing propulsion and speed are goals, the stronger persistence of adaptive treadmill walking may be beneficial.
Collapse
Affiliation(s)
- Margo C. Donlin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Corresponding author at: University of Delaware, 540 S. College Ave., STAR Health Sciences Complex, Rm. 201, Newark, DE, USA. (Margo Donlin)
| | - Kayla M. Pariser
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Kaitlyn E. Downer
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Jill S. Higginson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
239
|
Gottlieb U, Hoffman JR, Springer S. The Immediate Carryover Effects of Peroneal Functional Electrical Stimulation Differ between People with and without Chronic Ankle Instability. SENSORS (BASEL, SWITZERLAND) 2022; 22:1622. [PMID: 35214526 PMCID: PMC8874504 DOI: 10.3390/s22041622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Chronic ankle instability (CAI) is a common condition that may develop after an ankle sprain. Compared with healthy individuals, those with CAI demonstrate excessive ankle inversion and increased peroneal electromyography (EMG) activity throughout the stance phase of gait, which may put them at greater risk for re-injury. Functional electrical stimulation (FES) of targeted muscles may provide benefits as a treatment modality to stimulate immediate adaptation of the neuromuscular system. The present study investigated the effect of a single, 10 min peroneal FES session on ankle kinematics and peroneal EMG activity in individuals with (n = 24) or without (n = 24) CAI. There were no significant differences in ankle kinematics between the groups before the intervention. However, after the intervention, healthy controls demonstrated significantly less ankle inversion between 0-9% (p = 0.009) and 82-87% (p = 0.011) of the stance phase. Furthermore, a significant within-group difference was observed only in the control group, demonstrating increased ankle eversion between 0-7% (p = 0.011) and 67-81% (p = 0.006) of the stance phase after the intervention. Peroneal EMG activity did not differ between groups or measurements. These findings, which demonstrate that peroneal FES can induce ankle kinematics adaptations during gait, can help to develop future interventions for people with CAI.
Collapse
Affiliation(s)
| | | | - Shmuel Springer
- Neuromuscular and Human Performance Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel; (U.G.); (J.R.H.)
| |
Collapse
|
240
|
Pathak P, Moon J, Roh SG, Roh C, Shim Y, Ahn J. Application of vibration to the soles reduces minimum toe clearance variability during walking. PLoS One 2022; 17:e0261732. [PMID: 34982783 PMCID: PMC8726470 DOI: 10.1371/journal.pone.0261732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Minimum toe clearance (MTC) is an important indicator of the risk of tripping. Aging and neuromuscular diseases often decrease MTC height and increase its variability, leading to a higher risk of tripping. Previous studies have developed visual feedback-based gait training systems to modify MTC. However, these systems are bulky and expensive, and the effects of the training continue only for a short time. We paid attention to the efficacy of vibration in decreasing the variability of gait parameters, and hypothesized that proper vibration applied to soles can reduce the MTC variability. Using shoes embedded with active vibrating insoles, we assessed the efficacy of both sub- and supra-threshold vibration in affecting MTC distribution. Experiment results with 17 young and healthy adults showed that vibration applied throughout the walking task with constant intensity of 130% of sensory threshold significantly decreased MTC variability, whereas sub-threshold vibration yielded no significant effect. These results demonstrate that a properly designed tactile sensory input which is controlled and delivered by a simple wearable device, the active insole, can reduce the MTC variability during walking.
Collapse
Affiliation(s)
- Prabhat Pathak
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Jeongin Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Se-gon Roh
- Robot Center in Samsung Seoul R&D Campus, Samsung Electronics Co., Ltd., Seoul, Republic of Korea
| | | | | | - Jooeun Ahn
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
241
|
Terrell ZT, Moudy SC, Hensel KL, Patterson RM. Effects of osteopathic manipulative treatment vs. osteopathic cranial manipulative medicine on Parkinsonian gait. J Osteopath Med 2022; 122:243-251. [PMID: 35148036 DOI: 10.1515/jom-2021-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022]
Abstract
CONTEXT Sixty thousand people are diagnosed with Parkinson's disease (PD) each year, making it the second most common neurodegenerative disorder. PD results in a variety of gait disturbances, including muscular rigidity and decreased range of motion (ROM), that increase the fall risk of those afflicted. Osteopathic manipulative treatment (OMT) emphasizes the central role of the musculoskeletal system, which could be ideal for addressing the somatic dysfunction associated with neurodegeneration in PD. The close anatomical relationship of structures implicated in PD within the skull and the increased frequency of strain patterns raise the question of whether osteopathic cranial manipulative medicine (OCMM) can improve gait performance by improving circulation to the affected nervous tissue. However, there have been few studies in recent years that explore the effects of a standardized OMT protocol on Parkinsonian gait characteristics, and there have been few studies that include OCMM techniques. OBJECTIVES This study aims to determine whether a single session of OMT or OMT + OCMM can improve the gait of individuals with PD by addressing joint restrictions in the sagittal plane and by increasing ROM in the lower limb. METHODS The following study is a two-group, randomized controlled trial in which individuals with PD (n=45) and age-matched healthy control participants (n=45) were recruited from the community. PD participants were included if they were otherwise healthy, able to stand and walk independently, had not received OMT or physical therapy (PT) within 30 days of data collection, and had idiopathic PD in Hoehn and Yahr stages 1.0-3.0. PD participants were randomly assigned to one of three experimental treatment protocols: a 'whole-body' OMT protocol (OMT-WB), which included OMT and OCMM techniques; a 'neck-down' OMT protocol (OMT-ND), including only OMT techniques; and a sham treatment protocol. Control participants were age-matched to a PD participant and were provided the same OMT experimental protocol. An 18-camera motion analysis system was utilized to capture 3-dimensional (3D) position data in a treadmill walking trial before and after the assigned treatment protocol. Pretreatment and posttreatment hip, knee, and ankle ROM were compared with paired t-tests, and joint angle waveforms during the gait cycle were analyzed with statistical parametric mapping (SPM), which is a type of waveform analysis. RESULTS Individuals with PD had significantly reduced hip and knee extension in the stance phase compared to controls (32.9-71.2% and 32.4-56.0% of the gait cycle, respectively). Individuals with PD experienced a significant increase in total sagittal hip ROM (p=0.038) following a single session of the standardized OMT-WB treatment protocol. However, waveform analysis found no significant differences in sagittal hip, knee, or ankle angles at individual points of the gait cycle following OMT-WB, OMT-ND, or sham treatment protocols. CONCLUSIONS The increase in hip ROM observed following a single session of OMT-WB suggests that OCMM in conjunction with OMT may be useful for improving gait kinematics in individuals with PD. Longitudinal studies over multiple visits are needed to determine the long-term effect of regular OMT and OMT+OCMM treatments on Parkinsonian gait characteristics.
Collapse
Affiliation(s)
- Zachary T Terrell
- Department of Structural Anatomy and Rehabilitation Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sarah C Moudy
- Department of Family and Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kendi L Hensel
- Department of Osteopathic Manipulative Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rita M Patterson
- Department of Family and Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
242
|
Kim J, Lee J, Lee D, Jeong J, Kim P, Shin CS. Design and investigation of the effectiveness of a metatarsophalangeal assistive device on the muscle activities of the lower extremity. PLoS One 2022; 17:e0263176. [PMID: 35143528 PMCID: PMC8830714 DOI: 10.1371/journal.pone.0263176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
The metatarsophalangeal (MTP) joint is not considered in most current walking assistive devices even though it plays an important role during walking. The purpose of this study was to develop a new MTP assistive device and investigate its effectiveness on the muscle activities of the lower extremities during walking while wearing the device. The MTP assistive device is designed to support MTP flexion by transmitting force through a cable that runs parallel with the plantar fascia. Eight participants were instructed to walk at a constant speed on a treadmill while wearing the device. The muscle activities of their lower extremities and MTP joint kinematics were obtained during walking under both actuated and non-actuated conditions. Paired t-tests were performed to compare the differences in each dependent variable between the two conditions. The muscle activity of the MTP flexor was significantly reduced during walking under actuated conditions (p = 0.013), whereas no differences were found in the muscle activities of other muscles or in the MTP joint angle between actuated and non-actuated conditions (p > 0.05 for all comparisons). In conclusion, the cable-driven MTP assistive device is able to properly assist the MTP flexor without interfering with the action of other muscles in the lower extremities; as such, this MTP assistive device, when integrated into existing exoskeleton designs, has the potential to offer improved walking assistance by reducing the amount of muscle activity needed from the MTP flexor.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Jinkyu Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Donghwan Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Jiyoung Jeong
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Pankwon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Choongsoo S. Shin
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
243
|
Theunissen K, Van Hooren B, Plasqui G, Meijer K. Self-paced and fixed speed treadmill walking yield similar energetics and biomechanics across different speeds. Gait Posture 2022; 92:2-7. [PMID: 34801952 DOI: 10.1016/j.gaitpost.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Treadmill assessments are often performed at a fixed speed. Feedback-controlled algorithms allow users to adjust the treadmill speed, hereby potentially better resembling natural self-paced locomotion. However, it is currently unknown whether the energetics and biomechanics of self-paced differ from fixed-paced treadmill walking. Such information is important for clinicians and researchers using self-paced locomotion for assessing gait. RESEARCH QUESTION To investigate whether energy cost and biomechanics are different between self-paced and matched-speed fixed-paced locomotion. METHODS 18 healthy participants (9 males/9 females, mean ± standard deviation age 24.8 ± 3.3 years, height 1.71 ± 0.81 m, weight 65.9 ± 8.1 kg) walked at four different self-paced speeds (comfortable, slow, very slow, fast) in randomized order on an instrumented treadmill while three-dimensional motion capture and gas exchange were measured continuously. The average walking speed during the last 2 min of the self-paced trials was used to match the speed in fixed-paced conditions. Linear mixed models were used to assess differences in mean values and within-subject variations between conditions (self-paced and fixed-paced) and speeds. Statistical Parametric Mapping was used to assess differences in kinematics of the lower limb between conditions. RESULTS Although self-paced walking consistently resulted in a 4-6% higher net cost of walking, there were no significant differences in the net cost of walking between conditions. Further, there were also no differences of clinical relevance in spatiotemporal outcomes and sagittal-plane lower-limb kinematics between the self-paced and fixed-paced conditions. Within-trial variability was also not significantly different between conditions. SIGNIFICANCE Self-paced and fixed-paced treadmill walking yield similar energetics and kinematics in healthy young individuals when mean values or linear measures of variation are of interest.
Collapse
Affiliation(s)
- Kyra Theunissen
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands; Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Belgium; School of Care and Public Health Research Institute, Maastricht University Medical Centre, The Netherlands.
| | - Bas Van Hooren
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
244
|
Song K, Franz JR, Wikstrom EA. Optical flow balance perturbations alter gait kinematics and variability in chronic ankle instability patients. Gait Posture 2022; 92:271-276. [PMID: 34896838 DOI: 10.1016/j.gaitpost.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with chronic ankle instability (CAI) have known balance impairments thought to be the result of an inability to reweight sensory information. CAI patients place greater emphasis on visual information during single-limb stance than healthy controls but this evidence is based on removing visual information during static conditions. RESEARCH QUESTION Does perturbed optical flow effect step kinematics and variability in those with CAI differently than healthy controls? What is the relationship among ankle laxity, plantar cutaneous sensation, and susceptibility to perturbed optical flow in those with CAI? METHODS 17 CAI patients and 17 healthy individuals participated in a crossover experimental study. Participants walked on a treadmill at 1.25 m/s while watching a speed-matched virtual hallway with and without continuous mediolateral (ML) optical flow perturbations. Three-dimensional pelvic and foot kinematics were recorded at 100 Hz for at least 300 consecutive steps in each condition. Step width (SW) and step length (SL) values were calculated from consecutive heel positions. Gait variability was characterized as the standard deviation of step width (SWV), step length (SLV), and ML sacrum motion (SMV) across all steps performed in each condition. RESULTS The CAI group exhibited a greater change in SWV (p = 0.037), SLV (p = 0.040), and ML SMV (p = 0.047) from the perturbed to unperturbed conditions relative to the healthy controls. A condition main effect was also noted for SW (p < 0.001) and SL (p < 0.001) as ML optical flow perturbations resulted in significant changes in SW and SL relative to the normal walking condition. SIGNIFICANCE Walking with ML optical flow perturbations induced greater variability changes in those with CAI relative to controls. When combined with the existing literature, this finding suggests that CAI individuals have a greater reliance on visual information in both static and dynamic (i.e. walking gait) conditions relative to healthy individuals.
Collapse
Affiliation(s)
- Kyeongtak Song
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, KY, USA; MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA.
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Erik A Wikstrom
- MOTION Science Institute, Department of Exercise & Sport Science, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
245
|
Wasser JG, Acasio JC, Miller RH, Hendershot BD. Lumbopelvic coordination while walking in service members with unilateral lower limb loss: Comparing variabilities derived from vector coding and continuous relative phase. Gait Posture 2022; 92:284-289. [PMID: 34896840 DOI: 10.1016/j.gaitpost.2021.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Continuous relative phase and vector coding are two common approaches for quantifying lumbopelvic coordination and variability. Evaluating the application of such methodologies to the lower limb loss population is important for better understanding reported asymmetrical movement dynamics of the lumbopelvic region. RESEARCH QUESTION How do coordination variabilities derived from trunk-pelvic coupling angles and continuous relative phases compare among individuals with and without unilateral lower limb loss walking at self-selected speeds? METHODS Full-body kinematics were obtained from thirty-eight males with unilateral lower limb loss (23 transtibial and 15 transfemoral) and fifteen males without limb loss while walking along a 15 m walkway. Coordination variabilities were derived from trunk-pelvic coupling angles and continuous relative phases and compared using a multivariate approach, as well as in unilateral outcome measures between control participants and participants with lower limb loss. RESULTS Overall, tri-planar measures of continuous relative phase variability were 19-43% larger compared to coupling angle variabilities for individuals without limb loss and individuals with transtibial limb loss. Individuals with transfemoral limb loss had 27% and 31% larger sagittal and transverse variabilities from continuous relative phases compared to coupling angles, respectively. During both prosthetic and intact limb stance, individuals with transtibial limb loss had 19-35% greater tri-planar measures of continuous relative phase variability compared to coupling angle variabilities. During intact stance phase, tri-planar measures of continuous relative phase variability were 27%- 42% larger compared to coupling angle variabilities for individuals without limb loss. SIGNIFICANCE While both methods provide valid estimates of lumbopelvic movement variability during gait, continuous relative phase variability may provide a more sensitive estimate in the lower limb loss population capturing velocity-specific motions of the trunk and pelvis.
Collapse
Affiliation(s)
- Joseph G Wasser
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; Henry M. Jackson Foundation, for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda 20817, USA.
| | - Julian C Acasio
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; Henry M. Jackson Foundation, for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda 20817, USA.
| | - Ross H Miller
- Department of Kinesiology, University of Maryland, 2351 SPH Building, 4200 Valley Dr, College Park 20742, USA; Neuroscience & Cognitive Science Program, University of Maryland, College Park, USA.
| | - Brad D Hendershot
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; DoD-VA Extremity Trauma & Amputation Center of Excellence, USA; Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda 20814, USA.
| |
Collapse
|
246
|
Park JH, Kim S, Nussbaum MA, Srinivasan D. Effects of back-support exoskeleton use on gait performance and stability during level walking. Gait Posture 2022; 92:181-190. [PMID: 34864386 DOI: 10.1016/j.gaitpost.2021.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Back-support exoskeletons (BSEs) are a promising intervention to mitigate physical demands at work. Although growing evidence indicates that BSEs can reduce low-back physical demands, there is limited understanding of potential unintended consequences of BSE use, including the risk of falls. RESEARCH QUESTION Does using a BSE adversely affect gait performance and stability, and are such effects dependent on specific BSE external torque characteristics? METHODS Twenty participants (10 M, 10 F) completed five level over-ground walking trials and a five-minute treadmill walking trial while wearing a BSE (backX™) with three different levels of external torque (i.e., no torque, low torque, and high torque) and in a control (no-exoskeleton) condition. Spatiotemporal gait patterns, stride-to-stride gait variability measures, required coefficient-of-friction (RCoF), and minimum foot clearance (MFC) were determined, to assess gait performance. Gait stability was quantified using the maximum Lyapunov exponent (MLE) of trunk kinematics and the margin-of-stability (MoS). RESULTS Using the backX™ with high supportive torque decreased slip risk (7% decrease in RCoF) and slightly improved trunk stability (3% decrease in MLE). However, it also decreased step length (1%), increased step width (10%) and increased gait variability (8-19%). Changes in MoS were complex: while MoS at heel strike decreased in the AP direction, it increased in the ML direction. There was a rather large decrease in MoS (26%) in the ML direction during the swing phase. SIGNIFICANCE This is the first study to quantify the effects of wearing a passive BSE with multiple supportive torque levels on gait performance and stability during level walking. Our results, showing that the external torque of the BSE may adversely affect gait step width, variability, and dynamic stability, can contribute to better design and practice guidelines to facilitate the safe adoption of BSEs in the workplace.
Collapse
Affiliation(s)
- Jang-Ho Park
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
247
|
MacDonald ME, Siragy T, Hill A, Nantel J. Walking on Mild Slopes and Altering Arm Swing Each Induce Specific Strategies in Healthy Young Adults. Front Sports Act Living 2022; 3:805147. [PMID: 35146424 PMCID: PMC8821106 DOI: 10.3389/fspor.2021.805147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Slopes are present in everyday environments and require specific postural strategies for successful navigation; different arm strategies may be used to manage external perturbations while walking. It has yet to be determined what impact arm swing has on postural strategies and gait stability during sloped walking. We investigated the potentially interacting effects of surface slope and arm motion on gait stability and postural strategies in healthy young adults. We tested 15 healthy adults, using the CAREN-Extended system to simulate a rolling-hills environment which imparted both incline (uphill) and decline (downhill) slopes (± 3°). This protocol was completed under three imposed arm swing conditions: held, normal, active. Spatiotemporal gait parameters, mediolateral margin of stability, and postural kinematics in anteroposterior (AP), mediolateral (ML), and vertical (VT) directions were assessed. Main effects of conditions and interactions were evaluated by 2-way repeated measures analysis of variance. Our results showed no interactions between arm swing and slope; however, we found main effects of arm swing and main effects of slope. As expected, uphill and downhill sections of the rolling-hills yielded opposite stepping and postural strategies compared to level walking, and active and held arm swings led to opposite postural strategies compared to normal arm swing. Arm swing effects were consistent across slope conditions. Walking with arms held decreased gait speed, indicating a level of caution, but maintained stability comparable to that of walking with normal arm swing. Active arm swing increased both step width variability and ML-MoS during downhill sections. Alternately, ML-MoS was larger with increased step width and double support time during uphill sections compared to level, which demonstrates that distinct base of support strategies are used to manage arm swing compared to slope. The variability of the rolling-hills also required proactive base of support changes despite the mild slopes to maintain balance.
Collapse
|
248
|
Moll I, Marcellis RGJ, Coenen MLP, Fleuren SM, Willems PJB, Speth LAWM, Witlox MA, Meijer K, Vermeulen RJ. A randomized crossover study of functional electrical stimulation during walking in spastic cerebral palsy: the FES on participation (FESPa) trial. BMC Pediatr 2022; 22:37. [PMID: 35027013 PMCID: PMC8756646 DOI: 10.1186/s12887-021-03037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background Spastic cerebral palsy is the most common cause of motor disability in children. It often leads to foot drop or equinus, interfering with walking. Ankle-foot orthoses (AFOs) are commonly used in these cases. However, AFOs can be too restrictive for mildly impaired patients. Functional electrical stimulation (FES) of the ankle-dorsiflexors is an alternative treatment as it could function as a dynamic functional orthosis. Despite previous research, high level evidence on the effects of FES on activities and participation in daily life is missing. The primary aim of this study is to evaluate whether FES improves the activity and participation level in daily life according to patients, and the secondary aim is to provide evidence of the effect of FES at the level of body functions and activities. Furthermore, we aim to collect relevant information for decisions on its clinical implementation. Methods A randomized crossover trial will be performed on 25 children with unilateral spastic cerebral palsy. Patients aged between 4 and 18 years, with Gross Motor Functioning Classification System level I or II and unilateral foot drop of central origin, currently treated with AFO or adapted shoes, will be included. All participants will undergo twelve weeks of conventional treatment (AFO/adapted shoes) and 12 weeks of FES treatment, separated by a six-week washout-phase. FES treatment consists of wearing the WalkAide® device, with surface electrodes stimulating the peroneal nerve during swing phase of gait. For the primary objective, the Goal Attainment Scale is used to test whether FES improves activities and participation in daily life. The secondary objective is to prove whether FES is effective at the level of body functions and structures, and activities, including ankle kinematics and kinetics measured during 3D-gait analysis and questionnaire-based frequency of falling. The tertiary objective is to collect relevant information for clinical implementation, including acceptability using the device log file and side effect registration, cost-effectiveness based on quality adjusted life years (QALYs) and clinical characteristics for patient selection. Discussion We anticipate that the results of this study will allow evidence-based use of FES during walking in children with unilateral spastic cerebral palsy. Trial registration ClinicalTrials.gov: NCT03440632. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-03037-9.
Collapse
|
249
|
McCrum C, Vaes AW, Delbressine JM, Koopman M, Liu WY, Willems P, Meijer K, Spruit MA. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease. Clin Biomech (Bristol, Avon) 2022; 91:105538. [PMID: 34823220 DOI: 10.1016/j.clinbiomech.2021.105538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Falls risk is elevated in chronic obstructive pulmonary disease (COPD). However, there is a lack of evidence regarding the contributing factors. Here, we examined the feasibility of, and initial responses to, large walking perturbations in COPD, as well as the adaptation potential of people with COPD to repeated walking perturbations that might indicate potential for perturbation-based balance training in COPD. METHODS 12 participants with COPD undergoing inpatient pulmonary rehabilitation and 12 age-gender-matched healthy control participants walked on an instrumented treadmill and experienced repeated treadmill-belt acceleration perturbations (leading to a forward balance loss). Three-dimensional motion capture was used to quantify the stability of participants body position during perturbed walking. Feasibility, stability following the initial perturbations and adaptation to repeated perturbations were assessed. FINDINGS Using perturbations in this manner was feasible in this population (no harness assists and participants completed the minimum number of perturbations). No clear, specific deficit in reactive walking stability in COPD was found (no significant effects of participant group on stability or recovery step outcomes). There were mixed results for the adaptability outcomes which overall indicated some adaptability to repeated perturbations, but not to the same extent as the healthy control participants. INTERPRETATION Treadmill-based perturbations during walking are feasible in COPD. COPD does not appear to result in significant deficits in stability following sudden perturbations and patients do demonstrate some adaptability to repeated perturbations. Perturbation-based balance training may be considered for fall prevention in research and practice in people with COPD.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Anouk W Vaes
- Research and Development, CIRO, Horn, the Netherlands
| | | | - Maud Koopman
- Research and Development, CIRO, Horn, the Netherlands; Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Wai-Yan Liu
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; Research and Development, CIRO, Horn, the Netherlands; Department of Orthopaedic Surgery, Máxima Medical Center, Eindhoven, the Netherlands; Department of Orthopaedic Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - Paul Willems
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Martijn A Spruit
- Research and Development, CIRO, Horn, the Netherlands; Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
250
|
Siebers HL, Eschweiler J, Michalik R, Migliorini F, Tingart M, Betsch M. Biomechanical compensation mechanisms during stair climbing - The effect of leg length inequalities. Gait Posture 2022; 91:290-296. [PMID: 34798420 DOI: 10.1016/j.gaitpost.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Stair climbing is a complex and demanding daily activity with increased physical loads. Therefore, analyzing stair climbing abilities is a frequently used diagnostic tool. Leg length inequalities (LLIs) are a common condition in the population, with individual consequences like lower back pain, scoliosis, and osteoarthritis. Despite its high prevalence, the necessary treatment, for mild LLIs, is still controversial. Previously, the focus was to analyze the effects of LLIs during static standing and walking. To create a holistic view on the dynamic effects of LLIs, and since climbing stairs produces a similar biomechanical imbalance as LLIs, the compensation mechanics during stair climbing are of special interest. RESEARCH QUESTION What are the biomechanical compensation mechanisms of (simulated) LLIs during ascending and descending stairs? METHODS Thirty-five healthy participants were measured with the inertial measurement system MyoMotion during stair climbing with simulated LLIs of 0-3 cm. The maximum estimated lower limb joint angles of the long and short leg were analyzed with statistically repeated measurement models. RESULTS The long leg showed significantly increased hip and knee flexion, while the short leg showed decreased hip and knee flexion, decreased dorsiflexion, and significantly increased plantarflexion. Different mechanisms were found in the case of 1 cm LLI when compared to greater LLIs. In the former, increased hip and knee flexion in the short leg accompanied by increased dorsiflexion in the long leg was observed. In the latter, the dorsiflexion of the long leg was reduced. SIGNIFICANCE Except for the reduced dorsiflexion of the long leg (LLI >1 cm), during stair climbing compared compensation mechanisms as during walking were presented, with the long leg functionally shortened and the short leg lengthened. Although the feet were already on different levels, during stair climbing with the step-over-step technique, significant compensation mechanisms were found as a consequence of LLIs.
Collapse
Affiliation(s)
- Hannah Lena Siebers
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany.
| | - Jörg Eschweiler
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Roman Michalik
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Marcel Betsch
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim of the University Heidelberg, Mannheim, Germany
| |
Collapse
|