201
|
Thayer KM, Han ISM. Chemical principles additive model aligns low consensus DNA targets of p53 tumor suppressor protein. Comput Biol Chem 2017; 68:186-193. [PMID: 28363149 DOI: 10.1016/j.compbiolchem.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Computational prediction of the interaction between protein transcription factors and their cognate DNA binding sites in genomic promoters constitutes a formidable challenge in two situations: when the number of discriminatory interactions is small compared to the length of the binding site, and when DNA binding sites possess a poorly conserved consensus binding motif. The transcription factor p53 tumor suppressor protein and its target DNA exhibit both of these issues. From crystal structure analysis, only three discriminatory amino acid side chains contact the DNA for a binding site spanning ten base pairs. Furthermore, our analysis of a dataset of genome wide fragments binding to p53 revealed many sequences lacking the expected consensus. The low information content leads to an overestimation of binding sites, and the lack of conservation equates to a computational alignment problem. Within a fragment of DNA known to bind to p53, computationally locating the position of the site equates to aligning the DNA with the binding interface. From a molecular perspective, that alignment implies a specification of which DNA bases are interacting with which amino acid side chains, and aligning many sequences to the same protein interface concomitantly produces a multiple sequence alignment. From this vantage, we propose to cast prediction of p53 binding sites as an alignment to the protein binding surface with the novel approach of optimizing the alignment of DNA fragments to the p53 binding interface based on chemical principles. A scoring scheme based on this premise was successfully implemented to score a dataset of biological DNA fragments known to contain p53 binding sites. The results illuminate the mechanism of recognition for the protein-DNA system at the forefront of cancer research. These findings implicate that p53 may recognize its target binding sites via several different mechanisms which may include indirect readout.
Collapse
Affiliation(s)
- Kelly M Thayer
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America; Department of Chemistry, Wesleyan University, Hall-Atwater Laboratories, Middletown, CT 06459, United States of America.
| | - In Sub M Han
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States of America
| |
Collapse
|
202
|
Nihira NT, Ogura K, Shimizu K, North BJ, Zhang J, Gao D, Inuzuka H, Wei W. Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Sci Signal 2017; 10:10/466/eaai8026. [PMID: 28196907 DOI: 10.1126/scisignal.aai8026] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abnormal activation of the oncogenic E3 ubiquitin ligase murine double minute 2 (MDM2) is frequently observed in human cancers. By ubiquitinating the tumor suppressor p53 protein, which leads to its proteasome-mediated destruction, MDM2 limits the tumor-suppressing activity of p53. On the other hand, by ubiquitinating itself, MDM2 targets itself for destruction and promotes the p53 tumor suppressor pathway, a process that can be antagonized by the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP). We investigated the regulation of MDM2 substrate specificity and found that acetyltransferase p300-mediated acetylation and stabilization of MDM2 are molecular switches that block self-ubiquitination, thereby shifting its E3 ligase activity toward p53. In vitro and in cancer cell lines, p300-mediated acetylation of MDM2 on Lys182 and Lys185 enabled HAUSP to bind, presumably deubiquitinate, and stabilize MDM2. This acetylation within the nuclear localization signal domain decreased its interaction with the acidic domain, subsequently increased the interaction between the acidic domain and RING domain in MDM2, enabled the binding of HAUSP to the acidic domain in MDM2, and shifted MDM2 activity from autoubiquitination to p53 ubiquitination. However, upon genotoxic stress through exposure to etoposide, the deacetylase sirtuin 1 (SIRT1) deacetylated MDM2 at Lys182 and Lys185, thereby promoting self-ubiquitination and less ubiquitination and subsequent degradation of p53, thus increasing p53-dependent apoptosis. Therefore, this study indicates that dynamic acetylation is a molecular switch in the regulation of MDM2 substrate specificity, revealing further insight into the posttranslational regulation of the MDM2/p53 cell survival axis.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
203
|
Chen J, Herlong FH, Stroehlein JR, Mishra L. Mutations of Chromatin Structure Regulating Genes in Human Malignancies. Curr Protein Pept Sci 2017; 17:411-37. [PMID: 26796307 PMCID: PMC5403969 DOI: 10.2174/1389203717666160122120008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 02/08/2023]
Abstract
Chromatin structure regulating processes mediated by the adenosine triphosphate (ATP) –dependent chromatin remodeling complex and the covalent histone-modifying complexes are critical to gene transcriptional control and normal cellular processes, including cell stemness, differentiation, and proliferation. Gene mutations, structural abnormalities, and epigenetic modifications that lead to aberrant expression of chromatin structure regulating members have been observed in most of human malignancies. Advances in next-generation sequencing (NGS) technologies in recent years have allowed in-depth study of somatic mutations in human cancer samples. The Cancer Genome Atlas (TCGA) is the largest effort to date to characterize cancer genome using NGS technology. In this review, we summarize somatic mutations of chromatin-structure regulating genes from TCGA publications and other cancer genome studies, providing an overview of genomic alterations of chromatin regulating genes in human malignancies.
Collapse
Affiliation(s)
- Jian Chen
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
204
|
Xu W, Wang B, Yang M, Zhang Y, Xu Z, Yang Y, Cao H, Tao L. Tebufenozide induces G1/S cell cycle arrest and apoptosis in human cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:89-96. [PMID: 27960113 DOI: 10.1016/j.etap.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Tebufenozide is a non-steroidal insect growth regulator and is extensively used to control pests, although it is considered to be safe for mammals and environmentally friendly. However, previous studies have found that tebufenozide is cytotoxic to man, although the exact mechanism remains elusive. This study will investigate the apoptotic molecular mechanisms which result from tebufenozide-induced DNA damage in HeLa cells. Our results demonstrate that tebufenozide could trigger arrest in G1/S phase related to a downregulation of cyclin E and cyclin-dependent kinase (CDK) 2 protein. In addition, Western blotting showed apoptosis was associated with the upregulation of p53, Bax and cleaved-PARP, as well as downregulation of Bcl-2 and PARP. Tebufenozide also regulated changes in mitochondrial permeability and reduced mitochondrial number and intracellular ATP production. Briefly, these results suggest that tebufenozide- induces cell cycle arrest and apoptosis through activating p53 protein in a Bax- and Bcl-2-triggered mitochondrial pathway. This work provides some scientific context for the safe use of tebufenozide in agriculture.
Collapse
Affiliation(s)
- Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Haijing Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
205
|
Rivera-Colón Y, Maguire A, Liszczak GP, Olia AS, Marmorstein R. Molecular Basis for Cohesin Acetylation by Establishment of Sister Chromatid Cohesion N-Acetyltransferase ESCO1. J Biol Chem 2016; 291:26468-26477. [PMID: 27803161 PMCID: PMC5159507 DOI: 10.1074/jbc.m116.752220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Protein acetylation is a prevalent posttranslational modification that is regulated by diverse acetyltransferase enzymes. Although histone acetyltransferases (HATs) have been well characterized both structurally and mechanistically, far less is known about non-histone acetyltransferase enzymes. The human ESCO1 and ESCO2 paralogs acetylate the cohesin complex subunit SMC3 to regulate the separation of sister chromatids during mitosis and meiosis. Missense mutations within the acetyltransferase domain of these proteins correlate with diseases, including endometrial cancers and Roberts syndrome. Despite their biological importance, the mechanisms underlying acetylation by the ESCO proteins are not understood. Here, we report the X-ray crystal structure of the highly conserved zinc finger-acetyltransferase moiety of ESCO1 with accompanying structure-based mutagenesis and biochemical characterization. We find that the ESCO1 acetyltransferase core is structurally homologous to the Gcn5 HAT, but contains unique additional features including a zinc finger and an ∼40-residue loop region that appear to play roles in protein stability and SMC3 substrate binding. We identify key residues that play roles in substrate binding and catalysis, and rationalize the functional consequences of disease-associated mutations. Together, these studies reveal the molecular basis for SMC3 acetylation by ESCO1 and have broader implications for understanding the structure/function of non-histone acetyltransferases.
Collapse
Affiliation(s)
- Yadilette Rivera-Colón
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Andrew Maguire
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Glen P Liszczak
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Adam S Olia
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Ronen Marmorstein
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
206
|
Wright DG, Marchal C, Hoang K, Ankney JA, Nguyen ST, Rushing AW, Polakowski N, Miotto B, Lemasson I. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget 2016; 7:1687-706. [PMID: 26625199 PMCID: PMC4811490 DOI: 10.18632/oncotarget.6424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/15/2015] [Indexed: 01/31/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples.
Collapse
Affiliation(s)
- Diana G Wright
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Claire Marchal
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - John A Ankney
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie T Nguyen
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Amanda W Rushing
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Benoit Miotto
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
207
|
Wang ZA, Zeng Y, Kurra Y, Wang X, Tharp JM, Vatansever EC, Hsu WW, Dai S, Fang X, Liu WR. A Genetically Encoded Allysine for the Synthesis of Proteins with Site-Specific Lysine Dimethylation. Angew Chem Int Ed Engl 2016; 56:212-216. [PMID: 27910233 DOI: 10.1002/anie.201609452] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/01/2023]
Abstract
Using the amber suppression approach, Nϵ -(4-azidobenzoxycarbonyl)-δ,ϵ-dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site-specific lysine dimethylation. Using this approach, dimethyl-histone H3 and p53 proteins have been synthesized and used to probe functions of epigenetic enzymes including histone demethylase LSD1 and histone acetyltransferase Tip60. We confirmed that LSD1 is catalytically active toward H3K4me2 and H3K9me2 but inert toward H3K36me2, and methylation at p53 K372 directly activates Tip60 for its catalyzed acetylation at p53 K120.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| | - Yu Zeng
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| | - Yadagiri Kurra
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| | - Xin Wang
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics, Office of the Taxes State Chemist, Department of Veterinary Pathobiology, College Station, TX, 77843, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| | - Erol C Vatansever
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| | - Willie W Hsu
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| | - Susie Dai
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics, Office of the Taxes State Chemist, Department of Veterinary Pathobiology, College Station, TX, 77843, USA
| | - Xinqiang Fang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, P.R. China
| | - Wenshe R Liu
- Department of Chemistry, Texas A & M University, Corner of Ross and Spence Streets, College Station, TX 77843, USA
| |
Collapse
|
208
|
Wang ZA, Zeng Y, Kurra Y, Wang X, Tharp JM, Vatansever EC, Hsu WW, Dai S, Fang X, Liu WR. A Genetically Encoded Allysine for the Synthesis of Proteins with Site‐Specific Lysine Dimethylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhipeng A. Wang
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| | - Yu Zeng
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| | - Yadagiri Kurra
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| | - Xin Wang
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics Office of the Taxes State Chemist Department of Veterinary Pathobiology College Station TX 77843 USA
| | - Jeffery M. Tharp
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| | - Erol C. Vatansever
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| | - Willie W. Hsu
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| | - Susie Dai
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics Office of the Taxes State Chemist Department of Veterinary Pathobiology College Station TX 77843 USA
| | - Xinqiang Fang
- Fujian Institute of Research on the Structure of Matter Chinese Academy of Science, Fuzhou Fujian 350002 P.R. China
| | - Wenshe R. Liu
- Department of Chemistry Texas A & M University Corner of Ross and Spence Streets College Station TX 77843 USA
| |
Collapse
|
209
|
Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol 2016. [PMID: 27423454 DOI: 10.1007/s10565-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The reversibility of non-genotoxic phenotypic changes has been explored in order to develop novel preventive and therapeutic approaches for cancer. Quisinostat (JNJ-26481585), a novel second-generation histone deacetylase inhibitor (HDACi), has efficient therapeutic actions on non-small cell lung cancer (NSCLC) cell. The present study aims at investigating underlying molecular mechanisms involved in the therapeutic activity of quisinostat on NSCLC cells. We found that quisinostat significantly inhibited A549 cell proliferation in dose- and time-dependent manners. Up-acetylation of histones H3 and H4 and non-histone protein α-tubulin was induced by quisinostat treatment in a nanomolar concentration. We also demonstrated that quisinostat increased reactive oxygen species (ROS) production and destroyed mitochondrial membrane potential (ΔΨm), inducing mitochondria-mediated cell apoptosis. Furthermore, exposure of A549 cells to quisinostat significantly suppressed cell migration by inhibiting epithelial-mesenchymal transition (EMT) process. Bioinformatics analysis indicated that effects of quisinostat on NSCLC cells were associated with activated p53 signaling pathway. We found that quisinostat increased p53 acetylation at K382/K373 sites, upregulated the expression of p21(Waf1/Cip1), and resulted in G1 phase arrest. Thus, our results suggest that the histone deacetylase can be a therapeutic target of NSCLC to discover and develop a new category of therapy for lung cancer.
Collapse
Affiliation(s)
- Lianmin Bao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hua Diao
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Nian Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaoqiong Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Bingbin Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiongya Mo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Heguo Yu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
210
|
Abstract
p53 that is activated in response to DNA-damaging stress can induce apoptosis or either transient or permanent cell cycle arrests. Apoptosis and permanent cell cycle arrest (senescence) are bona-fide tumor suppressor mechanisms through which p53 inhibits cancer cell survival. In contrast, transient cell cycle arrests induced by p53 can increase survival by allowing cells time to repair their DNA before proceeding with cell division. Mechanisms that control the choice of response to p53 (apoptosis vs arrest) are not fully understood. There is abundant crosstalk between p53 and the IGF-1R/AKT/mTORC1 signaling pathway. Recent studies indicate this crosstalk can determine the choice of response to p53. These findings have clear implications for the potential use of IGF-1R pathway inhibitors against p53 wild-type or p53-null or mutant cancers.
Collapse
Affiliation(s)
- Lei Duan
- Rush University Medical Center, Department of Anatomy and Cell Biology, 600 S Paulina Ave., AcFac 507, Chicago, IL 60612
| | - Carl G Maki
- Rush University Medical Center, Department of Anatomy and Cell Biology, 600 S Paulina Ave., AcFac 507, Chicago, IL 60612
| |
Collapse
|
211
|
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M, Bronner C. Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:174. [PMID: 27839516 PMCID: PMC5108085 DOI: 10.1186/s13046-016-0453-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) through DNA methylation and histone changes is a main hallmark of cancer. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a potent oncogene overexpressed in various solid and haematological tumors and its high expression levels are associated with decreased expression of several TSGs including p16INK4A, BRCA1, PPARG and KiSS1. Using its several functional domains, UHRF1 creates a strong coordinated dialogue between DNA methylation and histone post-translation modification changes causing the epigenetic silencing of TSGs which allows cancer cells to escape apoptosis. To ensure the silencing of TSGs during cell division, UHRF1 recruits several enzymes including histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1) and histone lysine methyltransferases G9a and Suv39H1 to the right place at the right moment. Several in vitro and in vivo works have reported the direct implication of the epigenetic player UHRF1 in tumorigenesis through the repression of TSGs expression and suggested UHRF1 as a promising target for cancer treatment. This review describes the molecular mechanisms underlying UHRF1 regulation in cancer and discusses its importance as a therapeutic target to induce the reactivation of TSGs and subsequent apoptosis.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Biochemistry Department, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Kingdom of Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| |
Collapse
|
212
|
Zhang J, Lucchesi C, Chen X. A new function for p53 tetramerization domain in cell fate control. Cell Cycle 2016; 15:2854-2855. [PMID: 27355441 DOI: 10.1080/15384101.2016.1204868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jin Zhang
- a Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California , Davis , CA , USA
| | - Christopher Lucchesi
- a Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California , Davis , CA , USA
| | - Xinbin Chen
- a Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California , Davis , CA , USA
| |
Collapse
|
213
|
Lim JH, Latysheva NS, Iggo RD, Barker D. Cluster Analysis of p53 Binding Site Sequences Reveals Subsets with Different Functions. Cancer Inform 2016; 15:199-209. [PMID: 27812278 PMCID: PMC5081245 DOI: 10.4137/cin.s39968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 11/05/2022] Open
Abstract
p53 is an important regulator of cell cycle arrest, senescence, apoptosis and metabolism, and is frequently mutated in tumors. It functions as a tetramer, where each component dimer binds to a decameric DNA region known as a response element. We identify p53 binding site subtypes and examine the functional and evolutionary properties of these subtypes. We start with over 1700 known binding sites and, with no prior labeling, identify two sets of response elements by unsupervised clustering. When combined, they give rise to three types of p53 binding sites. We find that probabilistic and alignment-based assessments of cross-species conservation show no strong evidence of differential conservation between types of binding sites. In contrast, functional analysis of the genes most proximal to the binding sites provides strong bioinformatic evidence of functional differentiation between the three types of binding sites. Our results are consistent with recent structural data identifying two conformations of the L1 loop in the DNA binding domain, suggesting that they reflect biologically meaningful groups imposed by the p53 protein structure.
Collapse
Affiliation(s)
- Ji-Hyun Lim
- School of Biology, University of St Andrews, St Andrews, UK
- School of Medicine, University of St Andrews, St Andrews, UK
- Current address: Alacris Theranostics GmbH, Berlin, Germany
| | - Natasha S. Latysheva
- School of Biology, University of St Andrews, St Andrews, UK
- Current address: MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Richard D. Iggo
- School of Medicine, University of St Andrews, St Andrews, UK
- INSERM Unit U1218, University of Bordeaux, Institut Bergonie, Bordeaux, France
| | - Daniel Barker
- School of Biology, University of St Andrews, St Andrews, UK
- Current address: Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
214
|
Depletion of Tip60 from In Vivo Cardiomyocytes Increases Myocyte Density, Followed by Cardiac Dysfunction, Myocyte Fallout and Lethality. PLoS One 2016; 11:e0164855. [PMID: 27768769 PMCID: PMC5074524 DOI: 10.1371/journal.pone.0164855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Tat-interactive protein 60 (Tip60), encoded by the Kat5 gene, is a member of the MYST family of acetyltransferases. Cancer biology studies have shown that Tip60 induces the DNA damage response, apoptosis, and cell-cycle inhibition. Although Tip60 is expressed in the myocardium, its role in cardiomyocytes (CMs) is unclear. Earlier studies here showed that application of cardiac stress to globally targeted Kat5+/—haploinsufficient mice resulted in inhibition of apoptosis and activation of the CM cell-cycle, despite only modest reduction of Tip60 protein levels. It was therefore of interest to ascertain the effects of specifically and substantially depleting Tip60 from CMs using Kat5LoxP/-;Myh6-Cre mice in the absence of stress. We report initial findings using this model, in which the effects of specifically depleting Tip60 protein from ventricular CMs, beginning at early neonatal stages, were assessed in 2–12 week-old mice. Although 5’-bromodeoxyuridine immunostaining indicated that CM proliferation was not altered at any of these stages, CM density was increased in 2 week-old ventricles, which persisted in 4 week-old hearts when TUNEL staining revealed inhibition of apoptosis. By week 4, levels of connexin-43 were depleted, and its patterning was dysmorphic, concomitant with an increase in cardiac hypertrophy marker expression and interstitial fibrosis. This was followed by systolic dysfunction at 8 weeks, after which extensive apoptosis and CM fallout occurred, followed by lethality as mice approached 12 weeks of age. In summary, chronic depletion of Tip60 from the ventricular myocardium beginning at early stages of neonatal heart development causes CM death after 8 weeks; hence, Tip60 protein has a crucial function in the heart.
Collapse
|
215
|
Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acetylation and cancer: A proteomics perspective. J Proteomics 2016; 150:297-309. [PMID: 27746255 DOI: 10.1016/j.jprot.2016.10.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Abstract
Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.
Collapse
Affiliation(s)
- Jeovanis Gil
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Alberto Ramírez-Torres
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Sergio Encarnación-Guevara
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas-UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|
216
|
Zhang Y, Subbaiah VK, Rajagopalan D, Tham CY, Abdullah LN, Toh TB, Gong M, Tan TZ, Jadhav SP, Pandey AK, Karnani N, Chow EKH, Thiery JP, Jha S. TIP60 inhibits metastasis by ablating DNMT1-SNAIL2-driven epithelial-mesenchymal transition program. J Mol Cell Biol 2016; 8:384-399. [PMID: 27651430 DOI: 10.1093/jmcb/mjw038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 11/14/2022] Open
Abstract
HIV-Tat-interacting protein of 60 kDa (TIP60) is a lysine acetyltransferase and known to be downregulated in multiple cancers. Among various signalling pathways, TIP60 is implicated in regulating epithelial-mesenchymal transition (EMT). Here, we show that TIP60 expression abrogates cell migration and metastatic potential of breast cancer cells using in vitro and in vivo models. Mechanistically, we show that this is through its ability to destabilize DNMT1 and inhibit SNAIL2 function (SNAIL2-mediated EMT/cell migration). Depletion of TIP60 stabilizes DNMT1 and increases SNAIL2 levels, resulting in EMT. Recruitment of DNMT1 to the SNAIL2 targets in the absence of TIP60 increases DNA methylation on their promoter region and further represses the expression of epithelial markers. In pathophysiological scenario, we find TIP60 to be significantly downregulated in breast cancer patients with poor overall survival and disease-free survival prognoses. These data suggest that levels of TIP60 can be a prognostic marker of breast cancer progression and stabilization of TIP60 could be a promising strategy to treat cancers.
Collapse
Affiliation(s)
- Yanzhou Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,Singapore
| | - Cheng Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,Singapore
| | | | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Min Gong
- Singapore Institute for Clinical Sciences, A* STAR, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shweta Pradip Jadhav
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Amit Kumar Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,Singapore.,Singapore Institute for Clinical Sciences, A* STAR, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,Singapore
| |
Collapse
|
217
|
A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription. G3-GENES GENOMES GENETICS 2016; 6:2671-8. [PMID: 27334938 PMCID: PMC4978920 DOI: 10.1534/g3.116.031534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protein product of the Homo sapiens TP53 gene is a transcription factor (p53) that regulates the expression of genes critical for the response to DNA damage and tumor suppression, including genes involved in cell cycle arrest, apoptosis, DNA repair, metabolism, and a number of other tumorigenesis-related pathways. Differential transcriptional regulation of these genes is believed to alter the balance between two p53-dependent cell fates: cell cycle arrest or apoptosis. A number of previously identified p53 cofactors covalently modify and alter the function of both the p53 protein and histone proteins. Both gain- and loss-of-function mutations in chromatin modifiers have been strongly implicated in cancer development; thus, we sought to identify novel chromatin regulatory proteins that affect p53-dependent transcription and the balance between the expression of pro-cell cycle arrest and proapoptotic genes. We utilized an siRNA library designed against predicted chromatin regulatory proteins, and identified known and novel chromatin-related factors that affect both global p53-dependent transcription and gene-specific regulators of p53 transcriptional activation. The results from this screen will serve as a comprehensive resource for those interested in further characterizing chromatin and epigenetic factors that regulate p53 transcription.
Collapse
|
218
|
Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol 2016; 32:469-482. [PMID: 27423454 PMCID: PMC5099365 DOI: 10.1007/s10565-016-9347-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
The reversibility of non-genotoxic phenotypic changes has been explored in order to develop novel preventive and therapeutic approaches for cancer. Quisinostat (JNJ-26481585), a novel second-generation histone deacetylase inhibitor (HDACi), has efficient therapeutic actions on non-small cell lung cancer (NSCLC) cell. The present study aims at investigating underlying molecular mechanisms involved in the therapeutic activity of quisinostat on NSCLC cells. We found that quisinostat significantly inhibited A549 cell proliferation in dose- and time-dependent manners. Up-acetylation of histones H3 and H4 and non-histone protein α-tubulin was induced by quisinostat treatment in a nanomolar concentration. We also demonstrated that quisinostat increased reactive oxygen species (ROS) production and destroyed mitochondrial membrane potential (ΔΨm), inducing mitochondria-mediated cell apoptosis. Furthermore, exposure of A549 cells to quisinostat significantly suppressed cell migration by inhibiting epithelial-mesenchymal transition (EMT) process. Bioinformatics analysis indicated that effects of quisinostat on NSCLC cells were associated with activated p53 signaling pathway. We found that quisinostat increased p53 acetylation at K382/K373 sites, upregulated the expression of p21(Waf1/Cip1), and resulted in G1 phase arrest. Thus, our results suggest that the histone deacetylase can be a therapeutic target of NSCLC to discover and develop a new category of therapy for lung cancer.
Collapse
|
219
|
Structural Basis for p53 Lys120-Acetylation-Dependent DNA-Binding Mode. J Mol Biol 2016; 428:3013-25. [DOI: 10.1016/j.jmb.2016.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023]
|
220
|
The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Rep 2016; 16:37-47. [PMID: 27320910 DOI: 10.1016/j.celrep.2016.05.082] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are critical regulators of the cellular response to hypoxia. Despite their established roles in normal physiology and numerous pathologies, the molecular mechanisms by which they control gene expression remain poorly understood. We report here a conserved role for the TIP60 complex as a HIF1 transcriptional cofactor in Drosophila and human cells. TIP60 (KAT5) is required for HIF1-dependent gene expression in fly cells and embryos and colorectal cancer cells. HIF1A interacts with and recruits TIP60 to chromatin. TIP60 is dispensable for HIF1A association with its target genes but is required for HIF1A-dependent chromatin modification and RNA polymerase II activation in hypoxia. In human cells, global analysis of HIF1A-dependent gene activity reveals that most HIF1A targets require either TIP60, the CDK8-Mediator complex, or both as coactivators for full expression in hypoxia. Thus, HIF1A employs functionally diverse cofactors to regulate different subsets of genes within its transcriptional program.
Collapse
|
221
|
Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov 2016; 2:16013. [PMID: 27462460 PMCID: PMC4906801 DOI: 10.1038/celldisc.2016.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis.
Collapse
|
222
|
Monteith JA, Mellert H, Sammons MA, Kuswanto LA, Sykes SM, Resnick-Silverman L, Manfredi JJ, Berger SL, McMahon SB. A rare DNA contact mutation in cancer confers p53 gain-of-function and tumor cell survival via TNFAIP8 induction. Mol Oncol 2016; 10:1207-20. [PMID: 27341992 DOI: 10.1016/j.molonc.2016.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
The p53 tumor suppressor gene encodes a sequence-specific transcription factor. Mutations in the coding sequence of p53 occur frequently in human cancer and often result in single amino acid substitutions (missense mutations) in the DNA binding domain (DBD), blocking normal tumor suppressive functions. In addition to the loss of canonical functions, some missense mutations in p53 confer gain-of-function (GOF) activities to tumor cells. While many missense mutations in p53 cluster at six "hotspot" amino acids, the majority of mutations in human cancer occur elsewhere in the DBD and at a much lower frequency. We report here that mutations at K120, a non-hotspot DNA contact residue, confer p53 with the previously unrecognized ability to bind and activate the transcription of the pro-survival TNFAIP8 gene. Mutant K120 p53 binds the TNFAIP8 locus at a cryptic p53 response element that is not occupied by wild-type p53. Furthermore, induction of TNFAIP8 is critical for the evasion of apoptosis by tumor cells expressing the K120R variant of p53. These findings identify induction of pro-survival targets as a mechanism of gain-of-function activity for mutant p53 and will likely broaden our understanding of this phenomenon beyond the limited number of GOF activities currently reported for hotspot mutants.
Collapse
Affiliation(s)
- Jessica A Monteith
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States.
| | - Hestia Mellert
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States.
| | - Morgan A Sammons
- Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, 9-125 Smilow Center for Translational Research, Philadelphia, PA 19104, United States.
| | - Laudita A Kuswanto
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States; University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| | - Stephen M Sykes
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States; Medical Genetics and Molecular Biology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - James J Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Shelley L Berger
- Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, 9-125 Smilow Center for Translational Research, Philadelphia, PA 19104, United States.
| | - Steven B McMahon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, United States.
| |
Collapse
|
223
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
224
|
Beckerman R, Yoh K, Mattia-Sansobrino M, Zupnick A, Laptenko O, Karni-Schmidt O, Ahn J, Byeon IJ, Keezer S, Prives C. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest. Cell Cycle 2016; 15:1425-38. [PMID: 27210019 DOI: 10.1080/15384101.2016.1170270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.
Collapse
Affiliation(s)
| | - Kathryn Yoh
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | | | | | - Oleg Laptenko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Orit Karni-Schmidt
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Jinwoo Ahn
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - In-Ja Byeon
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Susan Keezer
- c Cell Signaling Technology, Inc. , Danvers , MA , USA
| | - Carol Prives
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
225
|
Choi OR, Ryu MS, Lim IK. Shifting p53-induced senescence to cell death by TIS21(/BTG2/Pc3) gene through posttranslational modification of p53 protein. Cell Signal 2016; 28:1172-1185. [PMID: 27208501 DOI: 10.1016/j.cellsig.2016.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
Cellular senescence and apoptosis can be regulated by p53 activity, although the underlying mechanism of the switch between the two events remains largely unknown. Cells exposed to cancer chemotherapy can escape to senescence phenotype rather than undergoing apoptosis. By employing adenoviral transduction of p53 or TIS21 genes, we observed shifting of p53 induced-senescence to apoptosis in EJ bladder cancer cells, which express H-RasV12 and mutant p53; transduction of p53 increased H-RasV12 expression along with senescence phenotypes, whereas coexpression with TIS21 (p53+TIS21) induced cell death rather than senescence. The TIS21-mediated switch of senescence to apoptosis was accompanied by nuclear translocation of p53 protein and its modifications on Ser-15 and Ser-46 phosphorylation and acetylations on Lys-120, -320, -373 and -382 residues. Mechanistically, TIS21(/BTG2) regulated posttranslational modification of p53 via enhancing miR34a and Bax expressions as opposed to inhibiting SIRT1 and Bcl2 expression. At the same time, TIS21 increased APAF-1 and p53AIP1 expressions, but inhibited the interaction of p53 with iASPP. In vitro tumorigenicity was significantly reduced in the p53+TIS21 expresser through inhibiting micro-colony proliferation by TIS21. Effect of TIS21 on the regulation of p53 activity was confirmed by knockdown of TIS21 expression by RNA interference. Therefore, we suggest TIS21 expression as an endogenous cell death inducer at the downstream of p53 gene, which might be useful for intractable cancer chemotherapy.
Collapse
Affiliation(s)
- Ok Ran Choi
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Min Sook Ryu
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, School of Medicine and Graduate School of Medical Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
226
|
Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster. Genetics 2016; 203:1265-81. [PMID: 27184390 DOI: 10.1534/genetics.116.188581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression.
Collapse
|
227
|
Liu X, Li H, Liu L, Lu Y, Gao Y, Geng P, Li X, Huang B, Zhang Y, Lu J. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2093-103. [PMID: 27183873 DOI: 10.1016/j.bbamcr.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/02/2023]
Abstract
The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress.
Collapse
Affiliation(s)
- Xin Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yang Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Yanyan Gao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Pengyu Geng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China.
| |
Collapse
|
228
|
Cohen S, Arbely E. Single-Plasmid-Based System for Efficient Noncanonical Amino Acid Mutagenesis in Cultured Mammalian Cells. Chembiochem 2016; 17:1008-11. [PMID: 27120490 DOI: 10.1002/cbic.201500681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 12/24/2022]
Abstract
We describe a new expression system for efficient non-canonical amino acid mutagenesis in cultured mammalian cells by using the pyrrolysine tRNA synthetase/tRNACUA (Pyl) pair. A significant improvement in the incorporation of non-canonical amino acids into proteins was obtained by combining all the required genetic components into a single and compact vector that can be efficiently delivered to different mammalian cell lines by conventional transfection reagents.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eyal Arbely
- Department of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Department of Life-Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
229
|
Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G. Cell-to-Cell Variation in p53 Dynamics Leads to Fractional Killing. Cell 2016; 165:631-42. [PMID: 27062928 DOI: 10.1016/j.cell.2016.03.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 11/25/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Many chemotherapeutic drugs kill only a fraction of cancer cells, limiting their efficacy. We used live-cell imaging to investigate the role of p53 dynamics in fractional killing of colon cancer cells in response to chemotherapy. We found that both surviving and dying cells reach similar levels of p53, indicating that cell death is not determined by a fixed p53 threshold. Instead, a cell's probability of death depends on the time and levels of p53. Cells must reach a threshold level of p53 to execute apoptosis, and this threshold increases with time. The increase in p53 apoptotic threshold is due to drug-dependent induction of anti-apoptotic genes, predominantly in the inhibitors of apoptosis (IAP) family. Our study underlines the importance of measuring the dynamics of key players in response to chemotherapy to determine mechanisms of resistance and optimize the timing of combination therapy.
Collapse
Affiliation(s)
- Andrew L Paek
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Julia C Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Loewer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - William C Forrester
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
230
|
Largeot A, Perez-Campo FM, Marinopoulou E, Lie-a-Ling M, Kouskoff V, Lacaud G. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence. Exp Hematol 2016; 44:231-7.e4. [PMID: 26854485 PMCID: PMC4819447 DOI: 10.1016/j.exphem.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022]
Abstract
The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16(INK4a) transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16(INK4a) transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16(INK4a) and p19(ARF)), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells.
Collapse
Affiliation(s)
- Anne Largeot
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Flor Maria Perez-Campo
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK.
| | - Elli Marinopoulou
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael Lie-a-Ling
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
231
|
Liao JM, Cao B, Deng J, Zhou X, Strong M, Zeng S, Xiong J, Flemington E, Lu H. TFIIS.h, a new target of p53, regulates transcription efficiency of pro-apoptotic bax gene. Sci Rep 2016; 6:23542. [PMID: 27005522 PMCID: PMC4804275 DOI: 10.1038/srep23542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor p53 transcriptionally regulates hundreds of genes involved in various cellular functions. However, the detailed mechanisms underlying the selection of p53 targets in response to different stresses are still elusive. Here, we identify TFIIS.h, a transcription elongation factor, as a new transcriptional target of p53, and also show that it can enhance the efficiency of transcription elongation of apoptosis-associated bax gene, but not cell cycle-associated p21 (CDKN1A) gene. TFIIS.h is revealed as a p53 target through microarray analysis of RNAs extracted from cells treated with or without inauhzin (INZ), a p53 activator, and further confirmed by RT-q-PCR, western blot, luciferase reporter, and ChIP assays. Interestingly, knocking down TFIIS.h impairs, but overexpressing TFIIS.h promotes, induction of bax, but not other p53 targets including p21, by p53 activation. In addition, overexpression of TFIIS.h induces cell death in a bax- dependent fashion. These findings reveal a mechanism by which p53 utilizes TFIIS.h to selectively promote the transcriptional elongation of the bax gene, upsurging cell death in response to severe DNA damage.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Bo Cao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jun Deng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Zhou
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Michael Strong
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Shelya Zeng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Erik Flemington
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| |
Collapse
|
232
|
Cui H, Li X, Han C, Wang QE, Wang H, Ding HF, Zhang J, Yan C. The Stress-responsive Gene ATF3 Mediates Dichotomous UV Responses by Regulating the Tip60 and p53 Proteins. J Biol Chem 2016; 291:10847-57. [PMID: 26994140 DOI: 10.1074/jbc.m115.713099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/27/2022] Open
Abstract
The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner.
Collapse
Affiliation(s)
| | | | - Chunhua Han
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Hongbo Wang
- the Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China, and
| | - Han-Fei Ding
- From the Georgia Cancer Center and Departments of Pathology and
| | - Junran Zhang
- the Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chunhong Yan
- From the Georgia Cancer Center and Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912,
| |
Collapse
|
233
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 707] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
234
|
The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair. Cell Death Differ 2016; 23:1198-208. [PMID: 26915295 PMCID: PMC4946888 DOI: 10.1038/cdd.2015.173] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/13/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
Abstract
The acetyltransferase Tip60/Kat5 acetylates both histone and non-histone proteins, and is involved in a variety of biological processes. By acetylating p53, Tip60 controls p53-dependent transcriptional activity and so is implicated as a tumor suppressor. However, many breast cancers with low Tip60 also show p53 mutation, implying that Tip60 has a tumor suppressor function independent of its acetylation of p53. Here, we show in a p53-null mouse model of sporadic invasive breast adenocarcinoma that heterozygosity for Tip60 deletion promotes mammary tumorigenesis. Low Tip60 reduces DNA repair in normal and tumor mammary epithelial cells, both under resting conditions and following genotoxic stress. We demonstrate that Tip60 controls homologous recombination (HR)-directed DNA repair, and that Tip60 levels correlate inversely with a gene expression signature associated with defective HR-directed DNA repair. In human breast cancer data sets, Tip60 mRNA is downregulated, with low Tip60 levels correlating with p53 mutations in basal-like breast cancers. Our findings indicate that Tip60 is a novel breast tumor suppressor gene whose loss results in genomic instability leading to cancer formation.
Collapse
|
235
|
Yun T, Yu K, Yang S, Cui Y, Wang Z, Ren H, Chen S, Li L, Liu X, Fang M, Jiang X. Acetylation of p53 Protein at Lysine 120 Up-regulates Apaf-1 Protein and Sensitizes the Mitochondrial Apoptotic Pathway. J Biol Chem 2016; 291:7386-95. [PMID: 26851285 DOI: 10.1074/jbc.m115.706341] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor controls cell growth, metabolism, and death by regulating the transcription of various target genes. The target-specific transcriptional activity of p53 is highly regulated. Here we demonstrate that acetylation of p53 at Lys-120 up-regulates its transcriptional activity toward Apaf-1, a core component in the mitochondrial apoptotic pathway, and thus sensitizes caspase activation and apoptosis. We found that histone deacetylase (HDAC) inhibitors, including butyrate, augment Lys-120 acetylation of p53 and thus Apaf-1 expression by inhibiting HDAC1. In p53-null cells, transfection of wild-type but not K120R mutant p53 can restore the p53-dependent sensitivity to butyrate. Strikingly, transfection of acetylation-mimicking K120Q mutant p53 is sufficient to up-regulates Apaf-1 in a manner independent of butyrate treatment. Therefore, HDAC inhibitors can induce p53 acetylation at lysine 120, which in turn enhances mitochondrion-mediated apoptosis through transcriptional up-regulation of Apaf-1.
Collapse
Affiliation(s)
- Tao Yun
- From the Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Division of Cell Biology, School of Life Sciences, the Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, and
| | - ShuangShuang Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Yiheyuan Avenue 5, Haidian District, Beijing 100875, China
| | - Yifan Cui
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences
| | - Zixi Wang
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences
| | - Huiyu Ren
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences
| | - She Chen
- the National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China, and
| | - Lin Li
- the National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China, and
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, and
| | - Min Fang
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences,
| | - Xuejun Jiang
- the Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
236
|
Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, Deng H, Luo J, Ke Y, Du X. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep 2016; 17:349-66. [PMID: 26882543 PMCID: PMC4772976 DOI: 10.15252/embr.201540505] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 01/11/2016] [Indexed: 11/10/2022] Open
Abstract
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuqin Tan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chunfeng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Laboratory of Genetics, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liangliang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Pengwei Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongkui Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyuan Luo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China Department of Medical & Research Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Laboratory of Genetics, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaojuan Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
237
|
Chen X, Luo J, Meng L, Pan T, Zhao B, Tang ZG, Dai Y. Dracorhodin perchlorate induces the apoptosis of glioma cells. Oncol Rep 2016; 35:2364-72. [PMID: 26846469 DOI: 10.3892/or.2016.4612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Junjie Luo
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Linghu Meng
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Taifeng Pan
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Binjie Zhao
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhen-Gang Tang
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yongjian Dai
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
238
|
Kaypee S, Sudarshan D, Shanmugam MK, Mukherjee D, Sethi G, Kundu TK. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics. Pharmacol Ther 2016; 162:98-119. [PMID: 26808162 DOI: 10.1016/j.pharmthera.2016.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 'language' of covalent histone modifications translates environmental and cellular cues into gene expression. This vast array of post-translational modifications on histones are more than just covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals are relayed. The reversible lysine acetylation has emerged as an important post-translational modification of both histone and non-histone proteins, dictating numerous epigenetic programs within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is essential for the development of epigenetic therapeutics. In this review, we will attempt to address the complexities of lysine acetylation in the context of tumorigenesis, their role in cancer progression and emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment.
Collapse
Affiliation(s)
- Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Deepthi Sudarshan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India.
| |
Collapse
|
239
|
Zhuge C, Sun X, Chen Y, Lei J. PDCD5 functions as a regulator of p53 dynamics in the DNA damage response. J Theor Biol 2016; 388:1-10. [DOI: 10.1016/j.jtbi.2015.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
|
240
|
|
241
|
Grézy A, Chevillard-Briet M, Trouche D, Escaffit F. Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase. Mol Biol Cell 2015; 27:599-607. [PMID: 26700317 PMCID: PMC4750920 DOI: 10.1091/mbc.e15-05-0316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023] Open
Abstract
A new compaction pathway of mammalian pericentric heterochromatin is identified, which relies on H4K12ac by Tip60, probably followed by recruitment of BRD2, and therefore chromatin compaction, which can contribute to genetic stability. Pericentric heterochromatin is a highly compacted structure required for accurate chromosome segregation in mitosis. In mammals, it relies on methylation of histone H3K9 by Suv39H enzymes, which provides a docking site for HP1 proteins, therefore mediating heterochromatin compaction. Here we show that, when this normal compaction pathway is defective, the histone acetyltransferase Tip60 is recruited to pericentric heterochromatin, where it mediates acetylation of histone H4K12. Furthermore, in such a context, depletion of Tip60 leads to derepression of satellite transcription, decompaction of pericentric heterochromatin, and defects in chromosome segregation in mitosis. Finally, we show that depletion of BRD2, a double bromodomain–containing protein that binds H4K12ac, phenocopies the Tip60 depletion with respect to heterochromatin decompaction and defects in chromosome segregation. Taking the results together, we identify a new compaction pathway of mammalian pericentric heterochromatin relying on Tip60 that might be dependent on BRD2 recruitment by H4K12 acetylation. We propose that the underexpression of Tip60 observed in many human tumors can promote genetic instability via defective pericentric heterochromatin.
Collapse
Affiliation(s)
- Aude Grézy
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Martine Chevillard-Briet
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Fabrice Escaffit
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| |
Collapse
|
242
|
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 2015; 7:1351-63. [PMID: 26638912 DOI: 10.2217/epi.15.76] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France.,Centre Jean Perrin, Laboratory of Biopathology, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
243
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
Affiliation(s)
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Giovanna Damia
- Department of Oncology, Instituti di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, United States
| | | | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Asfar S Azmi
- Department of Biology, University of Rochester, Rochester, United States
| | - Dipita Bhakta
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Department of Research & Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | | | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Gunjan Guha
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Satya Prakash
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
244
|
Prokhorova EA, Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci 2015; 72:4593-612. [PMID: 26346492 PMCID: PMC11113907 DOI: 10.1007/s00018-015-2031-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/06/2015] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
Abstract
Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.
Collapse
Affiliation(s)
- Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
245
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
246
|
Xu Y, Liao R, Li N, Xiang R, Sun P. Phosphorylation of Tip60 by p38α regulates p53-mediated PUMA induction and apoptosis in response to DNA damage. Oncotarget 2015; 5:12555-72. [PMID: 25544752 PMCID: PMC4350347 DOI: 10.18632/oncotarget.2717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/08/2014] [Indexed: 12/04/2022] Open
Abstract
Tip60 is a multifunctional acetyltransferase involved in multiple cellular functions. Acetylation of p53 at K120 by Tip60 promotes p53-mediated apoptosis after DNA damage. We previous showed that Tip60 activity is induced by phosphorylation at T158 by p38. In this study, we investigated the role of p38-mediated Tip60 phosphorylation in p53-mediated, DNA damage-induced apoptosis. We found that DNA damage induces p38 activation, Tip60-T158 phosphorylation, and p53-K120 acetylation with similar kinetics. p38α is essential for DNA damage-induced Tip60-T158 phosphorylation. In addition, both p38α and Tip60 are essential for p53-K120 acetylation, binding of p53 to PUMA promoter, PUMA expression and apoptosis induced by DNA damage. Moreover, DNA damage induces protein kinase activity of p38α towards Tip60-T158, and constitutive activation of p38 in cells leads to increases in Tip60-T158 phosphorylation, p53-K120 acetylation, PUMA expression and apoptosis. Furthermore, the Tip60-T158A mutant that cannot be phosphorylated by p38 fails to mediate p53-K120 acetylation, PUMA induction, and apoptosis following DNA damage. These results establish that Tip60-T158 phosphorylation by p38 plays an essential role in stimulating Tip60 activity required for inducing the p53-PUMA pathway that ultimately leads to apoptosis in response to DNA damage, which provides a mechanistic basis for the tumor-suppressing function of p38 and Tip60.
Collapse
Affiliation(s)
- Yingxi Xu
- College of Medicine, Nankai University, Tianjin, P.R. China, 300071. Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Rong Liao
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Na Li
- College of Medicine, Nankai University, Tianjin, P.R. China, 300071
| | - Rong Xiang
- College of Medicine, Nankai University, Tianjin, P.R. China, 300071
| | - Peiqing Sun
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
247
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
248
|
Tip60 regulates MT1-MMP transcription and invasion of glioblastoma cells through NF-κB pathway. Clin Exp Metastasis 2015; 33:45-52. [DOI: 10.1007/s10585-015-9756-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/05/2015] [Indexed: 01/15/2023]
|
249
|
Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, Bai L, Wang W, Chen M, Wang W, Gu L, Lv K, Chen J. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene 2015; 35:2902-12. [PMID: 26411366 PMCID: PMC4895393 DOI: 10.1038/onc.2015.349] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. As HDACs are promising targets of cancer therapy, it is important to understand the mechanisms of HDAC regulation. In this study, we show that ubiquitin-specific peptidase 4 (USP4) interacts directly with and deubiquitinates HDAC2, leading to the stabilization of HDAC2. Accumulation of HDAC2 in USP4-overexpression cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation and apoptotic response upon DNA damage. Moreover, USP4 targets HDAC2 to downregulate tumor necrosis factor TNFα-induced nuclear factor (NF)-κB activation. Taken together, our study provides a novel insight into the ubiquitination and stability of HDAC2 and uncovers a previously unknown function of USP4 in cancers.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.,Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Q Hao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.,Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - J Luo
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, China
| | - J Xiong
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.,Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - S Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - T Wang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - L Bai
- Zhongshan Hospital Xiamen University, Xiamen, China
| | - W Wang
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - M Chen
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - W Wang
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - L Gu
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - K Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J Chen
- Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
250
|
Olia AS, Barker K, McCullough CE, Tang HY, Speicher DW, Qiu J, LaBaer J, Marmorstein R. Nonenzymatic Protein Acetylation Detected by NAPPA Protein Arrays. ACS Chem Biol 2015; 10:2034-47. [PMID: 26083674 DOI: 10.1021/acschembio.5b00342] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here, we address the possibility that nonenzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the -7 to -3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation.
Collapse
Affiliation(s)
- Adam S. Olia
- Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Program
in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States
| | - Kristi Barker
- Virginia
G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Cheryl E. McCullough
- Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Program
in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States
| | - Hsin-Yao Tang
- Program
in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, United States
| | - David W. Speicher
- Program
in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, United States
| | - Ji Qiu
- Virginia
G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Joshua LaBaer
- Virginia
G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Ronen Marmorstein
- Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Program
in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States
| |
Collapse
|