201
|
Jha SS, Komar AA. Using SecM arrest sequence as a tool to isolate ribosome bound polypeptides. J Vis Exp 2012:4027. [PMID: 22751351 DOI: 10.3791/4027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Extensive research has provided ample evidences suggesting that protein folding in the cell is a co-translational process. However, the exact pathway that polypeptide chain follows during co-translational folding to achieve its functional form is still an enigma. In order to understand this process and to determine the exact conformation of the co-translational folding intermediates, it is essential to develop techniques that allow the isolation of RNCs carrying nascent chains of predetermined sizes to allow their further structural analysis. SecM (secretion monitor) is a 170 amino acid E. coli protein that regulates expression of the downstream SecA (secretion driving) ATPase in the secM-secA operon. Nakatogawa and Ito originally found that a 17 amino acid long sequence (150-FSTPVWISQAQGIRAGP-166) in the C-terminal region of the SecM protein is sufficient and necessary to cause stalling of SecM elongation at Gly165, thereby producing peptidyl-glycyl-tRNA stably bound to the ribosomal P-site. More importantly, it was found that this 17 amino acid long sequence can be fused to the C-terminus of virtually any full-length and/or truncated protein thus allowing the production of RNCs carrying nascent chains of predetermined sizes. Thus, when fused or inserted into the target protein, SecM stalling sequence produces arrest of the polypeptide chain elongation and generates stable RNCs both in vivo in E. coli cells and in vitro in a cell-free system. Sucrose gradient centrifugation is further utilized to isolate RNCs. The isolated RNCs can be used to analyze structural and functional features of the co-translational folding intermediates. Recently, this technique has been successfully used to gain insights into the structure of several ribosome bound nascent chains. Here we describe the isolation of bovine Gamma-B Crystallin RNCs fused to SecM and generated in an in vitro translation system.
Collapse
Affiliation(s)
- Sujata S Jha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, USA
| | | |
Collapse
|
202
|
Pintó RM, D'Andrea L, Pérez-Rodriguez FJ, Costafreda MI, Ribes E, Guix S, Bosch A. Hepatitis A virus evolution and the potential emergence of new variants escaping the presently available vaccines. Future Microbiol 2012; 7:331-46. [PMID: 22393888 DOI: 10.2217/fmb.12.5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatitis A is the most common infection of the liver worldwide and is fecal-orally transmitted. Its incidence tends to decrease with improvements in hygiene conditions but at the same time its severity increases. Hepatitis A virus is the causative agent of acute hepatitis in humans and belongs to the Hepatovirus genus in the Picornaviridae family, and it has very unique characteristics. This article reviews some molecular and biological properties that allow the virus to live in a very quiescent way and to build an extremely stable capsid that is able to persist in and out of the body. Additionally, the relationship between the genomic composition and the structural and antigenic properties of the capsid is discussed, and the potential emergence of antigenic variants is evaluated from an evolutionary perspective.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, School of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
203
|
Huang JT, Xing DJ, Huang W. Choice of synonymous codons associated with protein folding. Proteins 2012; 80:2056-62. [DOI: 10.1002/prot.24096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/29/2012] [Accepted: 04/05/2012] [Indexed: 11/11/2022]
|
204
|
Takahashi S, Tsuji K, Ueda T, Okahata Y. Traveling Time of a translating ribosome along messenger RNA monitored directly on a quartz crystal microbalance. J Am Chem Soc 2012; 134:6793-800. [PMID: 22452569 DOI: 10.1021/ja300993d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During translation, the biosynthesis of polypeptides is dynamically regulated. The translation rate along messenger RNA (mRNA), which is dependent on the codon, structure, and sequence, is not always constant. However, methods for measuring the duration required for polypeptide elongation on an mRNA of interest have not been developed. In this work, we used a quartz crystal microbalance (QCM) technique to monitor mRNA translation in an Escherichia coli cell-free translation system in real time. This method permitted us to evaluate the translation of proteins of interest fused upstream of a streptavidin-binding peptide (SBP) fusion protein. The translation of mRNA encoding the SBP fusion protein alone was observed as a mass increase on a streptavidin-modified QCM plate. Addition of the protein of interest resulted in a delay in the mass change corresponding to the traveling time of the ribosome along the coding region of the protein of interest. With this technique, the lengths of coding sequences, codon usages, influences of unique sequences, and various protein-coding sequences were evaluated. The results showed that the traveling time of the translating ribosome depends on the length of the coding region translated but is also affected by the sequence itself. Differences in the time lags for various proteins imply that mRNA coding sequences may regulate gene expression.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53, 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
205
|
Chartier M, Gaudreault F, Najmanovich R. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. ACTA ACUST UNITED AC 2012; 28:1438-45. [PMID: 22467916 DOI: 10.1093/bioinformatics/bts149] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MOTIVATION An increasing amount of evidence from experimental and computational analysis suggests that rare codon clusters are functionally important for protein activity. Most of the studies on rare codon clusters were performed on a limited number of proteins or protein families. In the present study, we present the Sherlocc program and how it can be used for large scale protein family analysis of evolutionarily conserved rare codon clusters and their relation to protein function and structure. This large-scale analysis was performed using the whole Pfam database covering over 70% of the known protein sequence universe. Our program Sherlocc, detects statistically relevant conserved rare codon clusters and produces a user-friendly HTML output. RESULTS Statistically significant rare codon clusters were detected in a multitude of Pfam protein families. The most statistically significant rare codon clusters were predominantly identified in N-terminal Pfam families. Many of the longest rare codon clusters are found in membrane-related proteins which are required to interact with other proteins as part of their function, for example in targeting or insertion. We identified some cases where rare codon clusters can play a regulating role in the folding of catalytically important domains. Our results support the existence of a widespread functional role for rare codon clusters across species. Finally, we developed an online filter-based search interface that provides access to Sherlocc results for all Pfam families. AVAILABILITY The Sherlocc program and search interface are open access and are available at http://bcb.med.usherbrooke.ca
Collapse
Affiliation(s)
- Matthieu Chartier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
206
|
Duval-Valentin G, Chandler M. Cotranslational control of DNA transposition: a window of opportunity. Mol Cell 2012; 44:989-96. [PMID: 22195971 DOI: 10.1016/j.molcel.2011.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/17/2011] [Accepted: 09/30/2011] [Indexed: 10/14/2022]
Abstract
Transposable elements are important in genome dynamics and evolution. Bacterial insertion sequences (IS) constitute a major group in number and impact. Understanding their role in shaping genomes requires knowledge of how their transposition activity is regulated and interfaced with the host cell. One IS regulatory phenomenon is a preference of their transposases (Tpases) for action on the element from which they are expressed (cis) rather than on other copies of the same element (trans). Using IS911, we show in vivo that activity in cis was ~200 fold higher than in trans. We also demonstrate that a translational frameshifting pause signal influences cis preference presumably by facilitating sequential folding and cotranslational binding of the Tpase. In vitro, IS911 Tpase bound IS ends during translation but not after complete translation. Cotranslational binding of nascent Tpase permits tight control of IS proliferation providing a mechanistic explanation for cis regulation of transposition involving an unexpected partner, the ribosome.
Collapse
Affiliation(s)
- Guy Duval-Valentin
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Campus Université Paul Sabatier, 118 Route de Narbonne, F31062 Toulouse Cedex, France
| | | |
Collapse
|
207
|
Venetianer P. Are synonymous codons indeed synonymous? Biomol Concepts 2012; 3:21-8. [DOI: 10.1515/bmc.2011.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
AbstractIt has long been known that the distribution and frequency of occurence of synonymous codons can vary greatly among different species, and that the abundance of isoaccepting tRNA species could also be very different. The interaction of these two factors may influence the rate and efficiency of protein synthesis and therefore synonymous mutations might influence the fitness of the organism and cannot be treated generally as ‘neutral’ in an evolutionary sense. These general effects of synonymous mutations, and their possible role in evolution, have been discussed in several recent papers. This review, however, will only deal with the influence of synonymous codon replacements on the expression of individual genes. It will describe the possible mechanisms of such effects and will present examples demonstrating the existence and effects of each of these mechanisms.
Collapse
Affiliation(s)
- Pál Venetianer
- 1Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
208
|
Endoh T, Kawasaki Y, Sugimoto N. Synchronized translation for detection of temporal stalling of ribosome during single-turnover translation. Anal Chem 2011; 84:857-61. [PMID: 22221219 DOI: 10.1021/ac202712g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arrhythmic translation caused by temporal stalling of ribosome during translation elongation is essential for gene expression and protein folding. To analyze the positions of the temporarily stalled ribosome and length of the stalling, the ribosomes must be synchronized during translation elongation. In this study, we designed a two-step translation reaction to synchronize the ribosome during a single-turnover translation. First, ribosomes decoding mRNA were artificially and specifically halted before isoleucine codon by reducing isoleucyl-tRNA synthetase from reaction mixture of in vitro translation. Then, translation elongation was restarted simultaneously to synchronize the translation. It enabled evaluation of translation elongation with time resolving capacity shorter than ever before. In addition, position-specific incorporation of fluorescent amino acid and mass spectrometry analyses enabled trace of translation elongation after gel electrophoresis and accurate determination of ribosome positions temporarily stalled before rare codons, respectively. The synchronized translation demonstrated here would be useful to evaluate trans- and cis-elements that affect rate of the translation elongation.
Collapse
|
209
|
Abstract
RNA is the central conduit for gene expression. This role depends on an ability to encode information at two levels: in its linear sequence and in the complex structures RNA can form by folding back on itself. Understanding the global structure-function interrelationships mediated by RNA remains a great challenge in molecular and structural biology. In this Account, we discuss evolving work in our laboratory focused on creating facile, generic, quantitative, accurate, and highly informative approaches for understanding RNA structure in biologically important environments. The core innovation derives from our discovery that the nucleophilic reactivity of the ribose 2'-hydroxyl in RNA is gated by local nucleotide flexibility. The 2'-hydroxyl is reactive at conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Sites of modification in RNA can be detected efficiently either using primer extension or by protection from exoribonucleolytic degradation. This technology is now called SHAPE, for selective 2'-hydroxyl acylation analyzed by primer extension (or protection from exoribonuclease). SHAPE reactivities are largely independent of nucleotide identity but correlate closely with model-free measurements of molecular order. The simple SHAPE reaction is thus a robust, nucleotide-resolution, biophysical measurement of RNA structure. SHAPE can be used to provide an experimental correction to RNA folding algorithms and, in favorable cases, yield kilobase-scale secondary structure predictions with high accuracies. SHAPE chemistry is based on very simple reactive carbonyl centers that can be varied to yield slow- and fast-reacting reagents. Differential SHAPE reactivities can be used to detect specific RNA positions with slow local nucleotide dynamics. These positions, which are often in the C2'-endo conformation, have the potential to function as molecular timers that regulate RNA folding and function. In addition, fast-reacting SHAPE reagents can be used to visualize RNA structural biogenesis and RNA-protein assembly reactions in one second snapshots in very straightforward experiments. The application of SHAPE to challenging problems in biology has revealed surprises in well-studied systems. New regions have been identified that are likely to have critical functional roles on the basis of their high levels of RNA structure. For example, SHAPE analysis of large RNAs, such as authentic viral RNA genomes, suggests that RNA structure organizes regulatory motifs and regulates splicing, protein folding, genome recombination, and ribonucleoprotein assembly. SHAPE has also revealed limitations to the hierarchical model for RNA folding. Continued development and application of SHAPE technologies will advance our understanding of the many ways in which the genetic code is expressed through the underlying structure of RNA.
Collapse
Affiliation(s)
- Kevin M. Weeks
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290, United States
| | - David M. Mauger
- Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
210
|
Hu JS, Wang QQ, Zhang J, Chen HT, Xu ZW, Zhu L, Ding YZ, Ma LN, Xu K, Gu YX, Liu YS. The characteristic of codon usage pattern and its evolution of hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2011; 11:2098-102. [DOI: 10.1016/j.meegid.2011.08.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 01/29/2023]
|
211
|
Abstract
Analysis of the human genome reveals that approximately a third of all open reading frames code for proteins that enter the endoplasmic reticulum (ER), demonstrating the importance of this organelle for global protein maturation. The path taken by a polypeptide through the secretory pathway starts with its translocation across or into the ER membrane. It then must fold and be modified correctly in the ER before being transported via the Golgi apparatus to the cell surface or another destination. Being physically segregated from the cytosol means that the ER lumen has a distinct folding environment. It contains much of the machinery for fulfilling the task of protein production, including complex pathways for folding, assembly, modification, quality control, and recycling. Importantly, the compartmentalization means that several modifications that do not occur in the cytosol, such as glycosylation and extensive disulfide bond formation, can occur to secreted proteins to enhance their stability before their exposure to the extracellular milieu. How these various machineries interact during the normal pathway of folding and protein secretion is the subject of this review.
Collapse
Affiliation(s)
- Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
212
|
Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 2011; 12:683-91. [PMID: 21878961 DOI: 10.1038/nrg3051] [Citation(s) in RCA: 690] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synonymous mutations - sometimes called 'silent' mutations - are now widely acknowledged to be able to cause changes in protein expression, conformation and function. The recent increase in knowledge about the association of genetic variants with disease, particularly through genome-wide association studies, has revealed a substantial contribution of synonymous SNPs to human disease risk and other complex traits. Here we review current understanding of the extent to which synonymous mutations influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
213
|
Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 2011; 92:241-51. [DOI: 10.1007/s00253-011-3513-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/31/2023]
|
214
|
A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS One 2011; 6:e22577. [PMID: 21826197 PMCID: PMC3149604 DOI: 10.1371/journal.pone.0022577] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/24/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. METHODOLOGY/PRINCIPAL FINDINGS Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m) ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. CONCLUSION The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins.
Collapse
|
215
|
Waldman YY, Tuller T, Keinan A, Ruppin E. Selection for translation efficiency on synonymous polymorphisms in recent human evolution. Genome Biol Evol 2011; 3:749-61. [PMID: 21803767 PMCID: PMC3163469 DOI: 10.1093/gbe/evr076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synonymous mutations are considered to be "silent" as they do not affect protein sequence. However, different silent codons have different translation efficiency (TE), which raises the question to what extent such mutations are really neutral. We perform the first genome-wide study of natural selection operating on TE in recent human evolution, surveying 13,798 synonymous single nucleotide polymorphisms (SNPs) in 1,198 unrelated individuals from 11 populations. We find evidence for both negative and positive selection on TE, as measured based on differentiation in allele frequencies between populations. Notably, the likelihood of an SNP to be targeted by positive or negative selection is correlated with the magnitude of its effect on the TE of the corresponding protein. Furthermore, negative selection acting against changes in TE is more marked in highly expressed genes, highly interacting proteins, complex members, and regulatory genes. It is also more common in functional regions and in the initial segments of highly expressed genes. Positive selection targeting sites with a large effect on TE is stronger in lowly interacting proteins and in regulatory genes. Similarly, essential genes are enriched for negative TE selection while underrepresented for positive TE selection. Taken together, these results point to the significant role of TE as a selective force operating in humans and hence underscore the importance of considering silent SNPs in interpreting associations with complex human diseases. Testifying to this potential, we describe two synonymous SNPs that may have clinical implications in phenylketonuria and in Best's macular dystrophy due to TE differences between alleles.
Collapse
Affiliation(s)
- Yedael Y Waldman
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
216
|
Khushoo A, Yang Z, Johnson AE, Skach WR. Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1. Mol Cell 2011; 41:682-92. [PMID: 21419343 DOI: 10.1016/j.molcel.2011.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/03/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
The mechanism by which protein folding is coupled to biosynthesis is a critical, but poorly understood, aspect of protein conformational diseases. Here we use fluorescence resonance energy transfer (FRET) to characterize tertiary structural transitions of nascent polypeptides and show that the first nucleotide-binding domain (NBD1) of human CFTR, whose folding is defective in cystic fibrosis, folds via a cotranslational multistep pathway as it is synthesized on the ribosome. Folding begins abruptly as NBD1 residues 389-500 emerge from the ribosome exit tunnel, initiating compaction of a small, N-terminal α/β-subdomain. Real-time kinetics of synchronized nascent chains revealed that subdomain folding is rapid, occurs coincident with synthesis, and is facilitated by direct ATP binding to the nascent polypeptide. These findings localize the major CF defect late in the NBD1 folding pathway and establish a paradigm wherein a cellular ligand promotes vectorial domain folding by facilitating an energetically favored local peptide conformation.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
217
|
Deane CM, Saunders R. The imprint of codons on protein structure. Biotechnol J 2011; 6:641-9. [DOI: 10.1002/biot.201000329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/23/2011] [Indexed: 12/23/2022]
|
218
|
Angov E. Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol J 2011; 6:650-9. [PMID: 21567958 PMCID: PMC3166658 DOI: 10.1002/biot.201000332] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 02/06/2023]
Abstract
Biomedical and biotechnological research relies on processes leading to the successful expression and production of key biological products. High-quality proteins are required for many purposes, including protein structural and functional studies. Protein expression is the culmination of multistep processes involving regulation at the level of transcription, mRNA turnover, protein translation, and post-translational modifications leading to the formation of a stable product. Although significant strides have been achieved over the past decade, advances toward integrating genomic and proteomic information are essential, and until such time, many target genes and their products may not be fully realized. Thus, the focus of this review is to provide some experimental support and a brief overview of how codon usage bias has evolved relative to regulating gene expression levels.
Collapse
Affiliation(s)
- Evelina Angov
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
219
|
Jha S, Komar AA. Birth, life and death of nascent polypeptide chains. Biotechnol J 2011; 6:623-40. [PMID: 21538896 PMCID: PMC3130931 DOI: 10.1002/biot.201000327] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/26/2011] [Accepted: 03/15/2011] [Indexed: 01/16/2023]
Abstract
The journey of nascent polypeptides from synthesis at the peptidyl transferase center of the ribosome (“birth”) to full function (“maturity”) involves multiple interactions, constraints, modifications and folding events. Each step of this journey impacts the ultimate expression level and functional capacity of the translated protein. It has become clear that the kinetics of protein translation is predominantly modulated by synonymous codon usage along the mRNA, and that this provides an active mechanism for coordinating the synthesis, maturation and folding of nascent polypeptides. Multiple quality control systems ensure that proteins achieve their native, functional form. Unproductive co-translational folding intermediates that arise during protein synthesis may undergo enhanced interaction with components of these systems, such as chaperones, and/or be subjects of co-translational degradation (“death”). This review provides an overview of our current understanding of the complex co-translational events that accompany the synthesis, maturation, folding and degradation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Sujata Jha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | |
Collapse
|
220
|
The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. INFECTION GENETICS AND EVOLUTION 2011; 11:1168-73. [PMID: 21382519 PMCID: PMC7185409 DOI: 10.1016/j.meegid.2011.02.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/25/2023]
Abstract
To give a new perspective on the evolutionary characteristics shaping the genetic diversity of enterovirus 71 (EV71) and the effects of natural selection from its host on the codon usage pattern of the virus, the relative synonymous codon usage (RSCU) values, codon usage bias (CUB) values, effective number of codons (ENCs) values and nucleotide contents were calculated to implement a comparative analysis to evaluate the dynamics of the virus evolution. The characteristics of the synonymous codon usage patterns and nucleotide contents of EV71 and the comparison between ENC values for the whole coding sequence of EV71 and that of coding sequences for viral proteins of EV71 all indicate that the interaction between mutation pressure from virus and natural selection from host exists in the processes of evolution of EV71. The synonymous codon usage pattern of EV71 is a mixture of coincidence and antagonism to that of host cell. In addition, the genetic diversity of EV71 strains and the preferential selection of some synonymous codons in EV71 strains based on the different epidemic areas were observed, suggesting that geographic and social factors may play roles in influencing the evolution of this virus.
Collapse
|
221
|
Gershenson A, Gierasch LM. Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 2011; 21:32-41. [PMID: 21112769 PMCID: PMC3072030 DOI: 10.1016/j.sbi.2010.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
It is hard to imagine a more extreme contrast than that between the dilute solutions used for in vitro studies of protein folding and the crowded, compartmentalized, sticky, spatially inhomogeneous interior of a cell. This review highlights recent research exploring protein folding in the cell with a focus on issues that are generally not relevant to in vitro studies of protein folding, such as macromolecular crowding, hindered diffusion, cotranslational folding, molecular chaperones, and evolutionary pressures. The technical obstacles that must be overcome to characterize protein folding in the cell are driving methodological advances, and we draw attention to several examples, such as fluorescence imaging of folding in cells and genetic screens for in-cell stability.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
222
|
Mishra S. ‘Chargaff's Rules’ for Protein Folding: Stoichiometric Leitmotif Made Visible. J Biomol Struct Dyn 2011; 28:649-52; discussion 669-674. [DOI: 10.1080/073911011010524977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
223
|
O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM. New scenarios of protein folding can occur on the ribosome. J Am Chem Soc 2011; 133:513-26. [PMID: 21204555 DOI: 10.1021/ja107863z] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identifying and understanding the differences between protein folding in bulk solution and in the cell is a crucial challenge facing biology. Using Langevin dynamics, we have simulated intact ribosomes containing five different nascent chains arrested at different stages of their synthesis such that each nascent chain can fold and unfold at or near the exit tunnel vestibule. We find that the native state is destabilized close to the ribosome surface due to an increase in unfolded state entropy and a decrease in native state entropy; the former arises because the unfolded ensemble tends to behave as an expanded random coil near the ribosome and a semicompact globule in bulk solution. In addition, the unfolded ensemble of the nascent chain adopts a highly anisotropic shape near the ribosome surface and the cooperativity of the folding-unfolding transition is decreased due to the appearance of partially folded structures that are not populated in bulk solution. The results show, in light of these effects, that with increasing nascent chain length folding rates increase in a linear manner and unfolding rates decrease, with larger and topologically more complex folds being the most highly perturbed by the ribosome. Analysis of folding trajectories, initiated by temperature quench, reveals the transition state ensemble is driven toward compaction and greater native-like structure by interactions with the ribosome surface and exit vestibule. Furthermore, the diversity of folding pathways decreases and the probability increases of initiating folding via the N-terminus on the ribosome. We show that all of these findings are equally applicable to the situation in which protein folding occurs during continuous (non-arrested) translation provided that the time scales of folding and unfolding are much faster than the time scale of monomer addition to the growing nascent chain, which results in a quasi-equilibrium process. These substantial ribosome-induced perturbations to almost all aspects of protein folding indicate that folding scenarios that are distinct from those of bulk solution can occur on the ribosome.
Collapse
Affiliation(s)
- Edward P O'Brien
- Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
224
|
Zhang G, Lukoszek R, Mueller-Roeber B, Ignatova Z. Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation. Nucleic Acids Res 2010; 39:3331-9. [PMID: 21138970 PMCID: PMC3082873 DOI: 10.1093/nar/gkq1257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In eukaryotes, the transcription of tRNA genes is initiated by the concerted action of transcription factors IIIC (TFIIIC) and IIIB (TFIIIB) which direct the recruitment of polymerase III. While TFIIIC recognizes highly conserved, intragenic promoter elements, TFIIIB binds to the non-coding 5'-upstream regions of the tRNA genes. Using a systematic bioinformatic analysis of 11 multicellular eukaryotic genomes we identified a highly conserved TATA motif followed by a CAA-motif in the tRNA upstream regions of all plant genomes. Strikingly, the 5'-flanking tRNA regions of the animal genomes are highly heterogeneous and lack a common conserved sequence signature. Interestingly, in the animal genomes the tRNA species that read the same codon share conserved motifs in their upstream regions. Deep-sequencing analysis of 16 human tissues revealed multiple splicing variants of two of the TFIIIB subunits, Bdp1 and Brf1, with tissue-specific expression patterns. These multiple forms most likely modulate the TFIIIB-DNA interactions and explain the lack of a uniform signature motif in the tRNA upstream regions of animal genomes. The anticodon-dependent 5'-flanking motifs provide a possible mechanism for independent regulation of the tRNA transcription in various human tissues.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476 Potsdam, Potsdam, Germany
| | | | | | | |
Collapse
|
225
|
Ruhe ZC, Hayes CS. The N-terminus of GalE induces tmRNA activity in Escherichia coli. PLoS One 2010; 5:e15207. [PMID: 21151867 PMCID: PMC2998420 DOI: 10.1371/journal.pone.0015207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tmRNA quality control system recognizes stalled translation complexes and facilitates ribosome recycling in a process termed 'ribosome rescue'. During ribosome rescue, nascent chains are tagged with the tmRNA-encoded SsrA peptide, which targets tagged proteins for degradation. In Escherichia coli, tmRNA rescues ribosomes arrested on truncated messages, as well as ribosomes that are paused during elongation and termination. METHODOLOGY/PRINCIPAL FINDINGS Here, we describe a new translational pausing determinant that leads to SsrA peptide tagging of the E. coli GalE protein (UDP-galactose 4-epimerase). GalE chains are tagged at more than 150 sites, primarily within distinct clusters throughout the C-terminal domain. These tagging sites do not correspond to rare codon clusters and synonymous recoding of the galE gene had little effect on tagging. Moreover, tagging was largely unaffected by perturbations that either stabilize or destabilize the galE transcript. Examination of GalE-thioredoxin (TrxA) fusion proteins showed that the GalE C-terminal domain is no longer tagged when fused to an N-terminal TrxA domain. Conversely, the N-terminus of GalE induced tagging within the fused C-terminal TrxA domain. CONCLUSIONS/SIGNIFICANCE These findings suggest that translation of the GalE N-terminus induces subsequent tagging of the C-terminal domain. We propose that co-translational maturation of the GalE N-terminal domain influences ribosome pausing and subsequent tmRNA activity.
Collapse
Affiliation(s)
- Zachary C. Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
226
|
Bekesi A, Pukancsik M, Haasz P, Felfoldi L, Leveles I, Muha V, Hunyadi-Gulyas E, Erdei A, Medzihradszky KF, Vertessy BG. Association of RNA with the uracil-DNA-degrading factor has major conformational effects and is potentially involved in protein folding. FEBS J 2010; 278:295-315. [PMID: 21134127 DOI: 10.1111/j.1742-4658.2010.07951.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a novel uracil-DNA-degrading factor protein (UDE) was identified in Drosophila melanogaster, with homologues only in pupating insects. Its unique uracil-DNA-degrading activity and a potential domain organization pattern have been described. UDE seems to be the first representative of a new protein family with unique enzyme activity that has a putative role in insect development. In addition, UDE may also serve as potential tool in molecular biological applications. Owing to lack of homology with other proteins with known structure and/or function, de novo data are required for a detailed characterization of UDE structure and function. Here, experimental evidence is provided that recombinant protein is present in two distinct conformers. One of these contains a significant amount of RNA strongly bound to the protein, influencing its conformation. Detailed biophysical characterization of the two distinct conformational states (termed UDE and RNA-UDE) revealed essential differences. UDE cannot be converted into RNA-UDE by addition of the same RNA, implying putatively joint processes of RNA binding and protein folding in this conformational species. By real-time PCR and sequencing after random cloning, the bound RNA pool was shown to consist of UDE mRNA and the two ribosomal RNAs, also suggesting cotranslational RNA-assisted folding. This finding, on the one hand, might open a way to obtain a conformationally homogeneous UDE preparation, promoting successful crystallization; on the other hand, it might imply a further molecular function of the protein. In fact, RNA-dependent complexation of UDE was also demonstrated in a fruit fly pupal extract, suggesting physiological relevance of RNA binding of this DNA-processing enzyme.
Collapse
Affiliation(s)
- Angela Bekesi
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Zhang G, Ignatova Z. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 2010; 21:25-31. [PMID: 21111607 DOI: 10.1016/j.sbi.2010.10.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/29/2022]
Abstract
In the living cells, the folding of many proteins is largely believed to begin co-translationally, during their biosynthesis at the ribosomes. In the ribosomal tunnel, the nascent peptide may establish local interactions and stabilize α-helical structures. Long-range contacts are more likely outside the ribosomes after release of larger segments of the nascent chain. Examples suggest that domains can attain native-like structure on the ribosome with and without population of folding intermediates. The co-translational folding is limited by the speed of the gradual extrusion of the nascent peptide which imposes conformational restraints on its folding landscape. Recent experimental and in silico modeling studies indicate that translation kinetics fine-tunes co-translational folding by providing a time delay for sequential folding of distinct portions of the nascent chain.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14467 Potsdam, Germany
| | | |
Collapse
|
228
|
Abstract
Cell survival and death are complex matters. Too much survival may lead to cancer and too much cell death may result in tissue degeneration. In this chapter, we will first of all focus on the cellular survival mechanisms that promote correct folding and maintenance of protein function. These mechanisms include protein quality control (PQC) systems comprising molecular chaperones and intracellular proteases in the cytosol, endoplasmatic reticulum (ER) and in the mitochondria. In addition to the PQC systems, mechanisms elicited by misfolded proteins, known as unfolded protein responses (UPRs), including induction/activation of antioxidant systems are also present in the three compartments of the cell. Second, we will discuss the mechanisms by which misfolded proteins lead to the generation of oxidative stress in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These species are produced mainly from superoxide (O2-) generated in the mitochondrial respiratory chain and from nitrogen oxide (NO) produced by the mitochondrial nitrogen oxide synthetase (mtNOS). Third, the effects of oxidative stress will be discussed, both with respect to mitochondrial dynamics, i.e., fission and fusion, and the related elimination of dysfunctional mitochondria by cellular cleaning systems, i.e., mitophagy or mitoptosis, and related to the generation and cellular effects of oxidatively modified proteins, which closes a vicious cycle of protein misfolding and oxidative stress.
Collapse
|
229
|
O'Brien EP, Hsu STD, Christodoulou J, Vendruscolo M, Dobson CM. Transient tertiary structure formation within the ribosome exit port. J Am Chem Soc 2010; 132:16928-37. [PMID: 21062068 DOI: 10.1021/ja106530y] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The exit tunnel of the ribosome is commonly considered to be sufficiently narrow that co-translational folding can begin only when specific segments of nascent chains are fully extruded from the tunnel. Here we show, on the basis of molecular simulations and comparison with experiment, that the long-range contacts essential for initiating protein folding can form within a nascent chain when it reaches the last 20 Å of the exit tunnel. We further show that, in this "exit port", a significant proportion of native and non-native tertiary structure can form without steric overlap with the ribosome itself, and provide a library of structural elements that our simulations predict can form in the exit tunnel and is amenable to experimental testing. Our results show that these elements of folded tertiary structure form only transiently and are at their midpoints of stability at the boundary region between the inside and the outside of the tunnel. These findings provide a framework for interpreting a range of recent experimental studies of ribosome nascent chain complexes and for understanding key aspects of the nature of co-translational folding.
Collapse
Affiliation(s)
- Edward P O'Brien
- Department of Chemistry, Lensfield Road, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
230
|
Ugrinov KG, Clark PL. Cotranslational folding increases GFP folding yield. Biophys J 2010; 98:1312-20. [PMID: 20371331 DOI: 10.1016/j.bpj.2009.12.4291] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/31/2009] [Accepted: 12/04/2009] [Indexed: 10/19/2022] Open
Abstract
Protein sequences evolved to fold in cells, including cotranslational folding of nascent polypeptide chains during their synthesis by the ribosome. The vectorial (N- to C-terminal) nature of cotranslational folding constrains the conformations of the nascent polypeptide chain in a manner not experienced by full-length chains diluted out of denaturant. We are still discovering to what extent these constraints affect later, posttranslational folding events. Here we directly address whether conformational constraints imposed by cotranslational folding affect the partitioning between productive folding to the native structure versus aggregation. We isolated polyribosomes from Escherichia coli cells expressing GFP, analyzed the nascent chain length distribution to determine the number of nascent chains that were long enough to fold to the native fluorescent structure, and calculated the folding yield for these nascent chains upon ribosome release versus the folding yield of an equivalent concentration of full-length, chemically denatured GFP polypeptide chains. We find that the yield of native fluorescent GFP is dramatically higher upon ribosome release of nascent chains versus dilution of full-length chains from denaturant. For kinetically trapped native structures such as GFP, folding correctly the first time, immediately after release from the ribosome, can lead to lifelong population of the native structure, as opposed to aggregation.
Collapse
Affiliation(s)
- Krastyu G Ugrinov
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
231
|
Geyer BC, Kannan L, Cherni I, Woods RR, Soreq H, Mor TS. Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:873-86. [PMID: 20353404 DOI: 10.1111/j.1467-7652.2010.00515.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organophosphorous pesticides and nerve agents inhibit the enzyme acetylcholinesterase at neuronal synapses and in neuromuscular junctions. The resulting accumulation of acetylcholine overwhelms regulatory mechanisms, potentially leading to seizures and death from respiratory collapse. While current therapies are only capable of reducing mortality, elevation of the serum levels of the related enzyme butyrylcholinesterase (BChE) by application of the purified protein as a bioscavenger of organophosphorous compounds is effective in preventing all symptoms associated with poisoning by these toxins. However, BChE therapy requires large quantities of enzyme that can easily overwhelm current sources. Here, we report genetic optimization, cloning and high-level expression of human BChE in plants. Plant-derived BChE is shown to be biochemically similar to human plasma-derived BChE in terms of catalytic activity and inhibitor binding. We further demonstrate the ability of the plant-derived bioscavenger to protect animals against an organophosphorous pesticide challenge.
Collapse
Affiliation(s)
- Brian C Geyer
- School of Life Sciences and The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | | | | | |
Collapse
|
232
|
Lee W, Zeng X, Zhou HX, Bennett V, Yang W, Marszalek PE. Full reconstruction of a vectorial protein folding pathway by atomic force microscopy and molecular dynamics simulations. J Biol Chem 2010; 285:38167-72. [PMID: 20870713 DOI: 10.1074/jbc.m110.179697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During co-translational folding, the nascent polypeptide chain is extruded sequentially from the ribosome exit tunnel and is [corrected] under severe conformational constraints [corrected] dictated by the one-dimensional geometry of the tunnel. [corrected] How do such vectorial constraints impact the folding pathway? Here, we combine single-molecule atomic force spectroscopy and steered molecular dynamics simulations to examine protein folding in the presence of one-dimensional constraints that are similar to those imposed on the nascent polypeptide chain. The simulations exquisitely reproduced the experimental unfolding and refolding force extension relationships and led to the full reconstruction of the vectorial folding pathway of a large polypeptide, the 253-residue consensus ankyrin repeat protein, NI6C. We show that fully stretched and then relaxed NI6C starts folding by the formation of local secondary structures, followed by the nucleation of three N-terminal repeats. This rate-limiting step is then followed by the vectorial and sequential folding of the remaining repeats. However, after partial unfolding, when allowed to refold, the C-terminal repeats successively regain structures without any nucleation step by using the intact N-terminal repeats as a template. These results suggest a pathway for the co-translational folding of repeat proteins and have implications for mechanotransduction.
Collapse
Affiliation(s)
- Whasil Lee
- Center for Biologically Inspired Materials and Material Systems and Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | |
Collapse
|
233
|
Wong EHM, Smith DK, Rabadan R, Peiris M, Poon LLM. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol Biol 2010; 10:253. [PMID: 20723216 PMCID: PMC2933640 DOI: 10.1186/1471-2148-10-253] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/19/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. RESULTS Relative Synonymous Codon Usage (RSCU) values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA). The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus.Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. CONCLUSIONS Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.
Collapse
Affiliation(s)
- Emily H M Wong
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
234
|
Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol 2010; 402:905-18. [PMID: 20727358 DOI: 10.1016/j.jmb.2010.08.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/27/2010] [Accepted: 08/05/2010] [Indexed: 01/21/2023]
Abstract
A quantitative description of the relationship between protein expression levels and open reading frame (ORF) nucleotide sequences is important for understanding natural systems, designing synthetic systems, and optimizing heterologous expression. Codon identity, mRNA secondary structure, and nucleotide composition within ORFs markedly influence expression levels. Bioinformatic analysis of ORF sequences in 816 bacterial genomes revealed that these features show distinct regional trends. To investigate their effects on protein expression, we designed 285 synthetic genes and determined corresponding expression levels in vitro using Escherichia coli extracts. We developed a mathematical function, parameterized using this synthetic gene data set, which enables computation of protein expression levels from ORF nucleotide sequences. In addition to its practical application in the design of heterologous expression systems, this equation provides mechanistic insight into the factors that control translation efficiency. We found that expression is strongly dependent on the presence of high AU content and low secondary structure in the ORF 5' region. Choice of high-frequency codons contributes to a lesser extent. The 3' terminal AU content makes modest, but detectable contributions. We present a model for the effect of these factors on the three phases of ribosomal function: initiation, elongation, and termination.
Collapse
|
235
|
Sabate R, de Groot NS, Ventura S. Protein folding and aggregation in bacteria. Cell Mol Life Sci 2010; 67:2695-715. [PMID: 20358253 PMCID: PMC11115605 DOI: 10.1007/s00018-010-0344-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/19/2010] [Accepted: 03/05/2010] [Indexed: 01/31/2023]
Abstract
Proteins might experience many conformational changes and interactions during their lifetimes, from their synthesis at ribosomes to their controlled degradation. Because, in most cases, only folded proteins are functional, protein folding in bacteria is tightly controlled genetically, transcriptionally, and at the protein sequence level. In addition, important cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of functional structures. When these redundant protective strategies are overcome, misfolded polypeptides are recruited into insoluble inclusion bodies. The protein embedded in these intracellular deposits might display different conformations including functional and beta-sheet-rich structures. The latter assemblies are similar to the amyloid fibrils characteristic of several human neurodegenerative diseases. Interestingly, bacteria exploit the same structural principles for functional properties such as adhesion or cytotoxicity. Overall, this review illustrates how prokaryotic organisms might provide the bedrock on which to understand the complexity of protein folding and aggregation in the cell.
Collapse
Affiliation(s)
- Raimon Sabate
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Natalia S. de Groot
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
236
|
Ridout KE, Dixon CJ, Filatov DA. Positive selection differs between protein secondary structure elements in Drosophila. Genome Biol Evol 2010; 2:166-79. [PMID: 20624723 PMCID: PMC2997536 DOI: 10.1093/gbe/evq008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Different protein secondary structure elements have different physicochemical properties and roles in the protein, which may determine their evolutionary flexibility. However, it is not clear to what extent protein structure affects the way Darwinian selection acts at the amino acid level. Using phylogeny-based likelihood tests for positive selection, we have examined the relationship between protein secondary structure and selection across six species of Drosophila. We find that amino acids that form disordered regions, such as random coils, are far more likely to be under positive selection than expected from their proportion in the proteins, and residues in helices and β-structures are subject to less positive selection than predicted. In addition, it appears that sites undergoing positive selection are more likely than expected to occur close to one another in the protein sequence. Finally, on a genome-wide scale, we have determined that positively selected sites are found more frequently toward the gene ends. Our results demonstrate that protein structures with a greater degree of organization and strong hydrophobicity, represented here as helices and β-structures, are less tolerant to molecular adaptation than disordered, hydrophilic regions, across a diverse set of proteins.
Collapse
Affiliation(s)
- Kate E Ridout
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
237
|
Czech A, Fedyunin I, Zhang G, Ignatova Z. Silent mutations in sight: co-variations in tRNA abundance as a key to unravel consequences of silent mutations. MOLECULAR BIOSYSTEMS 2010; 6:1767-72. [PMID: 20617253 DOI: 10.1039/c004796c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations that alter the amino acid sequence are known to potentially exert deleterious effects on protein function, whereas substitutions of nucleotides without amino acid change are assumed to be neutral for the protein's functionality. However, cumulative evidence suggests that synonymous substitutions might also induce phenotypic variability by affecting splicing accuracy, translation fidelity, and conformation and function of proteins. tRNA isoacceptors mediate the translation of codons to amino acids, and asymmetric tRNA abundance causes variations in the rate of translation of each single triplet. Consequently, the effect of a silent point mutation in the coding region could be significant due to differential abundances of the cognate tRNA(s), emphasizing the importance of precise assessment of tRNA composition. Here, we provide an overview of the methods used to quantitatively determine the concentrations of tRNA species and discuss synonymous mutations in the context of tRNA composition of the cell, thus providing a new twist on the detrimental impact of the silent mutations.
Collapse
Affiliation(s)
- Andreas Czech
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14467 Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
238
|
Saunders R, Deane CM. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res 2010; 38:6719-28. [PMID: 20530529 PMCID: PMC2965230 DOI: 10.1093/nar/gkq495] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Translation of mRNA into protein is a unidirectional information flow process. Analysing the input (mRNA) and output (protein) of translation, we find that local protein structure information is encoded in the mRNA nucleotide sequence. The Coding Sequence and Structure (CSandS) database developed in this work provides a detailed mapping between over 4000 solved protein structures and their mRNA. CSandS facilitates a comprehensive analysis of codon usage over many organisms. In assigning translation speed, we find that relative codon usage is less informative than tRNA concentration. For all speed measures, no evidence was found that domain boundaries are enriched with slow codons. In fact, genes seemingly avoid slow codons around structurally defined domain boundaries. Translation speed, however, does decrease at the transition into secondary structure. Codons are identified that have structural preferences significantly different from the amino acid they encode. However, each organism has its own set of ‘significant codons’. Our results support the premise that codons encode more information than merely amino acids and give insight into the role of translation in protein folding.
Collapse
Affiliation(s)
- Rhodri Saunders
- Department of Statistics, Oxford University, 1 South Parks Road, Oxford OX1 3TG, UK.
| | | |
Collapse
|
239
|
Zhang G, Fedyunin I, Miekley O, Valleriani A, Moura A, Ignatova Z. Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res 2010; 38:4778-87. [PMID: 20360046 PMCID: PMC2919707 DOI: 10.1093/nar/gkq196] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translation of genetic information according to the sequence of the mRNA template occurs with high accuracy and fidelity. Critical events in each single step of translation are selection of transfer RNA (tRNA), codon reading and tRNA-regeneration for a new cycle. We developed a model that accurately describes the dynamics of single elongation steps, thus providing a systematic insight into the sensitivity of the mRNA translation rate to dynamic environmental conditions. Alterations in the concentration of the aminoacylated tRNA can transiently stall the ribosomes during translation which results, as suggested by the model, in two outcomes: either stress-induced change in the tRNA availability triggers the premature termination of the translation and ribosomal dissociation, or extensive demand for one tRNA species results in a competition between frameshift to an aberrant open-reading frame and ribosomal drop-off. Using the bacterial Escherichia coli system, we experimentally draw parallels between these two possible mechanisms.
Collapse
Affiliation(s)
- Gong Zhang
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
240
|
Ito K, Chiba S, Pogliano K. Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun 2010; 393:1-5. [PMID: 20117091 DOI: 10.1016/j.bbrc.2010.01.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have identified several amino acid sequences that interact with the ribosomal interior components and arrest their own elongation. Whereas stalling of the inducible class depends on specific low-molecular weight compounds, that of the intrinsic class is released when the nascent chain is transported across or inserted into the membrane. The stalled ribosome alters messenger RNA secondary structure and thereby contributes to regulation of the cis-located target gene expression at different levels. The stalling sequences are divergent but likely to utilize non-uniform nature of the peptide bond formation reactions and are recruited relatively recently to different biological systems, possibly including those to be identified in forthcoming studies.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | | | |
Collapse
|
241
|
Pechmann S, Vendruscolo M. Derivation of a solubility condition for proteins from an analysis of the competition between folding and aggregation. MOLECULAR BIOSYSTEMS 2010; 6:2490-7. [DOI: 10.1039/c005160h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
242
|
Frugier M, Bour T, Ayach M, Santos MAS, Rudinger-Thirion J, Théobald-Dietrich A, Pizzi E. Low Complexity Regions behave as tRNA sponges to help co-translational folding of plasmodial proteins. FEBS Lett 2009; 584:448-54. [PMID: 19900443 DOI: 10.1016/j.febslet.2009.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
In most organisms, the information necessary to specify the native 3D-structures of proteins is encoded in the corresponding mRNA sequences. Translational accuracy and efficiency are coupled and sequences that are slowly translated play an essential role in the concomitant folding of protein domains. Here, we suggest that the well-known mechanisms for the regulation of translational efficiency, which involves mRNA structure and/or asymmetric tRNA abundance, do not apply to all organisms. We propose that Plasmodium, the parasite responsible for malaria, uses an alternative strategy to slow down ribosomal speed and avoid multidomain protein misfolding during translation. In our model, the abundant Low Complexity Regions present in Plasmodium proteins replace the codon preferences, which influence the assembly of protein secondary structures.
Collapse
Affiliation(s)
- Magali Frugier
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
243
|
Feige MJ, Hendershot LM, Buchner J. How antibodies fold. Trends Biochem Sci 2009; 35:189-98. [PMID: 20022755 DOI: 10.1016/j.tibs.2009.11.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
B cells use unconventional strategies for the production of a seemingly unlimited number of antibodies from a very limited amount of DNA. These methods dramatically increase the likelihood of producing proteins that cannot fold or assemble appropriately. B cells are therefore particularly dependent on 'quality control' mechanisms to oversee antibody production. Recent in vitro experiments demonstrate that Ig domains have evolved diverse folding strategies ranging from robust spontaneous folding to intrinsically disordered domains that require assembly with their partner domains to fold; in vivo experiments reveal that these different folding characteristics form the basis for cellular checkpoints in Ig transport. Taken together, these reports provide a detailed understanding of how B cells monitor and ensure the functional fidelity of Ig proteins.
Collapse
Affiliation(s)
- Matthias J Feige
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
244
|
Clark PL, Ugrinov KG. Measuring cotranslational folding of nascent polypeptide chains on ribosomes. Methods Enzymol 2009; 466:567-90. [PMID: 21609877 DOI: 10.1016/s0076-6879(09)66024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein folding has been studied extensively in vitro, but much less is known about how folding proceeds in vivo. A particular distinction of folding in vivo is that folding begins while the nascent polypeptide chain is still undergoing synthesis by the ribosome. Studies of cotranslational protein folding are inherently much more complex than classical in vitro protein folding studies, and historically there have been few methods available to produce the quantities of pure material required for biophysical studies of the nascent chain, or assays to specifically interrogate its conformation. However, the past few years have produced dramatic methodological advances, which now place cotranslational folding studies within reach of more biochemists, enabling a detailed comparison of the earliest stages of protein folding on the ribosome to the wealth of information available for the refolding of full-length polypeptide chains in vitro.
Collapse
Affiliation(s)
- Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
245
|
|
246
|
Puertas JM, Betton JM. Engineering an efficient secretion of leech carboxypeptidase inhibitor in Escherichia coli. Microb Cell Fact 2009; 8:57. [PMID: 19874597 PMCID: PMC2775724 DOI: 10.1186/1475-2859-8-57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/29/2009] [Indexed: 11/11/2022] Open
Abstract
Background Despite advances in expression technologies, the efficient production of heterologous secreted proteins in Escherichia coli remains a challenge. One frequent limitation relies on their inability to be exported to the E. coli periplasm. However, recent studies have suggested that translational kinetics and signal sequences act in concert to modulate the export process. Results In order to produce leech carboxypeptidase inhibitor (LCI) in the bacterial periplasm, we compared expression of the natural and optimized gene sequences, and evaluated export efficiency of LCI fused to different signal sequences. The best combination of these factors acting on translation and export was obtained when the signal sequence of DsbA was fused to an E. coli codon-optimized mature LCI sequence. When tested in high cell density cultures, the protein was primarily found in the growth medium. Under these conditions, the engineered expression system yields over 470 mg.l-1 of purified active LCI. Conclusion These results support the hypothesis that heterologous secreted proteins require proper coupling between translation and translocation for optimal high-level production in E. coli.
Collapse
Affiliation(s)
- Juan-Miguel Puertas
- Unité de Biochimie Structurale, Institut Pasteur, URA-CNRS 2185, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
247
|
Hsu STD, Blaser G, Jackson SE. The folding, stability and conformational dynamics of beta-barrel fluorescent proteins. Chem Soc Rev 2009; 38:2951-65. [PMID: 19771338 DOI: 10.1039/b908170b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review describes our current knowledge on the folding, stability and conformational dynamics of fluorescent proteins (FPs). The biophysical studies that have led to the elucidation of many of the key features of the complex energy landscape for folding for GFP and its variants are discussed. These illustrate some important issues surrounding how the large beta-barrel structure forms, and will be of interest to the protein folding community. In addition, the review highlights the importance of some of these results for the use of FPs in in vivo applications. The results should facilitate and aid in experimental designs of in vivo applications, as well as the interpretation of in vivo experimental data. The review is therefore of interest to all those working with FPs in vivo (103 references).
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | |
Collapse
|
248
|
Analysis of riboswitch structure and function by an energy landscape framework. J Mol Biol 2009; 393:993-1003. [PMID: 19733179 DOI: 10.1016/j.jmb.2009.08.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/15/2009] [Accepted: 08/27/2009] [Indexed: 01/15/2023]
Abstract
The thiamine pyrophosphate (TPP) riboswitch employs modular domains for binding TPP to form a platform for gene expression regulation. Specifically, TPP binding triggers a conformational switch in the RNA from a transcriptionally active "on" state to an inactive "off" state that concomitantly causes the formation of a terminator hairpin and halting of transcription. Here, clustering analysis of energy landscapes at different nucleotide lengths suggests a novel computational tool for analysis of the mechanics of transcription elongation in the presence or absence of the ligand. Namely, we suggest that the riboswitch's kinetics are tightly governed by a length-dependent switch, whereby the energy landscape has two clusters available during transcription elongation and where TPP's binding shifts the preference to one form. Significantly, the biologically active and inactive structures determined experimentally matched well the structures predominant in each computational set. These clustering/structural analyses combined with modular computational design suggest design principles that exploit the above features to analyze as well as create new functions and structures of RNA systems.
Collapse
|
249
|
Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Swanstrom R, Burch CL, Weeks KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009; 460:711-6. [PMID: 19661910 PMCID: PMC2724670 DOI: 10.1038/nature08237] [Citation(s) in RCA: 620] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/22/2009] [Indexed: 02/08/2023]
Abstract
Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common cold, cancer, AIDS and other serious health threats. Viral replication is regulated at many levels, including the use of conserved genomic RNA structures. Most potential regulatory elements in viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The genome encodes protein structure at two levels. In addition to the correspondence between RNA and protein primary sequences, a correlation exists between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins. This correlation suggests that RNA structure modulates ribosome elongation to promote native protein folding. Some simple genome elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, are components of larger RNA motifs. We also identify organizational principles for unstructured RNA regions, including splice site acceptors and hypervariable regions. These results emphasize that the HIV-1 genome and, potentially, many coding RNAs are punctuated by previously unrecognized regulatory motifs and that extensive RNA structure constitutes an important component of the genetic code.
Collapse
Affiliation(s)
- Joseph M Watts
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Zhang G, Ignatova Z. Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS One 2009; 4:e5036. [PMID: 19343177 PMCID: PMC2661179 DOI: 10.1371/journal.pone.0005036] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 03/03/2009] [Indexed: 11/27/2022] Open
Abstract
Synonymous codon usage and variations in the level of isoaccepting tRNAs exert a powerful selective force on translation fidelity. We have developed an algorithm to evaluate the relative rate of translation which allows large-scale comparisons of the non-uniform translation rate on the protein biogenesis. Using the complete genomes of Escherichia coli and Bacillus subtilis we show that stretches of codons pairing to minor tRNAs form putative sites to locally attenuate translation; thereby the tendency is to cluster in near proximity whereas long contiguous stretches of slow-translating triplets are avoided. The presence of slow-translating segments positively correlates with the protein length irrespective of the protein abundance. The slow-translating clusters are predominantly located down-stream of the domain boundaries presumably to fine-tune translational accuracy with the folding fidelity of multidomain proteins. Translation attenuation patterns at highly structurally and functionally conserved domains are preserved across the species suggesting a concerted selective pressure on the codon selection and species-specific tRNA abundance in these regions.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Zoya Ignatova
- Department of Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|