201
|
Lai W, Yu M, Huang MN, Okoye F, Keegan AD, Farber DL. Transcriptional control of rapid recall by memory CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:133-40. [PMID: 21642544 DOI: 10.4049/jimmunol.1002742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Memory T cells are distinguished from naive T cells by their rapid production of effector cytokines, although mechanisms for this recall response remain undefined. In this study, we investigated transcriptional mechanisms for rapid IFN-γ production by Ag-specific memory CD4 T cells. In naive CD4 T cells, IFN-γ production only occurred after sustained Ag activation and was associated with high expression of the T-bet transcription factor required for Th1 differentiation and with T-bet binding to the IFN-γ promoter as assessed by chromatin immunoprecipitation analysis. By contrast, immediate IFN-γ production by Ag-stimulated memory CD4 T cells occurred in the absence of significant nuclear T-bet expression or T-bet engagement on the IFN-γ promoter. We identified rapid induction of NF-κB transcriptional activity and increased engagement of NF-κB on the IFN-γ promoter at rapid times after TCR stimulation of memory compared with naive CD4 T cells. Moreover, pharmacologic inhibition of NF-κB activity or peptide-mediated inhibition of NF-κB p50 translocation abrogated early memory T cell signaling and TCR-mediated effector function. Our results reveal a molecular mechanism for memory T cell recall through enhanced NF-κB p50 activation and promoter engagement, with important implications for memory T cell modulation in vaccines, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Wendy Lai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
202
|
Miller SA, Weinmann AS. Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol Rev 2011; 238:233-46. [PMID: 20969596 DOI: 10.1111/j.1600-065x.2010.00952.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current research suggests that a number of newly identified T-helper cell subsets retain a degree of context-dependent plasticity in their signature cytokine expression patterns. To understand this process, a major challenge is to determine the molecular mechanisms by which lineage-defining transcription factors regulate gene expression profiles in T-helper cells. This mechanistic information will aid in our interpretation of whether a T-helper cell state that expresses or retains the capacity to re-express a combination of lineage-defining transcription factors will have a stable or more flexible gene expression profile. Studies examining the developmental T-box transcription factor T-bet demonstrate the powerful information that is gained from combining in vivo analysis with basic biochemical and molecular mechanism approaches. Significantly, T-bet's ability to physically recruit epigenetic modifying complexes, in particular a Jmjd3 H3K27-demethylase and a Set7/9 H3K4-methyltransferase complex, to its target genes allows T-bet to effectively reverse and establish new epigenetic states. This observation suggests that until T-bet is permanently extinguished, T-helper cells will retain some plasticity toward a T-helper 1-like program. Therefore, insight into the complexity of T-helper cell commitment decisions will be aided by determining the molecular mechanisms for lineage-defining transcription factors.
Collapse
Affiliation(s)
- Sara A Miller
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
203
|
Harker N, Garefalaki A, Menzel U, Ktistaki E, Naito T, Georgopoulos K, Kioussis D. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2011; 186:6368-77. [PMID: 21515796 DOI: 10.4049/jimmunol.1003567] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD8 gene is silent in CD4(-)CD8(-) double-negative thymocytes, expressed in CD4(+)CD8(+) double-positive cells, and silenced in cells committing to the CD4(+) single-positive (SP) lineage, remaining active in the CD8(+) SP lineage. In this study, we show that the chromatin of the CD8 locus is remodeled in C57BL/6 and B6/J Rag1(-/-) MOM double-negative thymocytes as indicated by DNaseI hypersensitivity and widespread bivalent chromatin marks. Pre-TCR signaling coincides with chromatin bivalency resolution into monovalent activating modifications in double-positive and CD8 SP cells. Shortly after commitment to CD4 SP cell lineage, monovalent repressive characteristics and chromatin inaccessibility are established. Differential binding of Ikaros, NuRD, and heterochromatin protein 1α on the locus during these processes may participate in the complex regulation of CD8.
Collapse
Affiliation(s)
- Nicola Harker
- Division of Molecular Immunology, National Institute for Medical Research, Medical Research Council, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
204
|
Dubovsky JA, Powers JJ, Gao Y, Mariusso LF, Sotomayor EM, Pinilla-Ibarz JA. Epigenetic repolarization of T lymphocytes from chronic lymphocytic leukemia patients using 5-aza-2'-deoxycytidine. Leuk Res 2011; 35:1193-9. [PMID: 21377729 DOI: 10.1016/j.leukres.2011.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/19/2011] [Accepted: 02/07/2011] [Indexed: 12/28/2022]
Abstract
T cell immune dysfunction has an important role in the profound immune suppression that characterizes chronic lymphocytic leukemia (CLL). Improper polarization of T cells has been proposed as one of the mechanism involved. Mounting data implicates chromatin regulation, namely promoter methylation, in the plasticity of naïve human T cells. Recent in vitro evidence indicates that this plasticity may be phenotypically altered by using methylation inhibitors which are approved for clinical use in certain types of cancer. These results beg the question: can the ineffective polarization of T lymphocytes in the context of CLL be effectively modulated using methylation inhibitors in a sustainable therapeutic fashion? To answer this question our laboratory has studied the effects of 5-aza-2'-deoxycytidine (5A2) in helper and cytotoxic T lymphocytes from healthy donors and CLL patients in well characterized molecular and epigenetic signaling pathways involved in effective polarization. Moreover, we sought to investigate the consequences of methylation inhibitor treatment on lymphocyte survival, activation intensity, and naïve cell polarization. Our data indicates that 5A2 treatment can depolarize Th2 cells to effectively secrete interferon gamma, signal via T-bet, and achieve demethylation of critical Th1 specific promoters. Moreover, we demonstrate that 5A2 can force Th1 polarization of naïve T cells despite a strong IL-4 stimuli and a lack of IL-12. In conclusion our data seeks to define a modality in which improper or ineffective T cell polarization can be altered by 5AZA and could be incorporated in future therapeutic interventions.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Cell Polarity/drug effects
- Cell Polarity/genetics
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA Methylation/drug effects
- Decitabine
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/physiology
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Interferon-gamma/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/physiology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/physiology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/physiology
Collapse
Affiliation(s)
- Jason A Dubovsky
- Department of Experimental Therapeutics at H. Lee Moffitt Cancer Center, Tampa, FL 33612-9416, USA
| | | | | | | | | | | |
Collapse
|
205
|
The contribution of epigenetic memory to immunologic memory. Curr Opin Genet Dev 2011; 21:154-9. [PMID: 21330128 DOI: 10.1016/j.gde.2011.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/18/2011] [Indexed: 12/15/2022]
Abstract
Memory T lymphocytes are distinct from antigen-inexperienced naïve T cells in that memory T cells can respond more rapidly when they re-encounter a pathogen. Work over the past decade has begun to define the epigenetic underpinnings of the transcriptional component of the memory T cell response. An emerging theme is the persistence of an active chromatin signature at relevant gene loci in resting memory T cells, even when those genes are transcriptionally inactive. This gives strength to the concept of gene poising, and has shown that memory T lymphocytes are an ideal model in which to further define various mechanisms of epigenetic poising.
Collapse
|
206
|
Zediak VP, Johnnidis JB, Wherry EJ, Berger SL. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. THE JOURNAL OF IMMUNOLOGY 2011; 186:2705-9. [PMID: 21278341 DOI: 10.4049/jimmunol.1003741] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory CD8(+) T cells are characterized by more rapid and robust effector function upon infection compared with naive T cells, but factors governing effector gene responsiveness are incompletely understood. We sought to understand transcriptional control of the effector genes IFN-γ (Ifng), granzyme B (Gzmb), and perforin 1 (Prf1) in murine memory CD8(+) T cells by characterizing their transcriptional profiles and chromatin states during lymphocytic choriomeningitis virus infection. Each effector gene has a distinct transcriptional profile in resting memory cells and following restimulation. Primary infection leads to reduced nucleosomal density near the transcription start sites and reduced H3K27 methylation throughout the Ifng and Gzmb loci, and these chromatin changes persist in the memory phase. Despite similarities in chromatin at the memory stage, PolII recruitment and continuous transcription occur at the Ifng locus but not the Gzmb locus. We propose that these chromatin changes poise effector genes for rapid upregulation, but are insufficient for PolII recruitment and transcription.
Collapse
Affiliation(s)
- Valerie P Zediak
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
207
|
Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements. Mol Cell Biol 2011; 31:1512-27. [PMID: 21262765 DOI: 10.1128/mcb.00920-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.
Collapse
|
208
|
Abstract
T-cell development endows cells with a flexible range of effector differentiation options, superimposed on a stable core of lineage-specific gene expression that is maintained while access to alternative hematopoietic lineages is permanently renounced. This combination of features could be explained by environmentally responsive transcription factor mobilization overlaying an epigenetically stabilized base gene expression state. For example, "poising" of promoters could offer preferential access to T-cell genes, while repressive histone modifications and DNA methylation of non-T regulatory genes could be responsible for keeping non-T developmental options closed. Here, we critically review the evidence for the actual deployment of epigenetic marking to support the stable aspects of T-cell identity. Much of epigenetic marking is dynamically maintained or subject to rapid modification by local action of transcription factors. Repressive histone marks are used in gene-specific ways that do not fit a simple, developmental lineage-exclusion hierarchy. We argue that epigenetic analysis may achieve its greatest impact for illuminating regulatory biology when it is used to locate cis-regulatory elements by catching them in the act of mediating regulatory change.
Collapse
|
209
|
Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J 2010; 30:263-76. [PMID: 21169989 DOI: 10.1038/emboj.2010.314] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/11/2010] [Indexed: 11/08/2022] Open
Abstract
Naive T cells encountering their cognate antigen become activated and acquire the ability to proliferate in response to cytokines. Stat5 is an essential component in this response. We demonstrate that Stat5 cannot access DNA in naive T cells and acquires this ability only after T-cell receptor (TCR) engagement. The transition is not associated with changes in DNA methylation or global histone modification but rather chromatin decondensation. Condensation occurs during thymocyte development and proper condensation is dependent on kleisin-β of the condensin II complex. Our findings suggest that this unique chromatin condensation, which can affect interpretations of chromatin accessibility assays, is required for proper T-cell development and maintenance of the quiescent state. This mechanism ensures that cytokine driven proliferation can only occur in the context of TCR stimulation.
Collapse
|
210
|
Sandgren J, Andersson R, Rada-Iglesias A, Enroth S, Akerstrom G, Dumanski JP, Komorowski J, Westin G, Wadelius C. Integrative epigenomic and genomic analysis of malignant pheochromocytoma. Exp Mol Med 2010; 42:484-502. [PMID: 20534969 DOI: 10.3858/emm.2010.42.7.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenomic and genomic changes affect gene expression and contribute to tumor development. The histone modifications trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) are epigenetic regulators associated to active and silenced genes, respectively and alterations of these modifications have been observed in cancer. Furthermore, genomic aberrations such as DNA copy number changes are common events in tumors. Pheochromocytoma is a rare endocrine tumor of the adrenal gland that mostly occurs sporadic with unknown epigenetic/genetic cause. The majority of cases are benign. Here we aimed to combine the genome-wide profiling of H3K4me3 and H3K27me3, obtained by the ChIP-chip methodology, and DNA copy number data with global gene expression examination in a malignant pheochromocytoma sample. The integrated analysis of the tumor expression levels, in relation to normal adrenal medulla, indicated that either histone modifications or chromosomal alterations, or both, have great impact on the expression of a substantial fraction of the genes in the investigated sample. Candidate tumor suppressor genes identified with decreased expression, a H3K27me3 mark and/or in regions of deletion were for instance TGIF1, DSC3, TNFRSF10B, RASSF2, HOXA9, PTPRE and CDH11. More genes were found with increased expression, a H3K4me3 mark, and/or in regions of gain. Potential oncogenes detected among those were GNAS, INSM1, DOK5, ETV1, RET, NTRK1, IGF2, and the H3K27 trimethylase gene EZH2. Our approach to associate histone methylations and DNA copy number changes to gene expression revealed apparent impact on global gene transcription, and enabled the identification of candidate tumor genes for further exploration.
Collapse
Affiliation(s)
- Johanna Sandgren
- Department of Surgical Sciences, Uppsala University, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2010; 117:1888-98. [PMID: 21123821 DOI: 10.1182/blood-2010-10-310599] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In clinical trials of adoptive T-cell therapy, the persistence of transferred cells correlates with therapeutic efficacy. However, properties of human T cells that enable their persistence in vivo are poorly understood, and model systems that enable investigation of the fate of human effector T cells (T(E)) have not been described. Here, we analyzed the engraftment of adoptively transferred human cytomegalovirus pp65-specific CD8(+) T(E) cells derived from purified CD45RO(+)CD62L(+) central memory (T(CM)) or CD45RO(+)CD62L(-) effector memory (T(EM)) precursors in an immunodeficient mouse model. The engraftment of T(CM)-derived effector cells (T(CM/E)) was dependent on human interleukin-15, and superior in magnitude and duration to T(EM)-derived effector cells (T(EM/E)). T-cell receptor Vβ analysis of persisting cells demonstrated that CD8(+) T(CM/E) engraftment was polyclonal, suggesting that the ability to engraft is a general feature of T(CM/E.) CD8(+) T(EM/E) proliferated extensively after transfer but underwent rapid apoptosis. In contrast, T(CM/E) were less prone to apoptosis and established a persistent reservoir of functional T cells in vivo characterized by higher CD28 expression. These studies predict that human CD8(+) effector T cells derived from T(CM) precursors may be preferred for adoptive therapy based on superior engraftment fitness.
Collapse
|
212
|
Tserel L, Kolde R, Rebane A, Kisand K, Org T, Peterson H, Vilo J, Peterson P. Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells. BMC Genomics 2010; 11:642. [PMID: 21087476 PMCID: PMC3091769 DOI: 10.1186/1471-2164-11-642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/18/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Monocyte-derived macrophages and dendritic cells (DCs) are important in inflammatory processes and are often used for immunotherapeutic approaches. Blood monocytes can be differentiated into macrophages and DCs, which is accompanied with transcriptional changes in many genes, including chemokines and cell surface markers. RESULTS To study the chromatin modifications associated with this differentiation, we performed a genome wide analysis of histone H3 trimethylation on lysine 4 (H3K4me3) and 27 (H3K27me3) as well as acetylation of H3 lysines (AcH3) in promoter regions. We report that both H3K4me3 and AcH3 marks significantly correlate with transcriptionally active genes whereas H3K27me3 mark is associated with inactive gene promoters. During differentiation, the H3K4me3 levels decreased on monocyte-specific CD14, CCR2 and CX3CR1 but increased on DC-specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. Genes associated with phagocytosis and antigen presentation were marked by H3K4me3 modifications. We also report that H3K4me3 levels on clustered chemokine and surface marker genes often correlate with transcriptional activity. CONCLUSION Our results provide a basis for further functional correlations between gene expression and histone modifications in monocyte-derived macrophages and DCs.
Collapse
Affiliation(s)
- Liina Tserel
- Molecular Pathology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Liber D, Domaschenz R, Holmqvist PH, Mazzarella L, Georgiou A, Leleu M, Fisher AG, Labosky PA, Dillon N. Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 2010; 7:114-26. [PMID: 20621055 DOI: 10.1016/j.stem.2010.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 04/14/2010] [Accepted: 05/24/2010] [Indexed: 11/18/2022]
Abstract
Modifications to the core histones are thought to contribute to ESC pluripotency by priming tissue-specific promoters and enhancers for later activation. However, it is unclear how these marks are targeted in ESCs and maintained during differentiation. Here, we show that the ESC factor Sox2 targets H3K4 methylation to monovalent and bivalent domains. In ESCs, Sox2 contributes to the formation of a monovalent mark at an enhancer in the pro/pre-B cell-specific lambda5-VpreB1 locus. Binding of Foxd3 suppresses intergenic transcription of the enhancer and surrounding sequences. In pro-B cells, enhancer activity is dependent on the Sox and Fox binding sites, and the enhancer is bound by Sox4, which is required for efficient expression of lambda5. Our results lead us to propose a factor relay model whereby ESC factors establish active epigenetic marks at tissue specific elements before being replaced by cell type-specific factors as cells differentiate.
Collapse
Affiliation(s)
- Daniel Liber
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Daniels MA, Teixeiro E. The persistence of T cell memory. Cell Mol Life Sci 2010; 67:2863-78. [PMID: 20364394 PMCID: PMC11115859 DOI: 10.1007/s00018-010-0362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 03/19/2010] [Indexed: 12/14/2022]
Abstract
T cell memory is a crucial feature of the adaptive immune system in the defense against pathogens. During the last years, numerous studies have focused their efforts on uncovering the signals, inflammatory cues, and extracellular factors that support memory differentiation. This research is beginning to decipher the complex gene network that controls memory programming. However, how the different signals, that a T cell receives during the process of differentiation, interplay to trigger memory programming is still poorly defined. In this review, we focus on the most recent advances in the field and discuss how T cell receptor signaling and inflammation control CD8 memory differentiation.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, Center for Cellular and Molecular Immunology, University of Missouri, M616 Medical Sciences Bldg., One Hospital Dr., Columbia, MO 65212, USA.
| | | |
Collapse
|
215
|
Abstract
The past few decades are characterized by an explosive evolution of genetics and molecular cell biology. Advances in chemistry and engineering have enabled increased data throughput, permitting the study of complete sets of molecules with increasing speed and accuracy using techniques such as genomics, transcriptomics, proteomics, and metabolomics. Prediction of long-term outcomes in transplantation is hampered by the absence of sufficiently robust biomarkers and a lack of adequate insight into the mechanisms of acute and chronic alloimmune injury and the adaptive mechanisms of immunological quiescence that may support transplantation tolerance. Here, we discuss some of the great opportunities that molecular diagnostic tools have to offer both basic scientists and translational researchers for bench-to-bedside clinical application in transplantation medicine, with special focus on genomics and genome-wide association studies, epigenetics (DNA methylation and histone modifications), gene expression studies and transcriptomics (including microRNA and small interfering RNA studies), proteomics and peptidomics, antibodyomics, metabolomics, chemical genomics and functional imaging with nanoparticles. We address the challenges and opportunities associated with the newer high-throughput sequencing technologies, especially in the field of bioinformatics and biostatistics, and demonstrate the importance of integrative approaches. Although this Review focuses on transplantation research and clinical transplantation, the concepts addressed are valid for all translational research.
Collapse
|
216
|
Abstract
The Polycomb group (PcG) of proteins is a major mechanism of epigenetic regulation that has been broadly linked to cancer. This system can repress gene expression by chromatin modification and is essential for establishing cell identity. PcG proteins are important for stem cell function and differentiation and have a profound impact during hematopoiesis. In recent years, several published studies have deepened our knowledge of the biology of the PcG in health and disease. In this article, we review the current understanding of the mechanisms of PcG-mediated repression and their relation to DNA methylation, and we discuss the role of the PcG system in hematopoiesis and hematologic malignancies. We suggest that alteration of different PcG members is a frequent event in leukemia and lymphomas that confers the stem cell properties on tumor cells. Thus, drugs targeting Polycomb complexes could be useful for treating patients with these diseases.
Collapse
|
217
|
Haining WN, Wherry EJ. Integrating genomic signatures for immunologic discovery. Immunity 2010; 32:152-61. [PMID: 20189480 DOI: 10.1016/j.immuni.2010.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 11/27/2022]
Abstract
Understanding heterogeneity in adaptive immune responses is essential to dissect pathways of memory B and T cell differentiation and to define correlates of protective immunity. Traditionally, immunologists have deconvoluted this heterogeneity with flow cytometry--with combinations of markers to define signatures that represent specific lineages, differentiation states, and functions. Genome-scale technologies have become widely available and provide the ability to define expression signatures--sets of genes--that represent discrete biological properties of cell populations. Because genomic signatures can serve as surrogates of a phenotype, function, or cell state, they can integrate phenotypic information between experiments, cell types, and species. Here, we discuss how integration of well-defined expression signatures across experimental conditions together with functional analysis of their component genes could provide new opportunities to dissect the complexity of the adaptive immune response and map the immune response to vaccines and pathogens.
Collapse
Affiliation(s)
- W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
218
|
Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 2010; 22:333-40. [PMID: 20363604 DOI: 10.1016/j.coi.2010.02.013] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/11/2010] [Accepted: 02/25/2010] [Indexed: 01/03/2023]
Abstract
CD8 T cells require a third signal, along with Ag and costimulation, to make a productive response and avoid death and/or tolerance induction. Recent studies indicate that IL-12 and Type I IFN (IFNalpha/beta) are the major sources of signal 3 in a variety of responses, and that the two cytokines stimulate a common regulatory program involving altered expression of about 350 genes. Signal 3-driven chromatin remodeling is likely to play a major role in this regulation. Although less well studied, there is emerging evidence that CD4 T cells may also require a 'third signal' for a productive response and that IL-1 can provide this signal. Signal 3 cytokines can replace adjuvants in supporting in vivo T cell responses to peptide and protein antigens, and a better understanding of their activities and mechanisms should contribute to more rational design of vaccines.
Collapse
Affiliation(s)
- Julie M Curtsinger
- Center for Immunology, Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
219
|
Dispirito JR, Shen H. Histone acetylation at the single-cell level: a marker of memory CD8+ T cell differentiation and functionality. THE JOURNAL OF IMMUNOLOGY 2010; 184:4631-6. [PMID: 20308634 DOI: 10.4049/jimmunol.0903830] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following stimulation, memory T (T(M)) cells rapidly express many effector functions, a hallmark feature that allows them to provide protective immunity. Recent studies suggest that genes involved in this rapid recall response may maintain an open chromatin structure in resting T(M) cells via epigenetic modifications. However, these studies have mostly focused on a few loci, and the techniques used required a large number of cells. We have developed a flow cytometric assay measuring histone modifications in individual murine T cells in combination with lineage-specific markers. In this study, we show that the per-cell level of a marker of open chromatin, diacetylated histone H3 (diAcH3), increases as naive CD8(+) T cells develop into T(M) cells, demonstrating a novel correlation between the differentiation state of a CD8(+) T cell and its abundance of a specific histone modification. Furthermore, our results show that T(M) cells defective in rapid recall ability have less diAcH3 than their fully functional counterparts, indicating that the diAcH3 level of individual T(M) cells is a useful marker for assessing their functionality.
Collapse
Affiliation(s)
- Joanna R Dispirito
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
220
|
Cuddapah S, Barski A, Zhao K. Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 2010; 22:341-7. [PMID: 20226645 DOI: 10.1016/j.coi.2010.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/04/2010] [Accepted: 02/11/2010] [Indexed: 11/15/2022]
Abstract
Activation of T cells is an essential step in the immunological response to infection. Although activation of naïve T cells results in proliferation and slow differentiation into cytokine-producing effector cells, antigen engagement with memory cells leads to cytokine production immediately. Even though the cell surface signaling events are similar in both the cases, the outcome is different, suggesting that distinct regulatory mechanisms may exist downstream of the activation signals. Recent advances in the understanding of global epigenetic patterns in T cells have resulted in the appreciation of the role of epigenetic mechanisms in processes such as activation and differentiation. In this review we discuss recent data suggesting that naïve T cell activation, differentiation, and lineage commitment result in epigenetic changes and a fine balance between different histone modifications is required. On the other hand, memory T cells are poised and do not require epigenetic changes for short-term activation.
Collapse
Affiliation(s)
- Suresh Cuddapah
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
221
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
222
|
Dynamic regulation of functionally distinct virus-specific T cells. Proc Natl Acad Sci U S A 2010; 107:3669-74. [PMID: 20133680 DOI: 10.1073/pnas.0915168107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The functional capacities of CD8(+) T cells important for virus clearance are influenced by interactions with antigen presenting cells (APCs) and CD4(+) T cells during initial selection, subsequent expansion, and development of memory. Recently, investigators have shown that polyfunctional T cells correlate best with long-term protection, however, it is still unknown how to stimulate T cells to achieve these responses. To study this, we examined the phenotypes and functions of CD8(+) T cells specific for two different virus antigens stimulated ex vivo using either autologous monocyte-derived dendritic cells (moDCs) or HLA-A2-Ig-based artificial APCs (aAPCs). Although similar numbers of influenza virus and measles virus tetramer-positive cells were generated by stimulation with peptide-loaded moDCs and aAPCs, T cell function, assessed by expression of IL-2, IFN-gamma, TNF-alpha, MIP1beta, and CD107a, showed that aAPC-generated CD8(+) T cells were multifunctional, whereas moDC-generated cells were mostly monofunctional. aAPC-generated cells also produced more of each cytokine per cell than CD8(+) T cells generated with moDCs. These phenotypes were not fixed, as changing the culture conditions of expanding T cells from aAPCs to moDCs, and moDCs to aAPCs, reversed the phenotypes. We conclude that CD8(+) T cells are heterogeneous in their functionality and that this is dependent, in a dynamic way, on the stimulating APC. These studies will lead to understanding the factors that influence induction of optimal CD8(+) T cell function.
Collapse
|
223
|
Nuclear Architecture in Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:14-25. [DOI: 10.1007/978-1-4419-7037-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
224
|
Pandya K, Pulli B, Bultman S, Smithies O. Reversible epigenetic modifications of the two cardiac myosin heavy chain genes during changes in expression. Gene Expr 2010; 15:51-9. [PMID: 21526716 PMCID: PMC3243912 DOI: 10.3727/105221611x12973615737505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The two genes of the cardiac myosin heavy chain (MHC) locus-alpha-MHC (aMHC) and beta-MHC (bMHC)--are reciprocally regulated in the mouse ventricle during development and in adult conditions such as hypothyroidism and pathological cardiac hypertrophy. Their expressions are under the control of thyroid hormone T3 levels. To gain insights into the epigenetic mechanisms that underlie this inducible and reversible switching of the aMHC and bMHC isoforms, we have investigated the histone modification patterns that occur over the two cardiac MHC promoters during T3-mediated reversible switching of gene expression. Mice fed a diet of propylthiouracil (PTU, an inhibitor of T3 synthesis) for 2 weeks dramatically reduce aMHC mRNA expression and increase bMHC mRNA levels to high levels, while a subsequent withdrawal of PTU diet for 2 weeks completely reverses the T3-mediated changes in MHC expression. Using hearts from mice treated in this way, we carried out chromatin immunoprecipitation-qPCR assays with antibodies against acetylated histone H3 (H3ac) and trimethylated histone (H3K4me3)-two well-documented markers of activation. Our results show that the reexpression of bMHC is associated at the bMHC promoter with increased H3ac but not H3K4me3. In contrast, the silencing of aMHC is associated at its promoter with decreased H3K4me3, but not decreased H3ac. The epigenetic changes at the two MHC promoters are completely reversed when the gene expression returns to initial levels. These data indicate that during reciprocal and inducible gene expression H3ac parallels bMHC isoform expression while H3K4me3 parallels expression of the tightly linked aMHC isoform.
Collapse
Affiliation(s)
- Kumar Pandya
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | | | | | | |
Collapse
|
225
|
Abstract
The functional roles of memory B and T lymphocytes underlie the phenomenal success of prophylactic vaccinations, which have decreased morbidities and mortalities from infectious diseases globally over the last 50 years. However, it is becoming increasingly appreciated that memory cells are also capable of mediating the pathology associated with autoimmune disorders and transplant rejection, and may pose a significant barrier to future clinical advancement in immunoregulation. Therefore, understanding the unique properties of memory lymphocytes (as compared to their naive precursors) is a major area of investigation. Here, we focus on one of those singular properties of memory T cells (T(M))-rapid recall. As will be discussed in more detail, rapid recall refers to the ability of quiescent T(M) cells to efficiently and robustly express 'effector functions' following stimulation. Studies that have advanced our understanding of T(M) cells' rapid recall using CD4(+) T cells have been expertly reviewed elsewhere, so we will focus primarily on studies of CD8(+) T cells. We will first review the different ways that CD8(+) T(M) cells can be generated, followed by discussing how this influences their functional properties in the settings of immune protection and pathology. Then, rapid recall ability will be discussed, with emphasis placed on what is currently known about the mechanisms that underlie this unique property of T(M) cells.
Collapse
|
226
|
Abstract
Urodele amphibians and teleost fish regenerate amputated body parts via a process called epimorphic regeneration. A hallmark of this phenomenon is the reactivation of silenced developmental regulatory genes that previously functioned during embryonic patterning. We demonstrate that histone modifications silence promoters of numerous genes involved in zebrafish caudal fin regeneration. Silenced developmental regulatory genes contain bivalent me(3)K4/me(3)K27 H3 histone modifications created by the concerted action of Polycomb (PcG) and Trithorax histone methyltransferases. During regeneration, this silent, bivalent chromatin is converted to an active state by loss of repressive me(3)K27 H3 modifications, occurring at numerous genes that appear to function during regeneration. Loss-of-function studies demonstrate a requirement for a me(3)K27 H3 demethylase during fin regeneration. These results indicate that histone modifications at discreet genomic positions may serve as a crucial regulatory event in the initiation of fin regeneration.
Collapse
|
227
|
Lim PS, Hardy K, Bunting KL, Ma L, Peng K, Chen X, Shannon MF. Defining the chromatin signature of inducible genes in T cells. Genome Biol 2009; 10:R107. [PMID: 19807913 PMCID: PMC2784322 DOI: 10.1186/gb-2009-10-10-r107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/27/2009] [Accepted: 10/06/2009] [Indexed: 12/18/2022] Open
Abstract
Inducible genes in T cells show the chromatin characteristics of active genes, suggesting they are primed for transcription. Background Specific chromatin characteristics, especially the modification status of the core histone proteins, are associated with active and inactive genes. There is growing evidence that genes that respond to environmental or developmental signals may possess distinct chromatin marks. Using a T cell model and both genome-wide and gene-focused approaches, we examined the chromatin characteristics of genes that respond to T cell activation. Results To facilitate comparison of genes with similar basal expression levels, we used expression-profiling data to bin genes according to their basal expression levels. We found that inducible genes in the lower basal expression bins, especially rapidly induced primary response genes, were more likely than their non-responsive counterparts to display the histone modifications of active genes, have RNA polymerase II (Pol II) at their promoters and show evidence of ongoing basal elongation. There was little or no evidence for the presence of active chromatin marks in the absence of promoter Pol II on these inducible genes. In addition, we identified a subgroup of genes with active promoter chromatin marks and promoter Pol II but no evidence of elongation. Following T cell activation, we find little evidence for a major shift in the active chromatin signature around inducible gene promoters but many genes recruit more Pol II and show increased evidence of elongation. Conclusions These results suggest that the majority of inducible genes are primed for activation by having an active chromatin signature and promoter Pol II with or without ongoing elongation.
Collapse
Affiliation(s)
- Pek S Lim
- Genome Biology Program and ACRF Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, ACT 0200, Australia.
| | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
The division of labor among two types of T helper (Th) subsets, first described over 20 yr ago, has been buffeted by the discovery of new subsets and new cytokines that can be coaxed out of T cells with increasing disregard for the subset of origin. Although Th17 cells and regulatory T (T reg) cells are widely accepted subsets, and others are being proposed, their plasticity is difficult to reconcile with the definitions of Th subsets as put forth in the initial description of Th1 and Th2 cells. A deeper molecular context will be required to reconcile the ever-increasing complexity of effector T cells.
Collapse
Affiliation(s)
- Richard M Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|