201
|
Affiliation(s)
- Catherine L Lawson
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Wah Chiu
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA; Department of Bioengineering, Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
202
|
Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead. Curr Opin Struct Biol 2018; 52:127-145. [PMID: 30509756 DOI: 10.1016/j.sbi.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Electron cryomicroscopy (cryoEM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize macromolecular complexes such as ribosomes, viruses, and ion channels. Determination of structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryoEM a scientific rebirth. As a result of these technological advances image processing and analysis have yielded molecular structures at atomic resolution. Nevertheless there continue to be challenges in image processing, and in this article we will touch on the most essential in order to derive an accurate three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. We will then highlight new approaches for each image processing subproblem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking.
Collapse
|
203
|
A Local Agreement Filtering Algorithm for Transmission EM Reconstructions. J Struct Biol 2018; 205:30-40. [PMID: 30502495 PMCID: PMC6351148 DOI: 10.1016/j.jsb.2018.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 12/04/2022]
Abstract
We propose an algorithm, LAFTER, that recovers features with more signal than noise from half maps. LAFTER is shown to recover features over a wide range of FSCs and local signal-to-noise ratios. We suggest effective local noise suppression be evaluated by comparing the filter-sum xFSC to Cref.
We present LAFTER, an algorithm for de-noising single particle reconstructions from cryo-EM. Single particle analysis entails the reconstruction of high-resolution volumes from tens of thousands of particle images with low individual signal-to-noise. Imperfections in this process result in substantial variations in the local signal-to-noise ratio within the resulting reconstruction, complicating the interpretation of molecular structure. An effective local de-noising filter could therefore improve interpretability and maximise the amount of useful information obtained from cryo-EM maps. LAFTER is a local de-noising algorithm based on a pair of serial real-space filters. It compares independent half-set reconstructions to identify and retain shared features that have power greater than the noise. It is capable of recovering features across a wide range of signal-to-noise ratios, and we demonstrate recovery of the strongest features at Fourier shell correlation (FSC) values as low as 0.144 over a 2563-voxel cube. A fast and computationally efficient implementation of LAFTER is freely available. We also propose a new way to evaluate the effectiveness of real-space filters for noise suppression, based on the correspondence between two FSC curves: 1) the FSC between the filtered and unfiltered volumes, and 2) Cref, the FSC between the unfiltered volume and a hypothetical noiseless volume, which can readily be estimated from the FSC between two half-set reconstructions.
Collapse
|
204
|
Cryo-EM reveals ligand induced allostery underlying InsP 3R channel gating. Cell Res 2018; 28:1158-1170. [PMID: 30470765 PMCID: PMC6274648 DOI: 10.1038/s41422-018-0108-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/02/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.
Collapse
|
205
|
Herzik MA, Fraser JS, Lander GC. A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality. Structure 2018; 27:344-358.e3. [PMID: 30449687 DOI: 10.1016/j.str.2018.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
There does not currently exist a standardized indicator of how well cryo-EM-derived models represent the density from which they were generated. We present a straightforward methodology that utilizes freely available tools to generate a suite of independent models and to evaluate their convergence in an EM density. These analyses provide both a quantitative and qualitative assessment of the precision of the models and their representation of the density, respectively, while concurrently providing a platform for assessing both global and local EM map quality. We further use standardized datasets to provide an expected deviation within a suite of models refined against EM maps reported to be at 5 Å resolution or better. Associating multiple atomic models with a deposited EM map provides a rapid and accessible reporter of convergence, a strong indicator of highly resolved molecular detail, and is an important step toward an FSC-independent assessment of map and model quality.
Collapse
Affiliation(s)
- Mark A Herzik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science and California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
206
|
Himes BA, Zhang P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods 2018; 15:955-961. [PMID: 30349041 PMCID: PMC6281437 DOI: 10.1038/s41592-018-0167-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
Macromolecular complexes are intrinsically flexible and often challenging to purify for structure determination by single-particle cryo-electron microscopy (cryo-EM). Such complexes can be studied by cryo-electron tomography (cryo-ET) combined with subtomogram alignment and classification, which in exceptional cases achieves subnanometer resolution, yielding insight into structure-function relationships. However, it remains challenging to apply this approach to specimens that exhibit conformational or compositional heterogeneity or are present in low abundance. To address this, we developed emClarity ( https://github.com/bHimes/emClarity/wiki ), a GPU-accelerated image-processing package featuring an iterative tomographic tilt-series refinement algorithm that uses subtomograms as fiducial markers and a 3D-sampling-function-compensated, multi-scale principal component analysis classification method. We demonstrate that our approach offers substantial improvement in the resolution of maps and in the separation of different functional states of macromolecular complexes compared with current state-of-the-art software.
Collapse
Affiliation(s)
- Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Electron Bio-Imaging Centre, Diamond Light Source, Didcot, UK.
| |
Collapse
|
207
|
Young JY, Westbrook JD, Feng Z, Peisach E, Persikova I, Sala R, Sen S, Berrisford JM, Swaminathan GJ, Oldfield TJ, Gutmanas A, Igarashi R, Armstrong DR, Baskaran K, Chen L, Chen M, Clark AR, Di Costanzo L, Dimitropoulos D, Gao G, Ghosh S, Gore S, Guranovic V, Hendrickx PMS, Hudson BP, Ikegawa Y, Kengaku Y, Lawson CL, Liang Y, Mak L, Mukhopadhyay A, Narayanan B, Nishiyama K, Patwardhan A, Sahni G, Sanz-García E, Sato J, Sekharan MR, Shao C, Smart OS, Tan L, van Ginkel G, Yang H, Zhuravleva MA, Markley JL, Nakamura H, Kurisu G, Kleywegt GJ, Velankar S, Berman HM, Burley SK. Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4844086. [PMID: 29688351 PMCID: PMC5804564 DOI: 10.1093/database/bay002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The Protein Data Bank (PDB) is the single global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands. The worldwide PDB (wwPDB) is the international collaboration that manages the PDB archive according to the FAIR principles: Findability, Accessibility, Interoperability and Reusability. The wwPDB recently developed OneDep, a unified tool for deposition, validation and biocuration of structures of biological macromolecules. All data deposited to the PDB undergo critical review by wwPDB Biocurators. This article outlines the importance of biocuration for structural biology data deposited to the PDB and describes wwPDB biocuration processes and the role of expert Biocurators in sustaining a high-quality archive. Structural data submitted to the PDB are examined for self-consistency, standardized using controlled vocabularies, cross-referenced with other biological data resources and validated for scientific/technical accuracy. We illustrate how biocuration is integral to PDB data archiving, as it facilitates accurate, consistent and comprehensive representation of biological structure data, allowing efficient and effective usage by research scientists, educators, students and the curious public worldwide. Database URL: https://www.wwpdb.org/
Collapse
Affiliation(s)
- Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Irina Persikova
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Raul Sala
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - G Jawahar Swaminathan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Reiko Igarashi
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - David R Armstrong
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Li Chen
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Minyu Chen
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Alice R Clark
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dimitris Dimitropoulos
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guanghua Gao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sutapa Ghosh
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Vladimir Guranovic
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yumiko Kengaku
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Buvaneswari Narayanan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kayoko Nishiyama
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eduardo Sanz-García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Junko Sato
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lihua Tan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Glen van Ginkel
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Marina A Zhuravleva
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Genji Kurisu
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
208
|
Donati L, Nilchian M, Sorzano COS, Unser M. Fast multiscale reconstruction for Cryo-EM. J Struct Biol 2018; 204:543-554. [PMID: 30261282 PMCID: PMC7343242 DOI: 10.1016/j.jsb.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/01/2022]
Abstract
We present a multiscale reconstruction framework for single-particle analysis (SPA). The representation of three-dimensional (3D) objects with scaled basis functions permits the reconstruction of volumes at any desired scale in the real-space. This multiscale approach generates interesting opportunities in SPA for the stabilization of the initial volume problem or the 3D iterative refinement procedure. In particular, we show that reconstructions performed at coarse scale are more robust to angular errors and permit gains in computational speed. A key component of the proposed iterative scheme is its fast implementation. The costly step of reconstruction, which was previously hindering the use of advanced iterative methods in SPA, is formulated as a discrete convolution with a cost that does not depend on the number of projection directions. The inclusion of the contrast transfer function inside the imaging matrix is also done at no extra computational cost. By permitting full 3D regularization, the framework is by itself a robust alternative to direct methods for performing reconstruction in adverse imaging conditions (e.g., heavy noise, large angular misassignments, low number of projections). We present reconstructions obtained at different scales from a dataset of the 2015/2016 EMDataBank Map Challenge. The algorithm has been implemented in the Scipion package.
Collapse
Affiliation(s)
- Laurène Donati
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Station 17, CH-1015 Lausanne, Switzerland.
| | - Masih Nilchian
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Station 17, CH-1015 Lausanne, Switzerland
| | - Carlos Oscar S Sorzano
- National Center of Biotechnology (CSIC), c/Darwin, 3, Campus Univ. Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - Michael Unser
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Station 17, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
209
|
Afonine PV, Klaholz BP, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, Adams PD, Urzhumtsev A. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D Struct Biol 2018; 74:814-840. [PMID: 30198894 PMCID: PMC6130467 DOI: 10.1107/s2059798318009324] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in the field of electron cryomicroscopy (cryo-EM) have resulted in a rapidly increasing number of atomic models of biomacromolecules that have been solved using this technique and deposited in the Protein Data Bank and the Electron Microscopy Data Bank. Similar to macromolecular crystallography, validation tools for these models and maps are required. While some of these validation tools may be borrowed from crystallography, new methods specifically designed for cryo-EM validation are required. Here, new computational methods and tools implemented in PHENIX are discussed, including d99 to estimate resolution, phenix.auto_sharpen to improve maps and phenix.mtriage to analyze cryo-EM maps. It is suggested that cryo-EM half-maps and masks should be deposited to facilitate the evaluation and validation of cryo-EM-derived atomic models and maps. The application of these tools to deposited cryo-EM atomic models and maps is also presented.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Bruno P. Klaholz
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
210
|
Pintilie G, Chiu W. Assessment of structural features in Cryo-EM density maps using SSE and side chain Z-scores. J Struct Biol 2018; 204:564-571. [PMID: 30144506 DOI: 10.1016/j.jsb.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
We introduce a new method for assessing resolvability of structural features in density maps from Cryo-Electron Microscopy (Cryo-EM) using fitted or derived models. It calculates Z-scores for secondary structure elements (SSEs) and side chains. Z-scores capture how much larger the cross-correlation score (CCS) is for atoms in such features at their placed locations compared to the CCS at displaced positions. Z-scores are larger when the structural features are well-resolved, as confirmed by visual analysis. This method was applied to all 66 maps submitted to the 2015/2016 EMDB map challenge. For each map, the fitted model provided by the map committee was used in this assessment. The average Z-scores for each map and fitted model correlate moderately well with reported map resolutions (r2 = 0.45 for SSE Z-scores and r2 = 0.56 for side chain Z-scores). Rankings of the submitted maps based on average Z-scores seem to more closely agree with visual analysis. Z-scores can also be used to pinpoint which parts of a model are well-resolved in a map, and which parts of the model may need further fitting or refinement to make the model better match the density.
Collapse
Affiliation(s)
- Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
211
|
Scapin G, Potter CS, Carragher B. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chem Biol 2018; 25:1318-1325. [PMID: 30100349 DOI: 10.1016/j.chembiol.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
We present a perspective of our view of the application of cryoelectron microscopy (cryo-EM) to structure-based drug design (SBDD). We discuss the basic needs and requirements for SBDD, the current state of cryo-EM, and the challenges that need to be overcome for this technique to reach its full potential in facilitating the process of drug discovery.
Collapse
Affiliation(s)
- Giovanna Scapin
- Department of Biochemical Engineering & Structure, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| |
Collapse
|
212
|
Structural visualization of RNA polymerase III transcription machineries. Cell Discov 2018; 4:40. [PMID: 30083386 PMCID: PMC6066478 DOI: 10.1038/s41421-018-0044-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase III (Pol III) transcription initiation requires the action of the transcription factor IIIB (TFIIIB) and is highly regulated. Here, we determine the structures of Pol III pre-initiation complexes (PICs) using single particle cryo-electron microscopy (cryo-EM). We observe stable Pol III-TFIIIB complexes using nucleic acid scaffolds mimicking various functional states, in which TFIIIB tightly encircles the upstream promoter DNA. There is an intricate interaction between TFIIIB and Pol III, which stabilizes the winged-helix domains of the C34 subunit of Pol III over the active site cleft. The architecture of Pol III PIC more resembles that of the Pol II PIC than the Pol I PIC. In addition, we also obtain a 3D reconstruction of Pol III in complex with TFIIIB using the elongation complex (EC) scaffold, shedding light on the mechanism of facilitated recycling of Pol III prior to transcription re-initiation.
Collapse
|
213
|
Heymann JB. Map Challenge assessment: Fair comparison of single particle cryoEM reconstructions. J Struct Biol 2018; 204:360-367. [PMID: 30030042 DOI: 10.1016/j.jsb.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 07/16/2018] [Indexed: 02/02/2023]
Abstract
Cryo-electron microscopy (cryoEM) is capable of achieving near-atomic resolution of biomolecular structures due to recent advances in hardware. Despite the long history of image processing software development for cryoEM, uncertainty about best practices and validation remains. The Map Challenge was therefore designed to test the current state of single particle reconstruction. As the first such challenge, the participants were given the freedom to analyze the cases in whichever way they wanted. Therefore, the maps submitted feature different sizes, sampling and orientations, making assessment non-trivial. To be fair, I developed a method to pose all maps in each case in the same configuration with minimal interpolation. I assessed the quality of these maps by visual inspection and Fourier shell correlation (FSC). Comparing the even-odd FSC with an FSC calculated against a reference structure analysis, I concluded that the quality of the maps related more to the user than to other factors, such as the software package used. Poor quality maps suffer either from lack of data or poor choices made by the user. Some maps appear significantly better than a reference or consensus of other maps, indicating overfitting. Best practices to avoid problems include an understanding of the effects of reference map modifications on particle image alignment, and generating appropriate masks. Ultimately, none of the issues revealed in the Map Challenge is insurmountable, as underscored by the excellent quality of reconstructions achieved by a significant number of participants.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Rm 1515, Building 50, 50 South Dr., NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
214
|
Dutta M. Recent Advances in Single Particle Cryo-electron Microscopy and Cryo-electron Tomography to Determine the Structures of Biological Macromolecules. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
215
|
Kryshtafovych A, Adams PD, Lawson CL, Chiu W. Evaluation system and web infrastructure for the second cryo-EM model challenge. J Struct Biol 2018; 204:96-108. [PMID: 30017700 DOI: 10.1016/j.jsb.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
An evaluation system and a web infrastructure were developed for the second cryo-EM model challenge. The evaluation system includes tools to validate stereo-chemical plausibility of submitted models, check their fit to the corresponding density maps, estimate their overall and per-residue accuracy, and assess their similarity to reference cryo-EM or X-ray structures as well as other models submitted in this challenge. The web infrastructure provides a convenient interface for analyzing models at different levels of detail. It includes interactively sortable tables of evaluation scores for different subsets of models and different sublevels of structure organization, and a suite of visualization tools facilitating model analysis. The results are publicly accessible at http://model-compare.emdatabank.org.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Paul D Adams
- Molecular Biophysics & Integrated Bioimaging, LBNL, CA 94720, USA; Department of Bioengineering, University of California Berkeley, CA 94720, USA
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Wah Chiu
- Departments of Bioengineering and Microbiology & Immunology, Stanford University, Stanford, CA 94305-5447, USA; Division of CryoEM and Bioimaging, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
216
|
Kim LY, Rice WJ, Eng ET, Kopylov M, Cheng A, Raczkowski AM, Jordan KD, Bobe D, Potter CS, Carragher B. Benchmarking cryo-EM Single Particle Analysis Workflow. Front Mol Biosci 2018; 5:50. [PMID: 29951483 PMCID: PMC6009202 DOI: 10.3389/fmolb.2018.00050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
Cryo electron microscopy facilities running multiple instruments and serving users with varying skill levels need a robust and reliable method for benchmarking both the hardware and software components of their single particle analysis workflow. The workflow is complex, with many bottlenecks existing at the specimen preparation, data collection and image analysis steps; the samples and grid preparation can be of unpredictable quality, there are many different protocols for microscope and camera settings, and there is a myriad of software programs for analysis that can depend on dozens of settings chosen by the user. For this reason, we believe it is important to benchmark the entire workflow, using a standard sample and standard operating procedures, on a regular basis. This provides confidence that all aspects of the pipeline are capable of producing maps to high resolution. Here we describe benchmarking procedures using a test sample, rabbit muscle aldolase.
Collapse
Affiliation(s)
- Laura Y Kim
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Anchi Cheng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Kelsey D Jordan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Clinton S Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
217
|
Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 2018; 74:531-544. [PMID: 29872004 PMCID: PMC6096492 DOI: 10.1107/s2059798318006551] [Citation(s) in RCA: 2067] [Impact Index Per Article: 295.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/27/2018] [Indexed: 02/23/2023] Open
Abstract
This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Randy J. Read
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Alexandre Urzhumtsev
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy, France
- Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
218
|
Cassidy CK, Himes BA, Luthey-Schulten Z, Zhang P. CryoEM-based hybrid modeling approaches for structure determination. Curr Opin Microbiol 2018; 43:14-23. [PMID: 29107896 PMCID: PMC5934336 DOI: 10.1016/j.mib.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
Recent advances in cryo-electron microscopy (cryoEM) have dramatically improved the resolutions at which vitrified biological specimens can be studied, revealing new structural and mechanistic insights over a broad range of spatial scales. Bolstered by these advances, much effort has been directed toward the development of hybrid modeling methodologies for the construction and refinement of high-fidelity atomistic models from cryoEM data. In this brief review, we will survey the key elements of cryoEM-based hybrid modeling, providing an overview of available computational tools and strategies as well as several recent applications.
Collapse
Affiliation(s)
- C Keith Cassidy
- Department of Physics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
219
|
Kleywegt GJ, Velankar S, Patwardhan A. Structural biology data archiving - where we are and what lies ahead. FEBS Lett 2018; 592:2153-2167. [PMID: 29749603 PMCID: PMC6019198 DOI: 10.1002/1873-3468.13086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
For almost 50 years, structural biology has endeavoured to conserve and share its experimental data and their interpretations (usually, atomistic models) through global public archives such as the Protein Data Bank, Electron Microscopy Data Bank and Biological Magnetic Resonance Data Bank (BMRB). These archives are treasure troves of freely accessible data that document our quest for molecular or atomic understanding of biological function and processes in health and disease. They have prepared the field to tackle new archiving challenges as more and more (combinations of) techniques are being utilized to elucidate structure at ever increasing length scales. Furthermore, the field has made substantial efforts to develop validation methods that help users to assess the reliability of structures and to identify the most appropriate data for their needs. In this Review, we present an overview of public data archives in structural biology and discuss the importance of validation for users and producers of structural data. Finally, we sketch our efforts to integrate structural data with bioimaging data and with other sources of biological data. This will make relevant structural information available and more easily discoverable for a wide range of scientists.
Collapse
Affiliation(s)
- Gerard J. Kleywegt
- European Molecular Biology Laboratory (EMBL)European Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Sameer Velankar
- European Molecular Biology Laboratory (EMBL)European Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Ardan Patwardhan
- European Molecular Biology Laboratory (EMBL)European Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| |
Collapse
|
220
|
Yang YJ, Wang S, Zhang B, Shen HB. Resolution Measurement from a Single Reconstructed Cryo-EM Density Map with Multiscale Spectral Analysis. J Chem Inf Model 2018; 58:1303-1311. [DOI: 10.1021/acs.jcim.8b00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Jiao Yang
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Wang
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Zhang
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
221
|
Molecular Architecture of the Essential Yeast Histone Acetyltransferase Complex NuA4 Redefines Its Multimodularity. Mol Cell Biol 2018; 38:MCB.00570-17. [PMID: 29463645 DOI: 10.1128/mcb.00570-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022] Open
Abstract
Conserved from yeast to humans, the NuA4 histone acetyltransferase is a large multisubunit complex essential for cell viability through the regulation of gene expression, genome maintenance, metabolism, and cell fate during development and stress. How the different NuA4 subunits work in concert with one another to perform these diverse functions remains unclear, and addressing this central question requires a comprehensive understanding of NuA4's molecular architecture and subunit organization. We have determined the structure of fully assembled native yeast NuA4 by single-particle electron microscopy. Our data revealed that NuA4 adopts a trilobal overall architecture, with each of the three lobes constituted by one or two functional modules. By performing cross-linking coupled to mass spectrometry analysis and in vitro protein interaction studies, we further mapped novel intermolecular interfaces within NuA4. Finally, we combined these new data with other known structural information of NuA4 subunits and subassemblies to construct a multiscale model to illustrate how the different NuA4 subunits and modules are spatially arranged. This model shows that the multiple chromatin reader domains are clustered together around the catalytic core, suggesting that NuA4's multimodular architecture enables it to engage in multivalent interactions with its nucleosome substrate.
Collapse
|
222
|
Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 2018; 70:60-71.e15. [PMID: 29606590 PMCID: PMC6205224 DOI: 10.1016/j.molcel.2018.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
Collapse
Affiliation(s)
- Wei Lin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kalyan Das
- Rega Institute and Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Abhishek Mazumder
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Duchi
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Dongye Wang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard Y Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Sineva
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Aashish Srivastava
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sukhendu Mandal
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Jiang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Liu
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruiheng Yin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Dennis Thomas
- Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Haibo Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Changsheng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
223
|
Lau C, Hunter MJ, Stewart A, Perozo E, Vandenberg JI. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. J Physiol 2018; 596:1107-1119. [PMID: 29377132 PMCID: PMC5878226 DOI: 10.1113/jp274888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023] Open
Abstract
The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years.
Collapse
Affiliation(s)
- Carus Lau
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| | - Mark J. Hunter
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
| | - Alastair Stewart
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| | - Eduardo Perozo
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIL60637USA
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| |
Collapse
|
224
|
Abstract
Despite the central role of Nuclear Pore Complexes (NPCs) as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm, their large size and dynamic nature have impeded a full structural and functional elucidation. Here, we have determined a subnanometer precision structure for the entire 552-protein yeast NPC by satisfying diverse data including stoichiometry, a cryo-electron tomography map, and chemical cross-links. The structure reveals the NPC’s functional elements in unprecedented detail. The NPC is built of sturdy diagonal columns to which are attached connector cables, imbuing both strength and flexibility, while tying together all other elements of the NPC, including membrane-interacting regions and RNA processing platforms. Inwardly-directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized in distinct functional units. Taken together, this integrative structure allows us to rationalize the architecture, transport mechanism, and evolutionary origins of the NPC.
Collapse
|
225
|
Chen L, He J, Sazzed S, Walker R. An Investigation of Atomic Structures Derived from X-ray Crystallography and Cryo-Electron Microscopy Using Distal Blocks of Side-Chains. Molecules 2018. [PMID: 29518032 PMCID: PMC5967250 DOI: 10.3390/molecules23030610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a structure determination method for large molecular complexes. As more and more atomic structures are determined using this technique, it is becoming possible to perform statistical characterization of side-chain conformations. Two data sets were involved to characterize block lengths for each of the 18 types of amino acids. One set contains 9131 structures resolved using X-ray crystallography from density maps with better than or equal to 1.5 Å resolutions, and the other contains 237 protein structures derived from cryo-EM density maps with 2–4 Å resolutions. The results show that the normalized probability density function of block lengths is similar between the X-ray data set and the cryo-EM data set for most of the residue types, but differences were observed for ARG, GLU, ILE, LYS, PHE, TRP, and TYR for which conformations with certain shorter block lengths are more likely to be observed in the cryo-EM set with 2–4 Å resolutions.
Collapse
Affiliation(s)
- Lin Chen
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA.
| | - Jing He
- Department of Computer Science, Old Dominion University; Norfolk, VA 23529, USA.
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University; Norfolk, VA 23529, USA.
| | - Rayshawn Walker
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA.
| |
Collapse
|
226
|
Smart OS, Horský V, Gore S, Svobodová Vařeková R, Bendová V, Kleywegt GJ, Velankar S. Worldwide Protein Data Bank validation information: usage and trends. Acta Crystallogr D Struct Biol 2018; 74:237-244. [PMID: 29533231 PMCID: PMC5947764 DOI: 10.1107/s2059798318003303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/26/2018] [Indexed: 11/10/2022] Open
Abstract
Realising the importance of assessing the quality of the biomolecular structures deposited in the Protein Data Bank (PDB), the Worldwide Protein Data Bank (wwPDB) partners established Validation Task Forces to obtain advice on the methods and standards to be used to validate structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and three-dimensional electron cryo-microscopy. The resulting wwPDB validation pipeline is an integral part of the wwPDB OneDep deposition, biocuration and validation system. The wwPDB Validation Service webserver (https://validate.wwpdb.org) can be used to perform checks prior to deposition. Here, it is shown how validation metrics can be combined to produce an overall score that allows the ranking of macromolecular structures and domains in search results. The ValTrendsDB database provides users with a convenient way to access and analyse validation information and other properties of X-ray crystal structures in the PDB, including investigating trends in and correlations between different structure properties and validation metrics.
Collapse
Affiliation(s)
- Oliver S Smart
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Vladimír Horský
- Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Swanand Gore
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Radka Svobodová Vařeková
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Veronika Bendová
- Faculty of Science, National Centre for Biomolecular Research, Kamenice 5, 625 00 Brno, Czech Republic
| | - Gerard J Kleywegt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| |
Collapse
|
227
|
Burley SK, Berman HM, Christie C, Duarte JM, Feng Z, Westbrook J, Young J, Zardecki C. RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci 2018; 27:316-330. [PMID: 29067736 PMCID: PMC5734314 DOI: 10.1002/pro.3331] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 01/27/2023]
Abstract
The Protein Data Bank (PDB) is one of two archival resources for experimental data central to biomedical research and education worldwide (the other key Primary Data Archive in biology being the International Nucleotide Sequence Database Collaboration). The PDB currently houses >134,000 atomic level biomolecular structures determined by crystallography, NMR spectroscopy, and 3D electron microscopy. It was established in 1971 as the first open-access, digital-data resource in biology, and is managed by the Worldwide Protein Data Bank partnership (wwPDB; wwpdb.org). US PDB operations are conducted by the RCSB Protein Data Bank (RCSB PDB; RCSB.org; Rutgers University and UC San Diego) and funded by NSF, NIH, and DoE. The RCSB PDB serves as the global Archive Keeper for the wwPDB. During calendar 2016, >591 million structure data files were downloaded from the PDB by Data Consumers working in every sovereign nation recognized by the United Nations. During this same period, the RCSB PDB processed >5300 new atomic level biomolecular structures plus experimental data and metadata coming into the archive from Data Depositors working in the Americas and Oceania. In addition, RCSB PDB served >1 million RCSB.org users worldwide with PDB data integrated with ∼40 external data resources providing rich structural views of fundamental biology, biomedicine, and energy sciences, and >600,000 PDB101.rcsb.org educational website users around the globe. RCSB PDB resources are described in detail together with metrics documenting the impact of access to PDB data on basic and applied research, clinical medicine, education, and the economy.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data BankInstitute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey08854
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey08903
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of California, San DiegoLa JollaCalifornia92093
| | - Helen M. Berman
- Research Collaboratory for Structural Bioinformatics Protein Data BankInstitute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey08854
| | - Cole Christie
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of California, San DiegoLa JollaCalifornia92093
| | - Jose M. Duarte
- Research Collaboratory for Structural Bioinformatics Protein Data BankSan Diego Supercomputer Center, University of California, San DiegoLa JollaCalifornia92093
| | - Zukang Feng
- Research Collaboratory for Structural Bioinformatics Protein Data BankInstitute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey08854
| | - John Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data BankInstitute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey08854
| | - Jasmine Young
- Research Collaboratory for Structural Bioinformatics Protein Data BankInstitute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey08854
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data BankInstitute for Quantitative Biomedicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey08854
| |
Collapse
|
228
|
Abstract
In this review, we describe how the interplay among science, technology and community interests contributed to the evolution of four structural biology data resources. We present the method by which data deposited by scientists are prepared for worldwide distribution, and argue that data archiving in a trusted repository must be an integral part of any scientific investigation.
Collapse
Affiliation(s)
- Helen M. Berman
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| | - Catherine L. Lawson
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| | - Brinda Vallat
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| | - Margaret J. Gabanyi
- Center for Integrative Proteomics Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, 174 Frelinghuysen Road, Piscataway New Jersey 08854
| |
Collapse
|
229
|
Wang Z, Hardies SC, Fokine A, Klose T, Jiang W, Cho BC, Rossmann MG. Structure of the Marine Siphovirus TW1: Evolution of Capsid-Stabilizing Proteins and Tail Spikes. Structure 2017; 26:238-248.e3. [PMID: 29290487 DOI: 10.1016/j.str.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/16/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Marine bacteriophage TW1 belongs to the Siphoviridae family and infects Pseudoalteromonas phenolica. Mass spectrometry analysis has identified 16 different proteins in the TW1 virion. Functions of most of these proteins have been predicted by bioinformatic methods. A 3.6 Å resolution cryoelectron microscopy map of the icosahedrally averaged TW1 head showed the atomic structures of the major capsid protein, gp57∗, and the capsid-stabilizing protein, gp56. The gp57∗ structure is similar to that of the phage HK97 capsid protein. The gp56 protein has two domains, each having folds similar to that of the N-terminal part of phage λ gpD, indicating a common ancestry. The first gp56 domain clamps adjacent capsomers together, whereas the second domain is required for trimerization. A 6-fold-averaged reconstruction of the distal part of the tail showed that TW1 has six tail spikes, which are unusual for siphophages but are similar to the podophages P22 and Sf6, suggesting a common evolutionary origin of these spikes.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen C Hardies
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 151-742, Korea
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
230
|
Gore S, Sanz García E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H, Feng Z, Baskaran K, Berrisford JM, Hudson BP, Ikegawa Y, Kobayashi N, Lawson CL, Mading S, Mak L, Mukhopadhyay A, Oldfield TJ, Patwardhan A, Peisach E, Sahni G, Sekharan MR, Sen S, Shao C, Smart OS, Ulrich EL, Yamashita R, Quesada M, Young JY, Nakamura H, Markley JL, Berman HM, Burley SK, Velankar S, Kleywegt GJ. Validation of Structures in the Protein Data Bank. Structure 2017; 25:1916-1927. [PMID: 29174494 PMCID: PMC5718880 DOI: 10.1016/j.str.2017.10.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 11/01/2022]
Abstract
The Worldwide PDB recently launched a deposition, biocuration, and validation tool: OneDep. At various stages of OneDep data processing, validation reports for three-dimensional structures of biological macromolecules are produced. These reports are based on recommendations of expert task forces representing crystallography, nuclear magnetic resonance, and cryoelectron microscopy communities. The reports provide useful metrics with which depositors can evaluate the quality of the experimental data, the structural model, and the fit between them. The validation module is also available as a stand-alone web server and as a programmatically accessible web service. A growing number of journals require the official wwPDB validation reports (produced at biocuration) to accompany manuscripts describing macromolecular structures. Upon public release of the structure, the validation report becomes part of the public PDB archive. Geometric quality scores for proteins in the PDB archive have improved over the past decade.
Collapse
Affiliation(s)
- Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eduardo Sanz García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Steve Mading
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eldon L Ulrich
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Reiko Yamashita
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Martha Quesada
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
231
|
Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 2017; 551:653-657. [PMID: 29168508 PMCID: PMC5907806 DOI: 10.1038/nature24658] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
Abstract
Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation.
Collapse
|
232
|
Abstract
In this issue of Structure, Schiebel et al. (2016) describe a workflow-driven approach to high-throughput X-ray crystallographic fragment screening and refinement. In doing so, they extend the applicability of X-ray crystallography as a primary fragment-screening tool and show how data science techniques can favorably impact drug discovery efforts.
Collapse
Affiliation(s)
- Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
233
|
Heymann JB. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci 2017; 27:159-171. [PMID: 28891250 DOI: 10.1002/pro.3293] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Cryo-electron microscopy (cryoEM) is becoming popular as a tool to solve biomolecular structures with the recent availability of direct electron detectors allowing automated acquisition of high resolution data. The Bsoft software package, developed over 20 years for analyzing electron micrographs, offers a full workflow for validated single particle analysis with extensive functionality, enabling customization for specific cases. With the increasing use of cryoEM and its automation, proper validation of the results is a bigger concern. The three major validation approaches, independent data sets, resolution-limited processing, and coherence testing, can be incorporated into any Bsoft workflow. Here, the main workflow is divided into four phases: (i) micrograph preprocessing, (ii) particle picking, (iii) particle alignment and reconstruction, and (iv) interpretation. Each of these phases represents a conceptual unit that can be automated, followed by a check point to assess the results. The aim in the first three phases is to reconstruct one or more validated maps at the best resolution possible. Map interpretation then involves identification of components, segmentation, quantification, and modeling. The algorithms in Bsoft are well established, with future plans focused on ease of use, automation and institutionalizing validation.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, 20892
| |
Collapse
|
234
|
Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat Methods 2017; 14:1075-1078. [PMID: 28991891 PMCID: PMC5679434 DOI: 10.1038/nmeth.4461] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Nearly 98% of single particle cryo-EM structures resolved to better than 4 Å resolution have been determined using 300 keV transmission electron microscopes. We demonstrate that it is possible to obtain reconstructions of macromolecular complexes at a range of sizes to better than 3 Å resolution using a 200 keV transmission electron microscope. These structures are of sufficient quality to unambiguously assign amino acid rotameric conformations and identify ordered water molecules.
Collapse
|
235
|
Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. Proc Natl Acad Sci U S A 2017; 114:E8184-E8193. [PMID: 28893988 DOI: 10.1073/pnas.1708483114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.
Collapse
|
236
|
Malik N, Kotecha A, Gold S, Asfor A, Ren J, Huiskonen JT, Tuthill TJ, Fry EE, Stuart DI. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathog 2017; 13:e1006607. [PMID: 28937999 PMCID: PMC5656323 DOI: 10.1371/journal.ppat.1006607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 10/25/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5) release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses) have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4), N-termini (VP1) and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å). In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.
Collapse
Affiliation(s)
- Nayab Malik
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Amin Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Juha T. Huiskonen
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Helsinki Institute of Life Science and Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tobias J. Tuthill
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| |
Collapse
|
237
|
|
238
|
Quantitative analysis of 3D alignment quality: its impact on soft-validation, particle pruning and homogeneity analysis. Sci Rep 2017; 7:6307. [PMID: 28740215 PMCID: PMC5524947 DOI: 10.1038/s41598-017-06526-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/14/2017] [Indexed: 11/16/2022] Open
Abstract
Single Particle Analysis using cryo-electron microscopy is a structural biology technique aimed at capturing the three-dimensional (3D) conformation of biological macromolecules. Projection images used to construct the 3D density map are characterized by a very low signal-to-noise ratio to minimize radiation damage in the samples. As a consequence, the 3D image alignment process is a challenging and error prone task which usually determines the success or failure of obtaining a high quality map. In this work, we present an approach able to quantify the alignment precision and accuracy of the 3D alignment process, which is then being used to help the reconstruction process in a number of ways, such as: (1) Providing quality indicators of the macromolecular map for soft validation, (2) Assessing the degree of homogeneity of the sample and, (3), Selecting subsets of representative images. We present experimental results in which the quality of the finally obtained 3D maps is clearly improved.
Collapse
|
239
|
Abstract
Recently, dozens of virus structures have been solved to resolutions between 2.5 and 5.0 Å by means of electron cryomicroscopy. With these structures we are now firmly within the "atomic age" of electron cryomicroscopy, as these studies can reveal atomic details of protein and nucleic acid topology and interactions between specific residues. This improvement in resolution has been the result of direct electron detectors and image processing advances. Although enforcing symmetry facilitates reaching near-atomic resolution with fewer particle images, it unfortunately obscures some biologically interesting components of a virus. New approaches on relaxing symmetry and exploring structure dynamics and heterogeneity of viral assemblies have revealed important insights into genome packaging, virion assembly, cell entry, and other stages of the viral life cycle. In the future, novel methods will be required to reveal yet-unknown structural conformations of viruses, relevant to their biological activities. Ultimately, these results hold the promise of answering many unresolved questions linking structural diversity of viruses to their biological functions.
Collapse
Affiliation(s)
- Jason T Kaelber
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.,National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Corey F Hryc
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030;
| | - Wah Chiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.,National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
240
|
Development of a Novel Virus-Like Particle Vaccine Platform That Mimics the Immature Form of Alphavirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00090-17. [PMID: 28515133 PMCID: PMC5498722 DOI: 10.1128/cvi.00090-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are noninfectious multiprotein structures that are engineered to self-assemble from viral structural proteins. Here, we developed a novel VLP-based vaccine platform utilizing VLPs from the chikungunya virus. We identified two regions within the envelope protein, a structural component of chikungunya, where foreign antigens can be inserted without compromising VLP structure. Our VLP displays 480 copious copies of an inserted antigen on the VLP surface in a highly symmetric manner and is thus capable of inducing strong immune responses against any inserted antigen. Furthermore, by mimicking the structure of the immature form of the virus, we altered our VLP's in vivo dynamics and enhanced its immunogenicity. We used the circumsporozoite protein (CSP) of the Plasmodium falciparum malaria parasite as an antigen and demonstrated that our VLP-based vaccine elicits strong immune responses against CSP in animals. The sera from immunized monkeys protected mice from malaria infection. Likewise, mice vaccinated with P. yoelii CSP-containing VLPs were protected from an infectious sporozoite challenge. Hence, our uniquely engineered VLP platform can serve as a blueprint for the development of vaccines against other pathogens and diseases.
Collapse
|
241
|
Roh SH, Kasembeli MM, Galaz-Montoya JG, Chiu W, Tweardy DJ. Chaperonin TRiC/CCT Recognizes Fusion Oncoprotein AML1-ETO through Subunit-Specific Interactions. Biophys J 2017; 110:2377-2385. [PMID: 27276256 DOI: 10.1016/j.bpj.2016.04.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
AML1-ETO is the translational product of a chimeric gene created by the stable chromosome translocation t (8;21)(q22;q22). It causes acute myeloid leukemia (AML) by dysregulating the expression of genes critical for myeloid cell development and differentiation and recently has been reported to bind multiple subunits of the mammalian cytosolic chaperonin TRiC (or CCT), primarily through its DNA binding domain (AML1-175). Through these interactions, TRiC plays an important role in the synthesis, folding, and activity of AML1-ETO. Using single-particle cryo-electron microscopy, we demonstrate here that a folding intermediate of AML1-ETO's DNA-binding domain (AML1-175) forms a stable complex with apo-TRiC. Our structure reveals that AML1-175 associates directly with a specific subset of TRiC subunits in the open conformation.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Moses M Kasembeli
- Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jesús G Galaz-Montoya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - David J Tweardy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas; Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
242
|
Cabra V, Murayama T, Samsó M. Ultrastructural Analysis of Self-Associated RyR2s. Biophys J 2017; 110:2651-2662. [PMID: 27332123 DOI: 10.1016/j.bpj.2016.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022] Open
Abstract
In heart, type-2 ryanodine receptor (RyR2) forms discrete supramolecular clusters in the sarcoplasmic reticulum known as calcium release units (CRUs), which are responsible for most of the Ca(2+) released for muscle contraction. To learn about the substructure of the CRU, we sought to determine whether RyR2s have the ability to self-associate in the absence of other factors and if so, whether they do it in a specific manner. Purified RyR2 was negatively stained and imaged on the transmission electron microscope, and RyR2 particles closely associated were further analyzed using bias-free multivariate statistical analysis and classification. The resulting two-dimensional averages show that RyR2s can interact in two rigid, reproducible configurations: "adjoining", with two RyR2s alongside each other, and "oblique", with two partially overlapped RyR2s forming an angle of 12°. The two configurations are nearly identical under two extreme physiological Ca(2+) concentrations. Pseudo-atomic models for these two interactions indicate that the adjoining interaction involves contacts between the P1, SPRY1 and the helical domains. The oblique interaction is mediated by extensive contacts between the SPRY1 domains (domains 9) and P1 domains (domains 10) of both RyR2s and not through domain 6 as previously thought; in addition its asymmetric interface imposes steric constrains that inhibit the growth of RyR2 as a checkerboard, which is the configuration usually assumed, and generates new configurations, i.e., "branched" and "interlocked". This first, to our knowledge, structural detailed analysis of the inter-RyR2 interactions helps to understand important morphological and functional aspects of the CRU in the context of cardiac EC coupling.
Collapse
Affiliation(s)
- Vanessa Cabra
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
243
|
Burnley T, Palmer CM, Winn M. Recent developments in the CCP-EM software suite. Acta Crystallogr D Struct Biol 2017; 73:469-477. [PMID: 28580908 PMCID: PMC5458488 DOI: 10.1107/s2059798317007859] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2023] Open
Abstract
As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail.
Collapse
Affiliation(s)
- Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, England
| | - Colin M Palmer
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, England
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, England
| |
Collapse
|
244
|
Galaz-Montoya JG, Ludtke SJ. The advent of structural biology in situ by single particle cryo-electron tomography. BIOPHYSICS REPORTS 2017; 3:17-35. [PMID: 28781998 PMCID: PMC5516000 DOI: 10.1007/s41048-017-0040-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Abstract
Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ. Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Steven J. Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
245
|
Joseph AP, Lagerstedt I, Patwardhan A, Topf M, Winn M. Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. J Struct Biol 2017; 199:12-26. [PMID: 28552721 PMCID: PMC5479444 DOI: 10.1016/j.jsb.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Recent developments in 3-dimensional electron microcopy (3D-EM) techniques and a concomitant drive to look at complex molecular structures, have led to a rapid increase in the amount of volume data available for biomolecules. This creates a demand for better methods to analyse the data, including improved scores for comparison, classification and integration of data at different resolutions. To this end, we developed and evaluated a set of scoring functions that compare 3D-EM volumes. To test our scores we used a benchmark set of volume alignments derived from the Electron Microscopy Data Bank. We find that the performance of different scores vary with the map-type, resolution and the extent of overlap between volumes. Importantly, adding the overlap information to the local scoring functions can significantly improve their precision and accuracy in a range of resolutions. A combined score involving the local mutual information and overlap (LMI_OV) performs best overall, irrespective of the map category, resolution or the extent of overlap, and we recommend this score for general use. The local mutual information score itself is found to be more discriminatory than cross-correlation coefficient for intermediate-to-low resolution maps or when the map size and density distribution differ significantly. For comparing map surfaces, we implemented two filters to detect the surface points, including one based on the 'extent of surface exposure'. We show that scores that compare surfaces are useful at low resolutions and for maps with evident surface features. All the scores discussed are implemented in TEMPy (http://tempy.ismb.lon.ac.uk/).
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom; Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ingvar Lagerstedt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; Computational Chemistry and Cheminformatics, Lilly UK, Windlesham GU20 6PH, United Kingdom
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.
| |
Collapse
|
246
|
Punjani A, Brubaker MA, Fleet DJ. Building Proteins in a Day: Efficient 3D Molecular Structure Estimation with Electron Cryomicroscopy. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2017; 39:706-718. [PMID: 27849524 DOI: 10.1109/tpami.2016.2627573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Discovering the 3D atomic-resolution structure of molecules such as proteins and viruses is one of the foremost research problems in biology and medicine. Electron Cryomicroscopy (cryo-EM) is a promising vision-based technique for structure estimation which attempts to reconstruct 3D atomic structures from a large set of 2D transmission electron microscope images. This paper presents a new Bayesian framework for cryo-EM structure estimation that builds on modern stochastic optimization techniques to allow one to scale to very large datasets. We also introduce a novel Monte-Carlo technique that reduces the cost of evaluating the objective function during optimization by over five orders of magnitude. The net result is an approach capable of estimating 3D molecular structure from large-scale datasets in about a day on a single CPU workstation.
Collapse
|
247
|
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 2017; 6. [PMID: 28355133 PMCID: PMC5404916 DOI: 10.7554/elife.24905] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump. DOI:http://dx.doi.org/10.7554/eLife.24905.001
Collapse
Affiliation(s)
- Zhao Wang
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Health Science Center at Houston Medical School, Houston, United States
| | - Corey F Hryc
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - James N Blaza
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Health Science Center at Houston Medical School, Houston, United States
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Wah Chiu
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
248
|
Schulz S, Wilkes M, Mills DJ, Kühlbrandt W, Meier T. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep 2017; 18:526-535. [PMID: 28283532 PMCID: PMC5376962 DOI: 10.15252/embr.201643374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N‐type rotary ATPase, in addition to an operon for a regular F‐type rotary ATPase. The molecular architecture of N‐type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N1No‐type ATPase and investigated the structure and ion specificity of its membrane‐embedded c‐ring rotor by single‐particle electron cryo‐microscopy. Of several amphiphilic compounds tested for solubilizing the complex, the choice of the low‐density, low‐CMC detergent LDAO was optimal in terms of map quality and resolution. The cryoEM map of the c‐ring at 6.1 Å resolution reveals a heptadecameric oligomer with a molecular mass of ~141 kDa. Biochemical measurements indicate that the c17 ring is H+ specific, demonstrating that the ATPase is proton‐coupled. The c17 ring stoichiometry results in a very high ion‐to‐ATP ratio of 5.7. We propose that this N‐ATPase is a highly efficient proton pump that helps these melioidosis‐causing bacteria to survive in the hostile, acidic environment of phagosomes.
Collapse
Affiliation(s)
- Sarah Schulz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martin Wilkes
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
249
|
Abstract
Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.
Collapse
|
250
|
Variability of Protein Structure Models from Electron Microscopy. Structure 2017; 25:592-602.e2. [PMID: 28262392 DOI: 10.1016/j.str.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/10/2017] [Accepted: 02/11/2017] [Indexed: 11/23/2022]
Abstract
An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications.
Collapse
|