201
|
Lyu K, Chen SB, Chan CY, Tan JH, Kwok CK. Structural analysis and cellular visualization of APP RNA G-quadruplex. Chem Sci 2019; 10:11095-11102. [PMID: 32206258 PMCID: PMC7069244 DOI: 10.1039/c9sc02768h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
RNA G-quadruplexes (rG4s) are emerging structural motifs that are of pivotal importance in chemistry and biology; however, the current structural information of rG4s is limited, with their folding status and functions in cells remaining elusive. Here, we develop and employ a multi-disciplinary approach to characterize the structure, formation and function of an individual rG4 of interest in vitro and in cells. We apply this strategy to a biologically important rG4 in amyloid precursor protein (APP) transcript and reveal distinct structural features of APP rG4. Notably, we visualize the formation of APP rG4 in cells using an APP-specific G-quadruplex-triggered fluorogenic hybridization (GTFH) probe and report that the regulatory role of APP rG4 in translation is dependent on rG4 thermostability, providing evidence to the existence and significance of the stable rG4 structure in gene regulation.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry , City University of Hong Kong , Kowloon Tong , Hong Kong SAR , China .
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences , Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-sen University , Guangzhou , 510006 China .
| | - Chun-Yin Chan
- Department of Chemistry , City University of Hong Kong , Kowloon Tong , Hong Kong SAR , China .
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences , Guangdong Provincial Key Laboratory of New Drug Design and Evaluation , Sun Yat-sen University , Guangzhou , 510006 China .
| | - Chun Kit Kwok
- Department of Chemistry , City University of Hong Kong , Kowloon Tong , Hong Kong SAR , China .
| |
Collapse
|
202
|
Butovskaya E, Soldà P, Scalabrin M, Nadai M, Richter SN. HIV-1 Nucleocapsid Protein Unfolds Stable RNA G-Quadruplexes in the Viral Genome and Is Inhibited by G-Quadruplex Ligands. ACS Infect Dis 2019; 5:2127-2135. [PMID: 31646863 PMCID: PMC6909241 DOI: 10.1021/acsinfecdis.9b00272] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The G-quadruplexes that form in the
HIV-1 RNA genome hinder progression
of reverse transcriptase
in vitro, but not in infected cells. We investigated the possibility
that the HIV-1 nucleocapsid protein NCp7, which remains associated
with the viral RNA during reverse transcription, modulated HIV-1 RNA
G-quadruplex stability. By electrophoresis, circular dichroism, mass
spectrometry, and reverse transcriptase stop assays, we demonstrated
that NCp7 binds and unfolds the HIV-1 RNA G-quadruplexes and promotes
DNA/RNA duplex formation, allowing reverse transcription to proceed.
The G-quadruplex ligand BRACO-19 was able to partially counteract
this effect. These results indicate NCp7 as the first known viral
protein able to unfold RNA G-quadruplexes, and they explain how the
extra-stable HIV-1 RNA G-quadruplexes are processed; they also point
out that the reverse transcription process is hindered by G-quadruplex
ligands at both reverse transcriptase and NCp7 level. This information
can lead to the development of more effective anti-HIV-1 drugs with
a new mechanism of action.
Collapse
Affiliation(s)
- Elena Butovskaya
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
203
|
Shioda N, Yabuki Y, Asamitsu S. [The potential of G-quadruplexes as a therapeutic target for neurological diseases]. Nihon Yakurigaku Zasshi 2019; 154:294-300. [PMID: 31787679 DOI: 10.1254/fpj.154.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most common form of DNA is a right-handed helix, the B-form DNA. DNA can also adopt a variety of alternative conformations, termed non-B-form DNA secondary structures, including the G-quadruplex (G4). Furthermore, non-canonical RNA G4 secondary structures are also observed. Recent bioinformatics analysis revealed genomic positions of G4. In addition, G4 formation may be associated with various biological functions, including DNA replication, transcription, epigenetic modification, and RNA metabolism. In this review, we focus on G4 structures in neuronal functions, which may have important roles reveal mechanisms underlying neurological disorders. In addition, we discuss the potential of G4s as a therapeutic target for neurological diseases.
Collapse
Affiliation(s)
- Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University
| |
Collapse
|
204
|
David AP, Pipier A, Pascutti F, Binolfi A, Weiner AMJ, Challier E, Heckel S, Calsou P, Gomez D, Calcaterra NB, Armas P. CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Res 2019; 47:7901-7913. [PMID: 31219592 PMCID: PMC6735679 DOI: 10.1093/nar/gkz527] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.
Collapse
Affiliation(s)
- Aldana P David
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Emilse Challier
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Sofía Heckel
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| |
Collapse
|
205
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
206
|
Afanasyeva A, Nagao C, Mizuguchi K. Prediction of the secondary structure of short DNA aptamers. Biophys Physicobiol 2019; 16:287-294. [PMID: 31984183 PMCID: PMC6975895 DOI: 10.2142/biophysico.16.0_287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Aptamers have a spectrum of applications in biotechnology and drug design, because of the relative simplicity of experimental protocols and advantages of stability and specificity associated with their structural properties. However, to understand the structure-function relationships of aptamers, robust structure modeling tools are necessary. Several such tools have been developed and extensively tested, although most of them target various forms of biological RNA. In this study, we tested the performance of three tools in application to DNA aptamers, since DNA aptamers are the focus of many studies, particularly in drug discovery. We demonstrated that in most cases, the secondary structure of DNA can be reconstructed with acceptable accuracy by at least one of the three tools tested (Mfold, RNAfold, and CentroidFold), although the G-quadruplex motif found in many of the DNA aptamer structures complicates the prediction, as well as the pseudoknot interaction. This problem should be addressed more carefully to improve prediction accuracy.
Collapse
Affiliation(s)
- Arina Afanasyeva
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Chioko Nagao
- Laboratory of In-silico Drug Design, Center for Drug Design Research (CDDR), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Laboratory of In-silico Drug Design, Center for Drug Design Research (CDDR), National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
207
|
Bošković F, Zhu J, Chen K, Keyser UF. Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores. NANO LETTERS 2019; 19:7996-8001. [PMID: 31577148 DOI: 10.1021/acs.nanolett.9b03184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-quadruplexes (Gqs) are guanine-rich DNA structures formed by single-stranded DNA. They are of paramount significance to gene expression regulation, but also drug targets for cancer and human viruses. Current ensemble and single-molecule methods require fluorescent labels, which can affect Gq folding kinetics. Here we introduce, a single-molecule Gq nanopore assay (smGNA) to detect Gqs and kinetics of Gq formation. We use ∼5 nm solid-state nanopores to detect various Gq structural variants attached to designed DNA carriers. Gqs can be identified by localizing their positions along designed DNA carriers, establishing smGNA as a tool for Gq mapping. In addition, smGNA allows for discrimination of (un)folded Gq structures, provides insights into single-molecule kinetics of Gq folding, and probes quadruplex-to-duplex structural transitions. smGNA can elucidate the formation of Gqs at the single-molecule level without labeling and has potential implications on the study of these structures both in single-stranded DNA and in genomic samples.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thompson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
208
|
Benabou S, Mazzini S, Aviñó A, Eritja R, Gargallo R. A pH-dependent bolt involving cytosine bases located in the lateral loops of antiparallel G-quadruplex structures within the SMARCA4 gene promotor. Sci Rep 2019; 9:15807. [PMID: 31676783 PMCID: PMC6825181 DOI: 10.1038/s41598-019-52311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Some lung and ovarian tumors are connected to the loss of expression of SMARCA4 gene. In its promoter region, a 44-nucleotides long guanine sequence prone to form G-quadruplex structures has been studied by means of spectroscopic techniques (circular dichroism, molecular absorption and nuclear magnetic resonance), size exclusion chromatography and multivariate analysis. The results have shown that the central 21-nucleotides long sequence comprising four guanine tracts of disparate length is able to fold into a pH-dependent ensemble of G-quadruplex structures. Based on acid-base titrations and melting experiments of wild and mutated sequences, the formation of a C·C+ base pair between cytosine bases present at the two lateral loops is shown to promote a reduction in conformational heterogeneity, as well as an increase in thermal stability. The formation of this base pair is characterized by a pKa value of 7.1 ± 0.2 at 20 °C and 150 mM KCl. This value, higher than those usually found in i-motif structures, is related to the additional stability provided by guanine tetrads in the G-quadruplex. To our knowledge, this is the first thermodynamic description of this base pair in loops of antiparallel G-quadruplex structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
209
|
Ravichandran S, Ahn JH, Kim KK. Unraveling the Regulatory G-Quadruplex Puzzle: Lessons From Genome and Transcriptome-Wide Studies. Front Genet 2019; 10:1002. [PMID: 31681431 PMCID: PMC6813735 DOI: 10.3389/fgene.2019.01002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4s) are among the best-characterized DNA secondary structures and are enriched in regulatory regions, especially promoters, of several prokaryote and eukaryote genomes, indicating a possible role in cis regulation of genes. Many studies have focused on evaluating the impact of specific G4-forming sequences in the promoter regions of genes. However, the lack of correlation between the presence of G4s and the functional impact on cis gene regulation, evidenced by the variable expression fold change in the presence of G4 stabilizers, shows that not all G4s affect transcription in the same manner. This indicates that the regulatory effect of the G4 is significantly influenced by its position, the surrounding DNA topology, and other environmental factors within the cell. In this review, we compare individual gene studies with high-throughput differential expression studies to highlight the importance of formulating a combined approach that can be applied in humans, bacteria, and viruses to better understand the effect of G4-mediated gene regulation.
Collapse
Affiliation(s)
- Subramaniyam Ravichandran
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
210
|
Revealing conformational dynamics of 2'-O-methyl-RNA guanine modified G-quadruplex by replica exchange molecular dynamics. Biochem Biophys Res Commun 2019; 520:14-19. [PMID: 31564415 DOI: 10.1016/j.bbrc.2019.09.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Thrombin-binding DNA aptamer (TBA) can fold into an antiparallel unimolecular G-quadruplex (G4) structure. Different types of modifications lead to various effects on the structure and stability of the G4 structure. Previous study has shown that a modified TBA (mTBA) that 2'-deoxy guanine (dG) at positions 10 and 11 in the TBA sequence were replaced by 2'-O-methyl-RNA guanine (2'OMe-G) can't fold into a well-defined G4 structure. In order to investigate the detailed structural information and probe the instability factors, we successfully employed the replica exchange molecular dynamics (REMD) to characterize the large conformational variations of the mTBA and systemically describe the influences of the 2'OMe-G on the mTBA in terms of conformation variations and the probability distributions of Hoogsteen hydrogen bonds, dihedral, sugar pucker and glycosyl torsion angle. Replacing position 10 with the 2'OMe-G (2'OMe-G10) induced a strong destabilization of the aptamer, while the 2'OMe-G at position 11(2'OMe-G11) was less destabilizing. More importantly, the glycosyl torsion angle and sugar pucker of 2'OMe-G10 were the most critical destabilization factors. These results were in good agreement with the theoretical and experimental results. Moreover, the structure information can be used as guidelines for the further design of modifications on G4 structure.
Collapse
|
211
|
Hou Y, Li F, Zhang R, Li S, Liu H, Qin ZS, Sun X. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Epigenetics 2019; 14:894-911. [PMID: 31177910 PMCID: PMC6691997 DOI: 10.1080/15592294.2019.1621140] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
DNA molecules are highly compacted in the eukaryotic nucleus where distal regulatory elements reach their targets through three-dimensional chromosomal interactions. G-quadruplexes, stable four-stranded non-canonical DNA structures, can change local chromatin organization through the exclusion of nucleosomes. However, the relationship between G-quadruplexes and higher-order genome organization remains unknown. Here, we found that G-quadruplexes are significantly enriched at boundaries of topological associated domains (TADs). Architectural protein occupancy, which plays critical roles in the formation of TADs, was highly correlated with the content of G-quadruplexes at TAD boundaries. Moreover, adjacent boundaries containing G-quadruplexes frequently interacted with each other because of the high enrichment of architectural protein binding sites. Similar to CCCTC-binding factor (CTCF) binding sites, G-quadruplexes also showed strong insulation ability in the separation of adjacent regions. Additionally, the insulation ability of CTCF binding sites and TAD boundaries was significantly reinforced by G-quadruplexes. Furthermore, G-quadruplex motifs on different strands were associated with the orientation of CTCF binding sites. These findings suggest a potential role for G-quadruplexes in loop extrusion. The enrichment of transcription factor binding sites (TFBSs) around regulatory elements containing G-quadruplexes led to frequent interactions between regulatory elements containing G-quadruplexes. Intriguingly, more than 99% of G-quadruplexes overlapped with TFBSs. The binding sites of CTCF and cohesin proteins were preferentially located surrounding G-quadruplexes. Accordingly, we proposed a new mechanism of long-distance gene regulation in which G-quadruplexes are involved in distal interactions between enhancers and promoters.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Fuyu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhaohui S. Qin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
212
|
Pandith A, Siddappa RG, Seo YJ. Recent developments in novel blue/green/red/NIR small fluorescent probes for in cellulo tracking of RNA/DNA G-quadruplexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
213
|
Nakano SI, Ayusawa T, Tanino Y, Sugimoto N. Stabilization of DNA Loop Structures by Large Cations. J Phys Chem B 2019; 123:7687-7694. [PMID: 31465227 DOI: 10.1021/acs.jpcb.9b06074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DNA-binding properties of large cations differ from those of metal ions due to steric exclusion from base-paired regions. In this study, the thermal stability of DNA secondary structures, including duplexes, internal loops, bulge loops, hairpin loops, dangling ends, and G-quadruplexes, was investigated in the presence of cations of different sizes. Large cations, such as tetrabutylammonium and tetrapentylammonium ions, reduced the stability of fully matched duplexes but increased the stability of duplexes with a long loop. The cations also increased the stability of G-quadruplexes with a long loop, and the degree of stabilization was greater for low-stability G-quadruplexes. Analysis of the salt concentration dependence indicates that large cations bind to the loop nucleotides, leading to counteracting the destabilization effect on base pairing. It is likely that binding occurs when loop nucleotides are sufficiently flexible to allow for greater accessibility for large cations. These results provide insight into nucleic acid interactions with large cationic molecules and suggest a potential method for stabilizing noncanonical DNA structures under intracellular conditions.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Toshiya Ayusawa
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Yuichi Tanino
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan.,Frontier Institute for Biomolecular Engineering Research (FIBER) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| |
Collapse
|
214
|
Hognon C, Gebus A, Barone G, Monari A. Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes. Antioxidants (Basel) 2019; 8:antiox8090337. [PMID: 31443537 PMCID: PMC6770428 DOI: 10.3390/antiox8090337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023] Open
Abstract
By using all atom molecular dynamics simulations, we studied the behavior of human DNA telomere sequences in guanine quadruplex (G4) conformation and in the presence of oxidative lesions, namely abasic sites. In particular, we evidenced that while removing one guanine base induces a significant alteration and destabilization of the involved leaflet, human telomere oligomers tend, in most cases, to maintain at least a partial quadruplex structure, eventually by replacing the empty site with undamaged guanines of different leaflets. This study shows that (i) the disruption of the quadruplex leaflets induces the release of at least one of the potassium cations embedded in the quadruplex channel and that (ii) the electrostatic interactions of the DNA sequence with the aforementioned cations are fundamental to the maintenance of the global quadruplex structure.
Collapse
Affiliation(s)
- Cecilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Adrien Gebus
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France
| | - Giampaolo Barone
- Department of Biological, Chenical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
215
|
Zok T, Antczak M, Zurkowski M, Popenda M, Blazewicz J, Adamiak RW, Szachniuk M. RNApdbee 2.0: multifunctional tool for RNA structure annotation. Nucleic Acids Res 2019; 46:W30-W35. [PMID: 29718468 PMCID: PMC6031003 DOI: 10.1093/nar/gky314] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/14/2018] [Indexed: 01/07/2023] Open
Abstract
In the field of RNA structural biology and bioinformatics, an access to correctly annotated RNA structure is of crucial importance, especially in the secondary and 3D structure predictions. RNApdbee webserver, introduced in 2014, primarily aimed to address the problem of RNA secondary structure extraction from the PDB files. Its new version, RNApdbee 2.0, is a highly advanced multifunctional tool for RNA structure annotation, revealing the relationship between RNA secondary and 3D structure given in the PDB or PDBx/mmCIF format. The upgraded version incorporates new algorithms for recognition and classification of high-ordered pseudoknots in large RNA structures. It allows analysis of isolated base pairs impact on RNA structure. It can visualize RNA secondary structures—including that of quadruplexes—with depiction of non-canonical interactions. It also annotates motifs to ease identification of stems, loops and single-stranded fragments in the input RNA structure. RNApdbee 2.0 is implemented as a publicly available webserver with an intuitive interface and can be freely accessed at http://rnapdbee.cs.put.poznan.pl/
Collapse
Affiliation(s)
- Tomasz Zok
- Institute of Computing Science, and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.,Poznan Supercomputing and Networking Center, Jana Pawla II 10, 61-139 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science, and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Michal Zurkowski
- Institute of Computing Science, and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Computing Science, and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
216
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
217
|
Waldron JA, Raza F, Le Quesne J. eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes. Nucleic Acids Res 2019; 46:3075-3087. [PMID: 29471358 PMCID: PMC5888628 DOI: 10.1093/nar/gky108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
Increased activity of the mRNA helicase eIF4A drives cellular malignancy by reprogramming cellular translation, and eIF4A activity is the direct or indirect target of many emerging cancer therapeutics. The enriched presence of (GGC)4 motifs, which have the potential to fold into two-layered G-quadruplexes, within the 5'UTRs of eIF4A-dependent mRNAs suggests that eIF4A is required for the unwinding of these structures within these eIF4A-controlled mRNAs. However, the existence of folded G-quadruplexes within cells remains controversial, and G-quadruplex folding is in direct competition with classical Watson-Crick based secondary structures. Using a combination of reverse transcription stalling assays and 7-deazaguanine incorporation experiments we find that (GGC)4 motifs preferentially form classical secondary structures rather than G-quadruplexes in full-length mRNAs. Furthermore, using translation assays with the eIF4A inhibitor hippuristanol, both in vitro and in cells, we find that eIF4A activity alleviates translational repression of mRNAs with 5'UTR classical secondary structures significantly more than those with folded G-quadruplexes. This was particularly evident in experiments using a G-quadruplex stabilizing ligand, where shifting the structural equilibrium in favour of G-quadruplex formation diminishes eIF4A-dependency. This suggests that enrichment of (GGC)4 motifs in the 5'UTRs of eIF4A-dependent mRNAs is due to the formation of stable hairpin structures rather than G-quadruplexes.
Collapse
Affiliation(s)
| | | | - John Le Quesne
- MRC Toxicology Unit, Leicester, UK.,Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
218
|
Abstract
G-quadruplex DNAzymes are short DNA aptamers with repeating G4 quartets bound in a non-covalent complex with hemin. These G4/Hemin structures exhibit versatile peroxidase-like catalytic activity with a wide range of potential applications in biosensing and biotechnology. Current efforts are aimed at gaining a better understanding of the molecular mechanism of DNAzyme catalysis as well as devising strategies for improving their catalytic efficiency. Multimerisation of discrete units of G-quadruplexes to form multivalent DNAzyes is an emerging design strategy aimed at enhancing the peroxidase activities of DNAzymes. While this approach holds promise of generating more active multivalent G-quadruplex DNAzymes, few examples have been studied and it is not clear what factors determine the enhancement of catalytic activities of multimeric DNAzymes. In this study, we report the design and characterisation of multimers of five G-quadruplex sequences (AS1411, Bcl-2, c-MYC, PS5.M and PS2.M). Our results show that multimerisation of G-quadruplexes that form parallel structure (AS1411, Bcl-2, c-MYC) leads to significant rate enhancements characteristic of cooperative and/or synergistic interactions between the monomeric units. In contrast, multimerisation of DNA sequences that form non-parallel structures (PS5.M and PS2.M) did not exhibit similar levels of synergistic increase in activities. These results show that design of multivalent G4/Hemin structures could lead to a new set of versatile and efficient DNAzymes with enhanced capacity to catalyse peroxidase-mimic reactions.
Collapse
|
219
|
Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019; 81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB). In addition, secondary structures also further accumulate upon DSB formation. Here we discuss the potential functions of pre-existing or de novo formed nucleic acid structures, as bona fide repair intermediates or repair roadblocks, especially during Transcription-Coupled DNA Double-Strand Break repair (TC-DSBR), and provide an update on the specialized protein complexes displaying the ability to remove these structures to safeguard genome integrity.
Collapse
|
220
|
Umar MI, Ji D, Chan CY, Kwok CK. G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules 2019; 24:E2416. [PMID: 31262059 PMCID: PMC6650947 DOI: 10.3390/molecules24132416] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023] Open
Abstract
Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles in various cellular events in both macro- and micro-organisms. The identification and characterization of G4s can help to understand their different biological roles and potential applications in diagnosis and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4 fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly identified in DNA and RNA aptamers against targets that include proteins and small molecules, which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent development of G4-containing aptamers and highlight their applications in biosensing, bioimaging, and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent turn-on ligands and G4-containing aptamers.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Danyang Ji
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
221
|
Ihmels H, Karbasiyoun M, Löhl K, Stremmel C. Structural flexibility versus rigidity of the aromatic unit of DNA ligands: binding of aza- and azoniastilbene derivatives to duplex and quadruplex DNA. Org Biomol Chem 2019; 17:6404-6413. [PMID: 31225566 DOI: 10.1039/c9ob00809h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The known azastilbene (E)-1,2-di(quinolin-3-yl)ethane (2a) and the novel azoniastilbene derivatives (E)-2-(2-(naphthalen-2-yl)vinyl)quinolizinium (2b) and (E)-3,3'-(ethane-1,2-diyl)bis(1-methylquinolinin-1-ium) (2c) were synthesized. Their interactions with duplex and quadruplex DNA (G4-DNA) were studied by photometric, fluorimetric, polarimetric and flow-LD analysis, and by thermal DNA denaturation studies, as well as by 1H-NMR spectroscopy. The main goal of this study was a comparison of these conformationally flexible compounds with the known G4-DNA-binding diazoniadibenzo[b,k]chrysenes, that have a comparable π-system extent, but a rigid structure. We have observed that the aza- and azoniastilbene derivatives 2a-c, i.e. compounds with almost the same spatial dimensions and steric demand, bind to DNA with an affinity and selectivity that depends significantly on the number of positive charges. Whereas the charge neutral derivative 2a binds unspecifically to the DNA backbone of duplex DNA, the ionic compounds 2b and 2c are typical DNA intercalators. Notably, the bis-quinolinium derivative 2c binds to G4-DNA with moderate affinity (Kb = 4.8 × 105 M-1) and also stabilizes the G4-DNA towards thermal denaturation (ΔTm = 11 °C at ligand-DNA ratio = 5.0). Strikingly, the corresponding rigid counterpart, 4a,12a-diazonia-8,16-dimethyldibenzo[b,k]chrysene, stabilizes the G4-DNA to an even greater extent under identical conditions (ΔTm = 27 °C). These results indicate that the increased flexibility of a G4-DNA ligand does not necessarily lead to stronger interactions with the G4-DNA as compared with rigid ligands that have essentially the same size and π system extent.
Collapse
Affiliation(s)
- H Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - M Karbasiyoun
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - K Löhl
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - C Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
222
|
Kim SK, Lormand JD, Weiss CA, Eger KA, Turdiev H, Turdiev A, Winkler WC, Sondermann H, Lee VT. A dedicated diribonucleotidase resolves a key bottleneck for the terminal step of RNA degradation. eLife 2019; 8:46313. [PMID: 31225796 PMCID: PMC6613908 DOI: 10.7554/elife.46313] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness. However, the molecular basis of Orn's unique cellular function remained unclear. Here, we show that Orn exhibits exquisite substrate preference for diribonucleotides. Crystal structures of substrate-bound Orn reveal an active site optimized for diribonucleotides. While other cellular RNases process oligoribonucleotides down to diribonucleotide entities, Orn is the one and only diribonucleotidase that completes the terminal step of RNA degradation. Together, our studies indicate RNA degradation as a step-wise process with a dedicated enzyme for the clearance of a specific intermediate pool, diribonucleotides, that affects cellular physiology and viability.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Justin D Lormand
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Karin A Eger
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
223
|
Perspectives for Applying G-Quadruplex Structures in Neurobiology and Neuropharmacology. Int J Mol Sci 2019; 20:ijms20122884. [PMID: 31200506 PMCID: PMC6627371 DOI: 10.3390/ijms20122884] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
The most common form of DNA is a right-handed helix or the B-form DNA. DNA can also adopt a variety of alternative conformations, non-B-form DNA secondary structures, including the DNA G-quadruplex (DNA-G4). Furthermore, besides stem-loops that yield A-form double-stranded RNA, non-canonical RNA G-quadruplex (RNA-G4) secondary structures are also observed. Recent bioinformatics analysis of the whole-genome and transcriptome obtained using G-quadruplex–specific antibodies and ligands, revealed genomic positions of G-quadruplexes. In addition, accumulating evidence pointed to the existence of these structures under physiologically- and pathologically-relevant conditions, with functional roles in vivo. In this review, we focused on DNA-G4 and RNA-G4, which may have important roles in neuronal function, and reveal mechanisms underlying neurological disorders related to synaptic dysfunction. In addition, we mention the potential of G-quadruplexes as therapeutic targets for neurological diseases.
Collapse
|
224
|
Lages A, Proud CG, Holloway JW, Vorechovsky I. Thioflavin T Monitoring of Guanine Quadruplex Formation in the rs689-Dependent INS Intron 1. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:770-777. [PMID: 31150930 PMCID: PMC6539410 DOI: 10.1016/j.omtn.2019.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022]
Abstract
The human proinsulin gene (INS) contains a thymine-to-adenine variant (rs689) located in the 3′ splice site (3′ ss) recognition motif of the first intron. The adenine at rs689 is strongly associated with type 1 diabetes. By weakening the polypyrimidine tract, the adenine allele reduces the efficiency of intron 1 splicing, which can be ameliorated by antisense oligonucleotides blocking a splicing silencer located upstream of the 3′ ss. The silencer is surrounded by guanine-rich tracts that may form guanine quadruplexes (G4s) and modulate the accessibility of the silencer. Here, we employed thioflavin T (ThT) to monitor G4 formation in synthetic DNAs and RNAs derived from INS intron 1. We show that the antisense target is surrounded by ThT-positive segments in each direction, with oligoribonucleotides exhibiting consistently higher fluorescence than their DNA counterparts. The signal was reduced for ThT-positive oligonucleotides that were extended into the silencer, indicating that flanking G4s have a potential to mask target accessibility. Real-time monitoring of ThT fluorescence during INS transcription in vitro revealed a negative correlation with ex vivo splicing activities of corresponding INS constructs. Together, these results provide a better characterization of antisense targets in INS primary transcripts for restorative strategies designed to improve the INS splicing defect associated with type 1 diabetes.
Collapse
Affiliation(s)
- Ana Lages
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Christopher G Proud
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK; Lifelong Health and Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John W Holloway
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK.
| |
Collapse
|
225
|
Yu Y, Zhou Y, Zhu M, Liu M, Zhu H, Chen Y, Su G, Chen W, Peng H. Programming a split G-quadruplex in a DNA nanocage and its microRNA imaging in live cells. Chem Commun (Camb) 2019; 55:5131-5134. [PMID: 30973555 DOI: 10.1039/c9cc02096a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel approach to program target-responsive devices by incorporating the split G4 motifs in a DNA nanocage has been developed. The rigid prism outcompetes the flexible one in reaction kinetics and signal/background ratios, which can be easily internalized by cells and successfully applied in microRNA imaging in live cells.
Collapse
Affiliation(s)
- Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Puig Lombardi E, Londoño-Vallejo A, Nicolas A. Relationship Between G-Quadruplex Sequence Composition in Viruses and Their Hosts. Molecules 2019; 24:molecules24101942. [PMID: 31137580 PMCID: PMC6572409 DOI: 10.3390/molecules24101942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
A subset of guanine-rich nucleic acid sequences has the potential to fold into G-quadruplex (G4) secondary structures, which are functionally important for several biological processes, including genome stability and regulation of gene expression. Putative quadruplex sequences (PQSs) G3+N1-7G3+N1-7G3+N1-7G3+ are widely found in eukaryotic and prokaryotic genomes, but the base composition of the N1-7 loops is biased across species. Since the viruses partially hijack their hosts' cellular machinery for proliferation, we examined the PQS motif size, loop length, and nucleotide compositions of 7370 viral genome assemblies and compared viral and host PQS motifs. We studied seven viral taxa infecting five distant eukaryotic hosts and created a resource providing a comprehensive view of the viral quadruplex motifs. Overall, short-looped PQSs are predominant and with a similar composition across viral taxonomic groups, albeit subtle trends emerge upon classification by hosts. Specifically, there is a higher frequency of pyrimidine loops in viruses infecting animals irrespective of the viruses' genome type. This observation is confirmed by an in-depth analysis of the Herpesviridae family of viruses, which showed a distinctive accumulation of thermally stable C-looped quadruplexes in viruses infecting high-order vertebrates. The occurrence of viral C-looped G4s, which carry binding sites for host transcription factors, as well as the high prevalence of viral TTA-looped G4s, which are identical to vertebrate telomeric motifs, provide concrete examples of how PQSs may help viruses impinge upon, and benefit from, host functions. More generally, these observations suggest a co-evolution of virus and host PQSs, thus underscoring the potential functional significance of G4s.
Collapse
Affiliation(s)
- Emilia Puig Lombardi
- Institut Curie, PSL Research University, UMR3244 CNRS, 75248 Paris CEDEX 05, France.
| | | | - Alain Nicolas
- Institut Curie, PSL Research University, UMR3244 CNRS, 75248 Paris CEDEX 05, France.
| |
Collapse
|
227
|
Hotoda's Sequence and Anti-HIV Activity: Where Are We Now? Molecules 2019; 24:molecules24071417. [PMID: 30974914 PMCID: PMC6479790 DOI: 10.3390/molecules24071417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/24/2023] Open
Abstract
The pharmacological relevance of ODNs forming G-quadruplexes as anti-HIV agents has been extensively reported in the literature over the last few years. Recent detailed studies have elucidated the peculiar arrangement adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. In this review, we have reported the history of a strong anti-HIV agent: the 6-mer d(TGGGAG) sequence, commonly called "Hotoda's sequence". In particular, all findings reported on this sequence and its modified sequences have been discussed considering the following research phases: (i) discovery of the first 5'-modified active d(TGGGAG) sequences; (ii) synthesis of a variety of end-modified d(TGGGAG) sequences; (iii) biophysical and NMR investigations of natural and modified Hotoda's sequences; (iv); kinetic studies on the most active 5'-modified d(TGGGAG) sequences; and (v) extensive anti-HIV screening of G-quadruplexes formed by d(TGGGAG) sequences. This review aims to clarify all results obtained over the years on Hotoda's sequence, revealing its potentiality as a strong anti-HIV agent (EC50 = 14 nM).
Collapse
|
228
|
Zhang LM, Cui YX, Zhu LN, Chu JQ, Kong DM. Cationic porphyrins with large side arm substituents as resonance light scattering ratiometric probes for specific recognition of nucleic acid G-quadruplexes. Nucleic Acids Res 2019; 47:2727-2738. [PMID: 30715502 PMCID: PMC6451126 DOI: 10.1093/nar/gkz064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 12/04/2022] Open
Abstract
Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique-resonance light scattering (RLS)-based ratiometric recognition. To achieve the RLS probing of G-quadruplexes in the important physiological pH range of 7.4-6.0, four water soluble cationic porphyrin derivatives, including an unreported octa-cationic porphyrin, with large side arm substituents were synthesized and developed as RLS probes. These RLS probes were demonstrated to work well for ratiometric recognition of G-quadruplexes with high specificity against single- and double-stranded DNAs, including long double-stranded ones. The working mechanism was speculated to be based on the RLS signal changes caused by porphyrin protonation that was promoted by the end-stacking of porphyrins on G-quadruplexes. This work adds an important member in G-quadruplex probe family, thus providing a useful tool for studies on G-quadruplex-related events concerning G-quadruplex formation, destruction and changes in size, shape and aggregation. As a proof-of-concept example of applications, the RLS probes were demonstrated to work well for label-free and sequence-specific sensing of microRNA. This work also provides a simple and useful way for the preparation of cationic porphyrins with high charges.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yun-Xi Cui
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Na Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jun-Qing Chu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
229
|
Li J, Yin X, Li B, Li X, Pan Y, Li J, Guo Y. Spiropyran in Situ Switching: A Real-Time Fluorescence Strategy for Tracking DNA G-Quadruplexes in Live Cells. Anal Chem 2019; 91:5354-5361. [DOI: 10.1021/acs.analchem.9b00436] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of Education, Northwest University, Xi’an 710127, P. R. China
| | - Xinchi Yin
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of Education, Northwest University, Xi’an 710127, P. R. China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of Education, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
230
|
Luo X, Xue B, Feng G, Zhang J, Lin B, Zeng P, Li H, Yi H, Zhang XL, Zhu H, Nie Z. Lighting up the Native Viral RNA Genome with a Fluorogenic Probe for the Live-Cell Visualization of Virus Infection. J Am Chem Soc 2019; 141:5182-5191. [PMID: 30860368 DOI: 10.1021/jacs.8b10265] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA viruses represent a major global health threat, and the visualization of their RNA genome in infected cells is essential for virological research and clinical diagnosis. Due to the lack of chemical toolkits for the live-cell imaging of viral RNA genomes, especially native viral genomes without labeling and genetic modification, studies on native virus infection at the single-live-cell level are challenging. Herein, taking hepatitis C virus (HCV) as a representative RNA virus, we propose that the innate noncanonical G-quadruplex (G4) structure of viral RNA can serve as a specific imaging target and report a new benzothiazole-based G4-targeted fluorescence light-up probe, ThT-NE, for the direct visualization of the native RNA genome of HCV in living host cells. We demonstrate the use of the ThT-NE probe for several previously intractable applications, including the sensitive detection of individual virus-infected cells by small-molecule staining, real-time monitoring of the subcellular distribution of the viral RNA genome in live cells, and continuous live-cell tracking of the infection and propagation of clinically isolated native HCV. The fluorogenic-probe-based viral RNA light-up system opens up a promising chemical strategy for cutting-edge live-cell viral analysis, providing a potentially powerful tool for viral biology, medical diagnosis, and drug development.
Collapse
Affiliation(s)
- Xingyu Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , People's Republic of China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , People's Republic of China
| | - Guangfu Feng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , People's Republic of China
| | - Jiaheng Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , People's Republic of China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , People's Republic of China
| | - Pan Zeng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , People's Republic of China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , People's Republic of China
| | - Haibo Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , People's Republic of China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine , Wuhan University , Wuhan 430071 , Hubei , People's Republic of China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , People's Republic of China
| |
Collapse
|
231
|
Tang F, Liu S, Li QY, Yuan J, Li L, Wang Y, Yuan BF, Feng YQ. Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated differential coding. Chem Sci 2019; 10:4272-4281. [PMID: 31015952 PMCID: PMC6460952 DOI: 10.1039/c8sc04946g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Bsu and Tth DNA polymerases-mediated DNA replication in conjugation with sequencing enables quantitative and location analysis of 8-oxo-7,8-dihydroguanine in DNA.
Accumulating lines of evidence indicate that reactive oxygen species (ROS) are important signalling molecules for various cellular processes. 8-Oxo-7,8-dihydroguanine (OG) is a prominent oxidative modification formed in DNA by ROS. Recently, it has been proposed that OG may have regulatory and possibly epigenetic-like properties in modulating gene expression by interfering with transcription components or affecting the formation of G-quadruplex structures. Deciphering the molecular mechanisms of OG on regulation of gene expression requires uncovering the location of OG on genome. In the current study, we characterized two commercially available DNA polymerases, Bsu DNA polymerase (Bsu Pol) and Tth DNA polymerase (Tth Pol), which can selectively incorporate adenine (A) and cytosine (C) opposite OG, respectively. By virtue of the differential coding properties of Bsu Pol and Tth Pol that can faithfully or error-prone copy a DNA strand carrying OG, we achieved quantitative and single-base resolution analysis of OG in synthesized DNA that carries OG as well as in the G-rich telomeric DNA from HeLa cells. In addition, the parallel analysis of the primer extension products with Bsu Pol and Tth Pol followed by sequencing provided distinct detection of OG in synthesized DNA. Future application of this approach will greatly increase our knowledge of the chemical biology of OG with respect to its epigenetic-like regulatory roles.
Collapse
Affiliation(s)
- Feng Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Shan Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Qiao-Ying Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Jun Yuan
- Department of Chemistry and Environmental Toxicology Graduate Program , University of California , Riverside , CA 92521-0403 , USA
| | - Lin Li
- Department of Chemistry and Environmental Toxicology Graduate Program , University of California , Riverside , CA 92521-0403 , USA
| | - Yinsheng Wang
- Department of Chemistry and Environmental Toxicology Graduate Program , University of California , Riverside , CA 92521-0403 , USA
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| |
Collapse
|
232
|
Chan CY, Umar MI, Kwok CK. Spectroscopic analysis reveals the effect of a single nucleotide bulge on G-quadruplex structures. Chem Commun (Camb) 2019; 55:2616-2619. [PMID: 30724299 DOI: 10.1039/c8cc09929d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we investigate and reveal the effect of bulge position and bulge identity on G-quadruplexes using label-free spectroscopic techniques. Notably, we report significant differences in the spectroscopic features of bulged DNA and RNA G-quadruplexes, and demonstrate that intrinsic fluorescence can be generally used to detect the formation of canonical and non-canonical G-quadruplexes.
Collapse
Affiliation(s)
- Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | | | | |
Collapse
|
233
|
Kankia B. Stability Factors of the Parallel Quadruplexes: DNA Versus RNA. J Phys Chem B 2019; 123:1060-1067. [PMID: 30648871 DOI: 10.1021/acs.jpcb.8b11559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most stable quadruplexes is formed by the G3T sequence (GGGTGGGTGGGTGGG) that folds into a parallel quadruplex with three G-tetrads and chain-reversal T-loops. For example, in 1 mM K+, it unfolds at 75 °C and at physiological conditions, it unfolds above 100 °C. The RNA analogue, ggguggguggguggg (g3u), which employs exactly same folding topology, demonstrates even higher thermal stability. Here, we performed melting experiments of G3T, g3u, and more than 30 chimeric constructs (G3T with RNA nucleotides at certain positions). Although the g3u quadruplex is 13 °C more stable than G3T, majority of G → g (DNA-for-RNA) substitutions destabilize G3T. Only three G → g and loop T → u substitutions stabilize the structure. However, stabilization effects of these six substitutions overcome destabilization of other nine G → g, resulting in higher stability of all-RNA g3u. The present work clearly indicates that the stacking interactions are more favorable in parallel DNA quadruplexes, whereas the chain-reversal loops play an important role in higher stability of RNA quadruplexes. In addition, we have shown that the 5'-end of RNA quadruplexes represents a more favorable target for stacking interactions than the 3'-end. Based on the current study, rational design of the quadruplexes for particular biotechnological applications and drugs, targeting the quadruplexes, may be envisaged.
Collapse
Affiliation(s)
- Besik Kankia
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States.,Institute of Biophysics , Ilia State University , Tbilisi 0162 , Republic of Georgia
| |
Collapse
|
234
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
235
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
236
|
Vester K, Eravci M, Serikawa T, Schütze T, Weise C, Kurreck J. RNAi-mediated knockdown of the Rhau helicase preferentially depletes proteins with a Guanine-quadruplex motif in the 5'-UTR of their mRNA. Biochem Biophys Res Commun 2019; 508:756-761. [DOI: 10.1016/j.bbrc.2018.11.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
|
237
|
Ochoa B, Chico Y, Martínez MJ. Insights Into SND1 Oncogene Promoter Regulation. Front Oncol 2018; 8:606. [PMID: 30619748 PMCID: PMC6297716 DOI: 10.3389/fonc.2018.00606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal nuclease and Tudor domain containing 1 gene (SND1), also known as Tudor-SN, TSN or p100, encodes an evolutionarily conserved protein with invariant domain composition. SND1 contains four repeated staphylococcal nuclease domains and a single Tudor domain, which confer it endonuclease activity and extraordinary capacity for interacting with nucleic acids, individual proteins and protein complexes. Originally described as a transcriptional coactivator, SND1 plays fundamental roles in the regulation of gene expression, including RNA splicing, interference, stability, and editing, as well as in the regulation of protein and lipid homeostasis. Recently, SND1 has gained attention as a potential disease biomarker due to its positive correlation with cancer progression and metastatic spread. Such functional diversity of SND1 marks this gene as interesting for further analysis in relation with the multiple levels of regulation of SND1 protein production. In this review, we summarize the SND1 genomic region and promoter architecture, the set of transcription factors that can bind the proximal promoter, and the evidence supporting transactivation of SND1 promoter by a number of signal transduction pathways operating in different cell types and conditions. Unraveling the mechanisms responsible for SND1 promoter regulation is of utmost interest to decipher the SND1 contribution in the realm of both normal and abnormal physiology.
Collapse
Affiliation(s)
| | | | - María José Martínez
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
238
|
Zhou B, Chen YT, Yang XY, Wang YS, Hu XJ, Suo QL. An Ultrasensitive Colorimetric Strategy for Detection of Cadmium Based on the Peroxidase-like Activity of G-Quadruplex-Cd(II) Specific Aptamer. ANAL SCI 2018; 35:277-282. [PMID: 30393236 DOI: 10.2116/analsci.18p248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We rationally designed an ultrasensitive and label-free sensing platform for determination of cadmium (Cd). The sensing platform contains G-quadruplex-Cd(II) specific aptamer (GCDSA) constructed by incorporating G-rich sequence at the end of 5' and the critical domain of the Cd-4 aptamer. GCDSA designed act as both a special recognition sequence for Cd2+ and a signal DNAzyme. In absence of Cd2+, GCDSA may mainly exist in a random coil sequence. Upon addition of Cd2+, GCDSA could probably be induced to fold into a G-quadruplex structure. The generation of plentiful active G-quadruplex interacts with hemin to form a peroxidase-like DNAzyme, leading to increased absorbance signal of the sensing system. ΔA was directly proportional to the two segments of concentrations for Cd2+, with the detection of limit of 0.15 nM. The proposed method avoids the labeled oligonucleotides and allows directly quantitative analysis of the samples by cheap instruments, with an excellent dynamic range.
Collapse
Affiliation(s)
- Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology
| | - Ya-Ting Chen
- College of Public Health, University of South China
| | - Xin-Yi Yang
- College of Public Health, University of South China
| | | | - Xi-Jiang Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology
| | - Qing-Li Suo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology
| |
Collapse
|
239
|
Tikhomirov AS, Tsvetkov VB, Kaluzhny DN, Volodina YL, Zatonsky GV, Schols D, Shchekotikhin AE. Tri-armed ligands of G-quadruplex on heteroarene-fused anthraquinone scaffolds: Design, synthesis and pre-screening of biological properties. Eur J Med Chem 2018; 159:59-73. [DOI: 10.1016/j.ejmech.2018.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
|
240
|
Al-Zeer MA, Kurreck J. Deciphering the Enigmatic Biological Functions of RNA Guanine-Quadruplex Motifs in Human Cells. Biochemistry 2018; 58:305-311. [PMID: 30350579 DOI: 10.1021/acs.biochem.8b00904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanine-rich sequences in nucleic acids can form noncanonical structures known as guanine quadruplexes (G-quadruplexes), which constitute a not yet fully elucidated layer of regulatory function for central cellular processes. RNA G-quadruplexes have been shown to be involved in the modulation of translation, the regulation of (alternative) splicing, and the subcellular transport of mRNAs, among other processes. However, in living cells, an equilibrium between the formation of G-quadruplex structures and their unwinding by RNA helicases is likely. The extent to which G-rich sequences adopt G-quadruplex structures in living eukaryotic cells is currently a matter of debate. Multiple lines of evidence confirm the intracellular formation of G-quadruplex structures, such as their detection by immunochemical approaches, fluorogenic probes, and in vivo nuclear magnetic resonance. However, intracellular chemical probing suggests most if not all are in an unfolded state. It is therefore tempting to speculate that some G-quadruplex structures are only temporarily formed when they are required to contribute to the fine-tuning of the processes mentioned above. Future research should focus on the analysis of G-quadruplex formation under physiological conditions, which will allow the re-evaluation of the biological function of G-quadruplex motifs in regulatory processes in their natural environment and at physiological expression levels. This will help in the elucidation of their significance in the regulation of central processes in molecular biology and the exploitation of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry , Technische Universität Berlin , 13355 Berlin , Germany
| | - Jens Kurreck
- Institute of Biotechnology, Department of Applied Biochemistry , Technische Universität Berlin , 13355 Berlin , Germany
| |
Collapse
|
241
|
Chan KL, Peng B, Umar MI, Chan CY, Sahakyan AB, Le MTN, Kwok CK. Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chem Commun (Camb) 2018; 54:10878-10881. [PMID: 30204160 DOI: 10.1039/c8cc04635b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Here we identify hundreds of RNA G-quadruplex (rG4) candidates in microRNAs (miRNAs), characterize the miRNA structure and miRNA-mRNA interactions on several mammalian-conserved miRNAs, and reveal the formation of rG4s in miRNAs. Notably, we study the effect of these rG4s in cells and uncover the role of rG4s in miRNA-mediated post-transcriptional regulation.
Collapse
Affiliation(s)
- Ka Lung Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
242
|
Khramtsov P, Kropaneva M, Kalashnikova T, Bochkova M, Timganova V, Zamorina S, Rayev M. Highly Stable Conjugates of Carbon Nanoparticles with DNA Aptamers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10321-10332. [PMID: 30089209 DOI: 10.1021/acs.langmuir.8b01255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conjugates of carbon nanoparticles and aptamers have great potential in many areas of biomedicine. In order to be implemented in practice, such conjugates should keep their properties throughout long storage period in commonly available conditions. In this work, we prepared conjugates of carbon nanoparticles (CNP) with DNA aptamers using streptavidin-biotin reaction. Obtained conjugates possess superior stability and kept their physical-chemical and functional properties during 30 days at +4 °C and -20 °C. Proposed approach to conjugation allows loading of about 100-120 pM of biotinylated aptamer per 1 mg of streptavidin-coated CNP (CNP-Str). Aptamer-functionalized CNP-Str have zeta potential of -34 mV at pH 7, mean diameter of 168-177 nm, and polydispersity index of 0.080-0.140. High reproducibility of functionalization was confirmed by preparation of several batches of CNP-aptamer with the same size distribution and aptamer loading using independently synthesized parent CNP-Str nanoparticles. Stability of CNP-aptamer conjugates was significantly enhanced by postsynthesis addition of EDTA that prevents nuclease degradation of immobilized aptamers. Obtained nanoparticles were stable at pH ranging from 6 to 10. Optical properties of CNP-aptamer nanoparticles were also studied and their ability to quench fluorescence via Förster resonance energy transfer was shown. Taking into account properties of CNP-aptamer conjugates, we suppose they may be used in both homo- and heterogeneous colorimetric, fluorescent, and aggregation-based assays.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Maria Kropaneva
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Tatyana Kalashnikova
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
| | - Maria Bochkova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Valeria Timganova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Svetlana Zamorina
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Mikhail Rayev
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| |
Collapse
|
243
|
Xie X, Reznichenko O, Chaput L, Martin P, Teulade-Fichou MP, Granzhan A. Topology-Selective, Fluorescent “Light-Up” Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer. Chemistry 2018; 24:12638-12651. [DOI: 10.1002/chem.201801701] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Oksana Reznichenko
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Ludovic Chaput
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
- CNRS UPR2301; Institut de Chimie des Substances Naturelles (ICSN); 91198 Gif-sur-Yvette France
| | - Pascal Martin
- ITODYS, CNRS UMR7086; Université Paris Diderot; 75205 Paris France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| |
Collapse
|
244
|
Kwok CK, Marsico G, Balasubramanian S. Detecting RNA G-Quadruplexes (rG4s) in the Transcriptome. Cold Spring Harb Perspect Biol 2018; 10:10/7/a032284. [PMID: 29967010 DOI: 10.1101/cshperspect.a032284] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA G-quadruplex (rG4) secondary structures are proposed to play key roles in fundamental biological processes that include the modulation of transcriptional, co-transcriptional, and posttranscriptional events. Recent methodological developments that include predictive algorithms and structure-based sequencing have enabled the detection and mapping of rG4 structures on a transcriptome-wide scale at high sensitivity and resolution. The data generated by these studies provide valuable insights into the potentially diverse roles of rG4s in biology and open up a number of mechanistic hypotheses. Herein we highlight these methodologies and discuss the associated findings in relation to rG4-related biological mechanisms.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Giovanni Marsico
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
245
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
246
|
Affiliation(s)
- Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
247
|
Abstract
Advances in understanding mechanisms of nucleic acids have revolutionized molecular biology and medicine, but understanding of nontraditional nucleic acid conformations is less developed. The guanine quadruplex (G4) alternative DNA structure was first described in the 1960s, but the existence of G4 structures (G4-S) and their participation in myriads of biological functions are still underappreciated. Despite many tools to study G4s and many examples of roles for G4s in eukaryotic molecular processes and issues with uncontrolled G4-S formation, there is relatively little knowledge about the roles of G4-S in viral or prokaryotic systems. This review summarizes the state of the art with regard to G4-S in eukaryotes and their potential roles in human disease before discussing the evidence that G4-S have equivalent importance in affecting viral and bacterial life.
Collapse
Affiliation(s)
- H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
248
|
Evangelista BA, Kim YS, Kolpashchikov DM. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One. Chembiochem 2018; 19:10.1002/cbic.201800017. [PMID: 29700982 PMCID: PMC6422747 DOI: 10.1002/cbic.201800017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Dmitry M. Kolpashchikov
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA,
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| |
Collapse
|
249
|
Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 2018; 46:3270-3283. [PMID: 29554280 PMCID: PMC5909458 DOI: 10.1093/nar/gky187] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that form within guanine-rich strands of regulatory genomic regions. G4s have been extensively described in the human genome, especially in telomeres and oncogene promoters; in recent years the presence of G4s in viruses has attracted increasing interest. Indeed, G4s have been reported in several viruses, including those involved in recent epidemics, such as the Zika and Ebola viruses. Viral G4s are usually located in regulatory regions of the genome and implicated in the control of key viral processes; in some cases, they have been involved also in viral latency. In this context, G4 ligands have been developed and tested both as tools to study the complexity of G4-mediated mechanisms in the viral life cycle, and as therapeutic agents. In general, G4 ligands showed promising antiviral activity, with G4-mediated mechanisms of action both at the genome and transcript level. This review aims to provide an updated close-up of the literature on G4s in viruses. The current state of the art of G4 ligands in antiviral research is also reported, with particular focus on the structural and physicochemical requirements for optimal biological activity. The achievements and the to-dos in the field are discussed.
Collapse
Affiliation(s)
- Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| |
Collapse
|
250
|
Tokan V, Puterova J, Lexa M, Kejnovsky E. Quadruplex DNA in long terminal repeats in maize LTR retrotransposons inhibits the expression of a reporter gene in yeast. BMC Genomics 2018; 19:184. [PMID: 29510672 PMCID: PMC5838962 DOI: 10.1186/s12864-018-4563-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/20/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many studies have shown that guanine-rich DNA sequences form quadruplex structures (G4) in vitro but there is scarce evidence of guanine quadruplexes in vivo. The majority of potential quadruplex-forming sequences (PQS) are located in transposable elements (TEs), especially close to promoters within long terminal repeats of plant LTR retrotransposons. RESULTS In order to test the potential effect of G4s on retrotransposon expression, we cloned the long terminal repeats of selected maize LTR retrotransposons upstream of the lacZ reporter gene and measured its transcription and translation in yeast. We found that G4s had an inhibitory effect on translation in vivo since "mutants" (where guanines were replaced by adenines in PQS) showed higher expression levels than wild-types. In parallel, we confirmed by circular dichroism measurements that the selected sequences can indeed adopt G4 conformation in vitro. Analysis of RNA-Seq of polyA RNA in maize seedlings grown in the presence of a G4-stabilizing ligand (NMM) showed both inhibitory as well as stimulatory effects on the transcription of LTR retrotransposons. CONCLUSIONS Our results demonstrate that quadruplex DNA located within long terminal repeats of LTR retrotransposons can be formed in vivo and that it plays a regulatory role in the LTR retrotransposon life-cycle, thus also affecting genome dynamics.
Collapse
Affiliation(s)
- Viktor Tokan
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| | - Janka Puterova
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| |
Collapse
|