201
|
Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 2009; 99 E Suppl 1:ES3-52. [PMID: 18503734 DOI: 10.1017/s0007114508965752] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiological conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.
Collapse
|
202
|
Cao J, Liu Y, Jia L, Jiang LP, Geng CY, Yao XF, Kong Y, Jiang BN, Zhong LF. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:12059-12063. [PMID: 19012407 DOI: 10.1021/jf8026827] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Acrylamide (AA), a proven rodent carcinogen, has recently been discovered in foods heated at high temperatures. This finding raises public health concerns. In our previous study, we found that AA caused DNA fragments and increase of reactive oxygen species (ROS) formation and induced genotoxicity and weak cytotoxicity in HepG2 cells. Presently, curcumin, a natural antioxidant compound present in turmeric was evaluated for its protective effects. The results showed that curcumin at the concentration of 2.5 microg/mL significantly reduced AA-induced ROS production, DNA fragments, micronuclei formation, and cytotoxicity in HepG2 cells. The effect of PEG-catalase on protecting against AA-induced cytotoxicity suggests that AA-induced cytotoxicity is directly dependent on hydrogen peroxide production. These data suggest that curcumin could attenuate the cytotoxicity and genotoxicity induced by AA in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of curcumin may be a plausible way to prevent AA-mediated genotoxicity.
Collapse
Affiliation(s)
- Jun Cao
- Department of Toxicology, Dalian Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Inhibition of acrylamide genotoxicity in human liver-derived HepG2 cells by the antioxidant hydroxytyrosol. Chem Biol Interact 2008; 176:173-8. [DOI: 10.1016/j.cbi.2008.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/11/2008] [Accepted: 08/04/2008] [Indexed: 01/28/2023]
|
204
|
Vinoth KJ, Heng BC, Poonepalli A, Banerjee B, Balakrishnan L, Lu K, Hande MP, Cao T. Human embryonic stem cells may display higher resistance to genotoxic stress as compared to primary explanted somatic cells. Stem Cells Dev 2008; 17:599-607. [PMID: 18498216 DOI: 10.1089/scd.2007.0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of human embryonic stem (hES) cells in genotoxicity screening can potentially overcome the deficiencies associated with using immortalized cell lines, primary explanted somatic cells, and live animal models. Hence this study sought to compare the responses of hES cells and primary explanted somatic cells (IMR-90 cells, human fetal lung fibroblasts) to genotoxic stress, to evaluate whether hES cells can accurately reflect the normal physiology of human somatic cells. The effects of mitomycin C (MMC) on the chromosomal stability of hESC and IMR-90 was assayed and compared by fluorescence in situ hybridization (FISH) with telomere-specific peptide nucleic acid and multicolor (m) FISH techniques. The results showed that, the percentage of aberrant cells increased from 6% in the untreated control to 57.5% at the higher dose of 0.06 microg/ml MMC (9.6-fold increase) group in the case of IMR-90 cells, whereas hES cells displayed a corresponding increase from 6% to 28% (4.6-fold increase). Telomere FISH ascertained that the main types of damage induced by MMC are chromosomal breaks and the loss of telomeric signals. No fusions were observed in all samples analyzed. This was further confirmed by mFISH, which showed that fusions and translocations were not the type of aberration induced by MMC, with no such aberrations being observed in all samples analyzed. Hence, hES cells of the H1 line are apparently more resistant to MMC-induced DNA damage, as compared to the IMR-90 cells. These results highlight possible intrinsic differences in response to damaging agents between hES cells and normal somatic cells.
Collapse
|
205
|
Use of four new human-derived liver-cell lines for the detection of genotoxic compounds in the single-cell gel electrophoresis (SCGE) assay. Mutat Res 2008; 657:133-9. [PMID: 18790080 DOI: 10.1016/j.mrgentox.2008.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/16/2008] [Accepted: 08/16/2008] [Indexed: 01/22/2023]
Abstract
One of the main problems of in vitro genotoxicity assays is that the lack of adequate representation of drug-metabolising enzymes in indicator cell lines that are currently used in routine testing may lead to false results. In the present study, we investigated the ability of four new human-derived livercell lines to detect the DNA-damaging effects of representatives of different classes of genotoxic carcinogens that require metabolic activation, namely the nitrosamine N-nitrosodimethylamine (NDMA), the heterocyclic aromatic amines 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), the polycyclic aromatic hydrocarbon benzo(a)pyrene (B(a)P) and the mycotoxin aflatoxin B1 (AFB1). Hydrogen peroxide (H2O2) was used in all experimental series as a positive control and parallel experiments were carried out with human HepG2 cells, which have been used in earlier studies. DNA damage was monitored in single-cell gel electrophoresis (SCGE) assays. Furthermore, RT-PCR experiments were carried out to study the expression of genes encoding for a panel of different phase-I and phase-II enzymes, which are involved in the activation/detoxification of genotoxic carcinogens. With one of the newly isolated hepatocellular lines, HCC1.2, positive results were obtained with all model compounds, two other new lines (HCC2 and HCC3), HepG2 and the virally immortalized line NKNT-3 were less sensitive and/or failed to detect some of the genotoxins. PCR analyses showed that all cell lines express genes coding for a variety of xenobiotic drug-metabolising enzymes. The highest levels were found in general in HCC1.2, while in NKNT-3 cells some genes were not transcribed. Overall, our results indicate that the line HCC1.2 may be useful for the development of improved in vitro genotoxicity test systems.
Collapse
|
206
|
Lamy E, Schröder J, Paulus S, Brenk P, Stahl T, Mersch-Sundermann V. Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem Toxicol 2008; 46:2415-21. [DOI: 10.1016/j.fct.2008.03.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/28/2008] [Accepted: 03/25/2008] [Indexed: 11/30/2022]
|
207
|
Nong Q, Komatsu M, Izumo K, Indo HP, Xu B, Aoyama K, Majima HJ, Horiuchi M, Morimoto K, Takeuchi T. Involvement of reactive oxygen species in Microcystin-LR-induced cytogenotoxicity. Free Radic Res 2008; 41:1326-37. [PMID: 17963120 DOI: 10.1080/10715760701704599] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl dulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR.
Collapse
Affiliation(s)
- Qingqing Nong
- Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Ammar RB, Sghaier MB, Boubaker J, Bhouri W, Naffeti A, Skandrani I, Bouhlel I, Kilani S, Ghedira K, Chekir-Ghedira L. Antioxidant activity and inhibition of aflatoxin B1-, nifuroxazide-, and sodium azide-induced mutagenicity by extracts from Rhamnus alaternus L. Chem Biol Interact 2008; 174:1-10. [PMID: 18511029 DOI: 10.1016/j.cbi.2008.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/31/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
The effect of extracts obtained from Rhamnus alaternus L. leaves on genotoxicity and SOS response induced by aflatoxin B(1) (10 microg/assay) as well as nifuroxazide (20 microg/assay) was investigated in a bacterial assay system, i.e., the SOS chromotest with Escherichia coli PQ37. The evaluation of the mutagenic and antimutagenic actions of the same extracts against the sodium azide (1.5 microg/plate)-induced mutagenicity was assayed using the Salmonella typhimurium assay system. The R. alaternus tested extracts exhibited no genotoxicity either with or without the external S9 activation mixture. However, all the extracts, particularly aqueous extract (A) and its chloroformic fraction (A(2)) significantly decreased the genotoxicity induced by aflatoxin B(1) and nifuroxazide. Moreover, the different extracts showed no mutagenicity when tested with Salmonella typhimurium strains TA1535 and TA1538 either with or without the S9 mix. Aqueous extract as well as its A(2) fraction exhibited the highest level of protection towards the direct mutagen, sodium azide-induced response in TA1535 strain with mutagenicity inhibition percentages of 83.6% and 91.4%, respectively, at a dose of 250 microg/plate. The results obtained by the Ames test assay confirm those of SOS chromotest. These same active extracts exhibited high xanthine oxidase (XOD) inhibiting with respective IC(50) values of 208 and 137 microg/ml, and superoxide anion-scavenging effects (IC(50) values of 132 and 117 microg/ml) when tested in the XOD enzymatic assay system. Our findings emphasize the potential of R. alaternus to prevent mutations and also its antioxidant effect.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03, Faculté de Pharmacie, Rue Avicenne, Monastir 5000, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Zhang X, Jiang L, Geng C, Hu C, Yoshimura H, Zhong L. Inhibition of Sudan I genotoxicity in human liver-derived HepG2 cells by the antioxidant hydroxytyrosol. Free Radic Res 2008; 42:189-95. [PMID: 18297612 DOI: 10.1080/10715760701864492] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The chemoprotective effect of hydroxytyrosol (HT) against Sudan I-induced genotoxicity was investigated in a human hepatoma cell line, HepG2. The comet assay and micronucleus (MN) assay were used to monitor genotoxicity. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe, 2,7-dichlorofluorescein diacetate (DCFH-DA). The levels of oxidative DNA damage and lipid peroxidation were estimated by immunocytochemistry analysis of 8-hydroxydeoxyguanosine (8-OHdG) and by measuring levels of thiobarbituric acid-reactive substances (TBARS), respectively. Intracellular glutathione (GSH) level was estimated by fluorometric methods. The results showed that HT significantly reduced the genotoxicity caused by Sudan I. Furthermore, HT ameliorated lipid pexidation as demonstrated by a reduction in TBARS formation and attenuated GSH depletion in a concentration-dependent manner. It was also found that HT reduced intracellular ROS formation and 8-OHdG level caused by Sudan I. These results strongly suggest that HT has significant protective ability against Sudan I-induced genotoxicity.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Toxicology, Dalian Medical University, Dalian, Liaoning, China
| | | | | | | | | | | |
Collapse
|
210
|
Zhu H, Rusyn I, Richard A, Tropsha A. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:506-13. [PMID: 18414635 PMCID: PMC2291015 DOI: 10.1289/ehp.10573] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 01/03/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND To develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput screening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six different cell lines have recently become available via PubChem. OBJECTIVES We have explored these data in terms of their utility for predicting adverse health effects of the environmental agents. METHODS AND RESULTS Initially, the classification k nearest neighbor (kNN) quantitative structure-activity relationship (QSAR) modeling method was applied to the HTS data only, for a curated data set of 384 compounds. The resulting models had prediction accuracies for training, test (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP-HTS studies. We found that compounds classified by HTS as "actives" in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS "inactives" were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors. CONCLUSIONS Our studies suggest that combining NTP-HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology.
Collapse
Affiliation(s)
- Hao Zhu
- Carolina Environmental Bioinformatics Research Center
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, School of Pharmacy and
| | - Ivan Rusyn
- Carolina Environmental Bioinformatics Research Center
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Ann Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Alexander Tropsha
- Carolina Environmental Bioinformatics Research Center
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, School of Pharmacy and
| |
Collapse
|
211
|
Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008; 76:2512-9. [PMID: 18347034 DOI: 10.1128/iai.01606-07] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa causes serious infections in immunocompromised patients. N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL) is a key component of P. aeruginosa's quorum-sensing system and regulates the expression of many virulence factors. 3OC12-HSL was previously shown to be hydrolytically inactivated by the paraoxonase (PON) family of calcium-dependent esterases, consisting of PON1, PON2, and PON3. Here we determined the specific activities of purified human PONs for 3OC12-HSL hydrolysis, including the common PON1 polymorphic forms, and found they were in the following order: PON2 >> PON1(192R) > PON1(192Q) > PON3. PON2 exhibited a high specific activity of 7.6 +/- 0.4 micromols/min/mg at 10 microM 3OC12-HSL, making it the best PON2 substrate identified to date. By use of class-specific inhibitors, approximately 85 and 95% of the 3OC12-HSL lactonase activity were attributable to PON1 in mouse and human sera, respectively. In mouse liver homogenates, the activity was metal dependent, with magnesium- and manganese-dependent lactonase activities comprising 10 to 15% of the calcium-dependent activity. In mouse lung homogenates, all of the activity was calcium dependent. The calcium-dependent activities were irreversibly inhibited by extended EDTA treatment, implicating PONs as the major enzymes inactivating 3OC12-HSL. In human HepG2 and EA.hy 926 cell lysates, the 3OC12-HSL lactonase activity closely paralleled the PON2 protein levels after PON2 knockdown by small interfering RNA treatment of the cells. These findings suggest that PONs, particularly PON2, could be an important mechanism by which 3OC12-HSL is inactivated in mammals.
Collapse
|
212
|
Kac J, Plazar J, Mlinaric A, Zegura B, Lah TT, Filipic M. Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:216-220. [PMID: 17959367 DOI: 10.1016/j.phymed.2007.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 07/23/2007] [Indexed: 05/25/2023]
Abstract
Bioassay-directed fractionation with a Salmonella/microsomal assay against the food borne mutagen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was used to identify antimutagenic components of hops. Hops pellets extracted with diethylether showed antimutagenic activity against mutations induced by IQ. Fractionation of the diethylether extract (DE) by column chromatography, followed by semi-preparative HPLC yielded two fractions (E4b and E4d) with strong antimutagenic activity against IQ induced mutations. Separation of fraction E4b resulted in inactive fractions, while fraction E4d has been identified to be xanthohumol. In mammalian test system with human hepatoma HepG2 cells fraction E4d at 10mug/ml completely prevented formation of IQ induced DNA damage. These results indicate that xanthohumol is a very promising potential protective agent against genotoxicity of food borne carcinogens, which warrants further investigation.
Collapse
Affiliation(s)
- Javor Kac
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
213
|
Possible involvement of oxidative stress in trichloroethylene-induced genotoxicity in human HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 652:88-94. [PMID: 18289923 DOI: 10.1016/j.mrgentox.2008.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/30/2007] [Accepted: 01/10/2008] [Indexed: 11/20/2022]
|
214
|
Luo L, Jiang L, Geng C, Cao J, Zhong L. Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells. Chem Biol Interact 2008; 173:1-8. [PMID: 18358459 DOI: 10.1016/j.cbi.2008.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/03/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.
Collapse
Affiliation(s)
- Lihan Luo
- Department of Toxicology, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, China
| | | | | | | | | |
Collapse
|
215
|
Bokhari M, Carnachan RJ, Cameron NR, Przyborski SA. Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge. J Anat 2007; 211:567-76. [PMID: 17711423 PMCID: PMC2375833 DOI: 10.1111/j.1469-7580.2007.00778.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2007] [Indexed: 11/27/2022] Open
Abstract
Cultured cells are dramatically affected by the micro-environment in which they are grown. In this study, we have investigated whether HepG2 liver cells grown in three dimensional (3-D) cultures cope more effectively with the known cytotoxic agent, methotrexate, than their counterparts grown on traditional two dimensional (2-D) flat plastic surfaces. To enable 3-D growth of HepG2 cells in vitro, we cultured cells on 3-D porous polystyrene scaffolds previously developed in our laboratories. HepG2 cells grown in 3-D displayed excellent morphological characteristics and formed numerous bile canaliculi that were seldom seen in cultures grown on 2-D surfaces. The function of liver cells grown on 3-D supports was significantly enhanced compared to activity of cells grown on 2-D standard plasticware. Unlike their 2-D counterparts, 3-D cultures were less susceptible to lower concentrations of methotrexate. Cells grown in 3-D maintained their structural integrity, possessed greater viability, were less susceptible to cell death at higher levels of the cytotoxin compared to 2-D cultures, and appeared to respond to the drug in a manner more comparable to its known activity in vivo. Our results suggest that hepatotoxicity testing using 3-D cultures might be more likely to reflect true physiological responses to cytotoxic compounds than existing models that rely on 2-D culture systems. This technology has potential applications for toxicity testing and drug screening.
Collapse
Affiliation(s)
- Maria Bokhari
- School of Biological and Biomedical Science, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|
216
|
Cao J, Liu Y, Jia L, Zhou HM, Kong Y, Yang G, Jiang LP, Li QJ, Zhong LF. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic Biol Med 2007; 43:968-75. [PMID: 17697941 DOI: 10.1016/j.freeradbiomed.2007.06.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 05/03/2007] [Accepted: 06/06/2007] [Indexed: 12/11/2022]
Abstract
Curcumin, a major pigment of turmeric, is a natural antioxidant possessing a variety of pharmacological activities and therapeutic properties. But its mechanisms are unknown. In our previous study, we found that a 2-h exposure to curcumin induced DNA damage to both the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA) in HepG2 cells and that mtDNA damage was more extensive than nDNA damage. Therefore, experiments were initiated to evaluate the role of mtDNA damage in curcumin-induced apoptosis. The results demonstrated that HepG2 cells challenged with curcumin for 1 h showed a transient elevation of the mitochondrial membrane potential (DeltaPsim), followed by cytochrome c release into the cytosol and disruption of DeltaPsim after 6 h exposure to curcumin. Apoptosis was detected by Hoechst 33342 and annexin V/PI assay after 10 h treatment. Interestingly, the expression of Bcl-2 remained unchanged. A resistance to apoptosis for the corresponding rho0 counterparts confirmed a critical dependency for mitochondria during the induction of apoptosis in HepG2 cells mediated by curcumin. The effects of PEG-SOD in protecting against curcumin-induced cytotoxicity suggest that curcumin-induced cytotoxicity is directly dependent on superoxide anion O2- production. These data suggest that mitochondrial hyperpolarization is a prerequisite for curcumin-induced apoptosis and that mtDNA damage is the initial event triggering a chain of events leading to apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Jun Cao
- Department of Toxicology, Dalian Medical University, Dalian 116027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Lasfer M, Vadrot N, Aoudjehane L, Conti F, Bringuier AF, Feldmann G, Reyl-Desmars F. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes. Cell Biol Toxicol 2007; 24:55-62. [PMID: 17610031 DOI: 10.1007/s10565-007-9015-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
The heavy metal cadmium, an environmental pollutant, has been widely demonstrated to be toxic, in particular for liver. In murines, cadmium induces apoptosis of hepatocytes and hepatomas. In human cells, apoptosis induced by cadmium has been exclusively demonstrated in tumoral cell lines. Nothing was known in normal liver, in vitro or in vivo. In the present study, we examined the effects of cadmium in nonmalignant human hepatocytes. For that purpose, we investigated whether cadmium was able to induce apoptosis of normal human hepatocytes (NHH) in primary culture and of a SV40-immortalized human hepatocyte (IHH) cell line. Treatment of IHH and NHH with cadmium induced the presence of a sub-G(1) population at 10 and 100 micromol/L, respectively. DAPI staining of both cell types treated with cadmium 100 micromol/L revealed the induction of nuclear apoptotic bodies, supporting the hypothesis of apoptosis. In IHH and NHH, cadmium 100 micromol/L induced PARP cleavage into a 85 kDa fragment. In order to investigate the involvement of mitochondria in cadmium-induced apoptosis, we measured the mitochondrial membrane potential (Delta(Psim)). We observed that in IHH and NHH, cadmium 100 micromol/L induced a decrease of Delta(Psim). As expected, cadmium under the same conditions enhanced caspase-9 and caspase-3 activities. In addition, cadmium from 1 to 100 micromol/L induced the expression of p53 and phosphorylation of its Ser15 in IHH and NHH. In conclusion, we showed in this study that human hepatocytes were sensitive to cadmium and apoptosis induced at concentrations suggested in the literature to inhibit p53 DNA-binding and DNA repair.
Collapse
Affiliation(s)
- M Lasfer
- INSERM, U773, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | | | | | | | | | | | | |
Collapse
|
218
|
Cao J, Jiang LP, Liu Y, Yang G, Yao XF, Zhong LF. Curcumin-induced genotoxicity and antigenotoxicity in HepG2 cells. Toxicon 2007; 49:1219-22. [PMID: 17433396 DOI: 10.1016/j.toxicon.2007.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/29/2022]
Abstract
Curcumin, a polyphenolic yellow pigment found in turmeric, is commonly used as a coloring agent in foods, drugs, and cosmetics. In our previous study, we found that low levels of curcumin did not increase the reactive oxygen species (ROS) formation and caused no damage to DNA in human hepatoma G2 (HepG2) cells, but at high doses, curcumin imposed oxidative stress and damaged DNA. In the present study, we are determined to investigate the genotoxic and antigenotoxic effects of curcumin using HepG2 cell line, a relevant in vitro model to detect the cytoprotective, antigenotoxic, and cogenotoxic agents. The results of micronucleus (MN) assays showed that, on one hand, curcumin at the high tested concentrations (8 and 16 microg/ml) displayed a small but significant increase in the frequency of MN, and on the other hand, it was observed that the low tested concentration (2 microg/ml) significantly reduced the MN formation induced by the chemotherapeutic agent cyclophosphamide. The present results indicate that curcumin shows both genotoxicity and antigenotoxicity depending on its concentration.
Collapse
Affiliation(s)
- Jun Cao
- Department of Toxicology, Dalian Medical University, Dalian 116027, China
| | | | | | | | | | | |
Collapse
|
219
|
Wu K, Jiang L, Cao J, Yang G, Geng C, Zhong L. Genotoxic effect and nitrative DNA damage in HepG2 cells exposed to aristolochic acid. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 630:97-102. [PMID: 17507282 DOI: 10.1016/j.mrgentox.2007.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Aristolochic acid (AA), extensively used as a traditional herbal medicine, was withdrawn from the market in the last century because it was found to be a potent carcinogen in humans and animals. The aim of this study was to evaluate the genotoxic effect of AA and obtain further insight into whether the nitrative DNA damage can be induced by reactive nitrogen species (RNS), including nitric oxide (NO) and its derivative peroxynitrite (ONOO(-)) using human hepatoma HepG2 cells. To identify the genotoxic effect, the comet assay and micronucleus test (MNT) were performed. In the comet assay, 25-200microM of AA caused a significant increase of DNA migration in a dose-dependent manner. A significant increase of the frequency of micronuclei was found in the range between 12.5 and 50microM in the MNT. The results showed that AA caused DNA and chromosome damages. To elucidate the nitrative DNA damage mechanism, the level of nitrite and 8-hydroxydeoxyguanosine (8-OHdG), which can be generated by ONOO(-), were monitored with the 2,3-diaminonaphthalene (DAN) assay and immunoperoxidase staining, respectively. The results showed that AA causes a significant increase in the levels of NO and formation of 8-OHdG at concentrations >/=50microM. This observation supports the assumption that AA could exert genotoxicity probably via NO and its derivatives at higher concentrations in HepG2 cells.
Collapse
Affiliation(s)
- Keya Wu
- Department of Toxicology, Dalian Medical University, 465 Zhongshan Road, Dalian 116027, China
| | | | | | | | | | | |
Collapse
|
220
|
Plazar J, Zegura B, Lah TT, Filipic M. Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat Res 2007; 632:1-8. [PMID: 17590382 DOI: 10.1016/j.mrgentox.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/26/2007] [Accepted: 03/17/2007] [Indexed: 11/16/2022]
Abstract
Xanthohumol is the major prenylated flavonoid present in the hop plant Humulus lupulus L. (Cannabinaceae) and a common ingredient of beer. Recently, xanthohumol has gained considerable interest due to its potential cancer chemo-preventive effect. The aim of this study was to reveal the possible anti-genotoxic activity of xanthohumol in metabolically competent human hepatoma HepG2 cells, by use of the comet assay. Xanthohumol by itself was neither cytotoxic nor genotoxic to the cells at concentrations below 10microM. However, a significant protective effect against the pro-carcinogens benzo(a)pyrene (BaP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was observed at concentrations as low as 0.01microM. In cells treated with xanthohumol in combination with tert-butyl hydroperoxide (t-BOOH) - an inducer of reactive oxygen species (ROS) - no protective effect was observed and xanthohumol also showed no significant scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. On the other hand, HepG2 cells pre-treated with xanthohumol showed significantly reduced levels of t-BOOH-induced DNA strand breaks, indicating that its protective effect is mediated by induction of cellular defence mechanisms against oxidative stress. As xanthohumol is known to be an effective inhibitor of cytochrome P450 enzymes and an inducer of NAD(P)H: quinone reductase (QR), our findings can be explained by an inhibition of metabolic activation of pro-carcinogens and/or by induction of carcinogen-detoxifying and anti-oxidative enzymes by xanthohumol. These results provide evidence that xanthohumol displays anti-genotoxic activity in metabolically competent human cells.
Collapse
Affiliation(s)
- Janja Plazar
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
221
|
Buenz EJ. A high-throughput cell-based toxicity analysis of drug metabolites using flow cytometry. Cell Biol Toxicol 2007; 23:361-5. [PMID: 17380409 DOI: 10.1007/s10565-007-0226-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/26/2007] [Indexed: 11/30/2022]
Abstract
The effects of liver enzymes on drug activities are important considerations in the drug discovery process. Frequently, liver microsomes are used to simulate first-pass metabolism in the liver; however, there are significant disadvantages to the microsome system. As an alternative, a simple cell-based, high-throughput system that allows for examination of metabolite activity is described. Using multiparameter flow cytometry and the low-volume, high-sample format of 96-well plates, it is possible to rapidly evaluate a dose-response curve for metabolites based on variables including initial compound concentrations, hepatocyte cell line metabolic activities, and time. Using HepG2 cells as a surrogate for hepatic metabolism of a potential therapeutic, the impact of metabolites on Jurkat cell death was measured by both propidium iodide dye exclusion and cell cycle analysis. While this system is not proposed to supplant liver microsome studies, this alternative assay provides a highly adaptable, low-cost, and high-throughput measure of drug metabolism.
Collapse
Affiliation(s)
- E J Buenz
- BioSciential LLC, Rochester, Minnesota 55903, USA.
| |
Collapse
|
222
|
Rovetta F, Catalani S, Steimberg N, Boniotti J, Gilberti ME, Mariggiò MA, Mazzoleni G. Organ-specific manganese toxicity: a comparative in vitro study on five cellular models exposed to MnCl2. Toxicol In Vitro 2007; 21:284-92. [PMID: 17055213 DOI: 10.1016/j.tiv.2006.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/01/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
Manganese (Mn) is both an essential nutrient and a toxicant, with specific effects on liver and kidney (acute exposure) and on central nervous system (CNS) (chronic exposure). Mn neurotoxicity includes neurobehavioral disorders and extra-pyramidal motor dysfunctions (manganism), possibly due to focal injuries to the basal ganglia. Even if widely investigated, the molecular mechanisms responsible for Mn toxicity remain to be clarified. Aim of this study was to identify suitable in vitro models to investigate these molecular pathways. To this purpose we compared the effect of manganese chloride on four cell lines, representative of the main target organs of Mn toxicity in vivo. HepG2 and MDCK cell lines were selected for liver and kidney, respectively; glial GL15 and neuronal SHSY5Y cells were used as models of CNS components. To complete the "motor system" model, skeletal muscle C2C12 cells were also included. Our results demonstrate that hepatic, renal, glial and neuronal cell types differently react to Mn, mirroring the specific in vivo response of the tissue they represent. This confirms their value as suitable in vitro models to study Mn-related toxic events. Interestingly, also muscle C2C12 cells showed a noticeable sensitivity to Mn, preferential targets being differentiated myotubes.
Collapse
Affiliation(s)
- F Rovetta
- University of Brescia, Department of Biomedical Sciences and Biotechnologies, Italy
| | | | | | | | | | | | | |
Collapse
|
223
|
Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Müller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Benthem J, Vanparys P, White P. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 628:31-55. [PMID: 17293159 DOI: 10.1016/j.mrgentox.2006.11.008] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/22/2006] [Indexed: 11/21/2022]
Abstract
Workshop participants agreed that genotoxicity tests in mammalian cells in vitro produce a remarkably high and unacceptable occurrence of irrelevant positive results (e.g. when compared with rodent carcinogenicity). As reported in several recent reviews, the rate of irrelevant positives (i.e. low specificity) for some studies using in vitro methods (when compared to this "gold standard") means that an increased number of test articles are subjected to additional in vivo genotoxicity testing, in many cases before, e.g. the efficacy (in the case of pharmaceuticals) of the compound has been evaluated. If in vitro tests were more predictive for in vivo genotoxicity and carcinogenicity (i.e. fewer false positives) then there would be a significant reduction in the number of animals used. Beyond animal (or human) carcinogenicity as the "gold standard", it is acknowledged that genotoxicity tests provide much information about cellular behaviour, cell division processes and cellular fate to a (geno)toxic insult. Since the disease impact of these effects is seldom known, and a verification of relevant toxicity is normally also the subject of (sub)chronic animal studies, the prediction of in vivo relevant results from in vitro genotoxicity tests is also important for aspects that may not have a direct impact on carcinogenesis as the ultimate endpoint of concern. In order to address the high rate of in vitro false positive results, a 2-day workshop was held at the European Centre for the Validation of Alternative Methods (ECVAM), Ispra, Italy in April 2006. More than 20 genotoxicity experts from academia, government and industry were invited to review data from the currently available cell systems, to discuss whether there exist cells and test systems that have a reduced tendency to false positive results, to review potential modifications to existing protocols and cell systems that might result in improved specificity, and to review the performance of some new test systems that show promise of improved specificity without sacrificing sensitivity. It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers. Participants discussed the fact that cell lines commonly used for genotoxicity testing have a number of deficiencies that may contribute to the high false positive rate. These include, amongst others, lack of normal metabolism leading to reliance on exogenous metabolic activation systems (e.g. Aroclor-induced rat S9), impaired p53 function and altered DNA repair capability. The high concentrations of test chemicals (i.e. 10 mM or 5000 microg/ml, unless precluded by solubility or excessive toxicity) and the high levels of cytotoxicity currently required in mammalian cell genotoxicity tests were discussed as further potential sources of false positive results. Even if the goal is to detect carcinogens with short in vitro tests under more or less acute conditions, it does not seem logical to exceed the capabilities of cellular metabolic turnover, activation and defence processes. The concept of "promiscuous activation" was discussed. For numerous mutagens, the decisive in vivo enzymes are missing in vitro. However, if the substrate concentration is increased sufficiently, some other enzymes (that are unimportant in vivo) may take over the activation-leading to the same or a different active metabolite. Since we often do not use the right enzyme systems for positive controls in vitro, we have to rely on their promiscuous activation, i.e. to use excessive concentrations to get an empirical correlation between genotoxicity and carcinogenicity. A thorough review of published and industry data is urgently needed to determine whether the currently required limit concentration of 10mM or 5000 microg/ml, and high levels of cytotoxicity, are necessary for the detection of in vivo genotoxins and DNA-reactive, mutagenic carcinogens. In addition, various measures of cytotoxicity are currently allowable under OECD test guidelines, but there are few comparative data on whether different measures would result in different maximum concentrations for testing. A detailed comparison of cytotoxicity assessment strategies is needed. An assessment of whether test endpoints can be selected that are not intrinsically associated with cytotoxicity, and therefore are less susceptible to artefacts produced by cytotoxicity, should also be undertaken. There was agreement amongst the workshop participants that cell systems which are p53 and DNA-repair proficient, and have defined Phase 1 and Phase 2 metabolism, covering a broad set of enzyme forms, and used within the context of appropriately set limits of concentration and cytotoxicity, offer the best hope for reduced false positives. Whilst there is some evidence that human lymphocytes are less susceptible to false positives than the current rodent cell lines, other cell systems based on HepG2, TK6 and MCL-5 cells, as well as 3D skin models based on primary human keratinocytes also show some promise. Other human cell lines such as HepaRG, and human stem cells (the target for carcinogenicity) have not been used for genotoxicity investigations and should be considered for evaluation. Genetic engineering is also a valuable tool to incorporate missing enzyme systems into target cells. A collaborative research programme is needed to identify, further develop and evaluate new cell systems with appropriate sensitivity but improved specificity. In order to review current data for selection of appropriate top concentrations, measures and levels of cytotoxicity, metabolism, and to be able to improve existing or validate new assay systems, the participants called for the establishment of an expert group to identify the in vivo genotoxins and DNA-reactive, mutagenic carcinogens that we expect our in vitro genotoxicity assays to detect as well as the non-genotoxins and non-carcinogens we expect them not to detect.
Collapse
Affiliation(s)
- David Kirkland
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Mersch-Sundermann V, Bahorun T, Stahl T, Neergheen VS, Soobrattee MA, Wohlfarth R, Sobel R, Brunn HE, Schmeiser T, Lamy E, Aruoma OI. Assessment of the DNA damaging potency and chemopreventive effects towards BaP-induced genotoxicity in human derived cells by Monimiastrum globosum, an endemic Mauritian plant. Toxicol In Vitro 2006; 20:1427-34. [PMID: 16934955 DOI: 10.1016/j.tiv.2006.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/14/2006] [Accepted: 06/26/2006] [Indexed: 11/28/2022]
Abstract
Naturally occurring compounds have protective effects towards mutagens and carcinogens. The leaf extract of Monimiastrum globosum (Bois de Clous), a Mauritian endemic plant from the Myrtaceae family, was studied for its potency to induce DNA damage in human HepG2 hepatoma cells using DNA migration as a biological endpoint in the alkaline single cell gel electrophoresis (SCGE) assay. This was contrasted with the ability to modulate the benzo[a]pyrene (BaP)-dependent DNA damage in human hepatoma cells. M. globosum caused genotoxicity in HepG2 cells at concentrations exceeding 3mg fresh weight (FW) per ml cell culture in the absence of cytotoxicity. Pre-treatment of the cells with 12.2 microg FW/ml to 1.56 mg FW/ml led to a pronounced antigenotoxic effect towards BaP-induced DNA damage. DNA migration (OTM) was reduced by 66%, 81.5% and 74% for 49, 98 and 195 microg FW/ml, respectively. A U-shaped dose-response curve was derived for M. globosum indicating genotoxic effects in high doses and antigenotoxic effects in low doses. M. globosum extract had total phenolics (15 mg/g FW) with flavonoids (aglycones and conjugates: 8 mg/g FW) and proanthocyanidins (3mg/g FW) as major phenolic subclasses. The hydrolysis of conjugated flavonoids yielded the aglycones quercetin (606 microg/g FW) and kaempferol (117.8 microg/g FW) while HPLC-MS/MS analysis of the total extract revealed free flavonoids such as quercetin (19.2 microg/g FW) and myricetin (2.5 microg/g FW). The antioxidant activity of the extract of M. globosum, assessed by the FRAP and TEAC assays yielded values of 275+/-3.82 micromol/g FW and 346+/-4.2 micromol/g FW, respectively.
Collapse
Affiliation(s)
- Volker Mersch-Sundermann
- Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig University of Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Phenolic compounds protect HepG2 cells from oxidative damage: relevance of glutathione levels. Life Sci 2006; 79:2056-68. [PMID: 16857214 DOI: 10.1016/j.lfs.2006.06.042] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/22/2006] [Accepted: 06/30/2006] [Indexed: 01/16/2023]
Abstract
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.
Collapse
Affiliation(s)
- Cristovao F Lima
- Department of Biology, Centre of Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
226
|
Lazarová M, Lábaj J, Eckl P, Slamenová D. Comparative evaluation of DNA damage by genotoxicants in primary rat cells applying the comet assay. Toxicol Lett 2006; 164:54-62. [PMID: 16384668 DOI: 10.1016/j.toxlet.2005.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 11/24/2022]
Abstract
Various compounds known to cause DNA damage (hydrogen peroxide, visible light-excited methylene blue, N-nitrosomorpholine and benzo[a]pyrene) were tested with different primary rat cells (lymphocytes, testicular cells, type II pneumocytes and hepatocytes) to determine the range of induced DNA damage applying the comet assay. A dose-dependent increase of DNA breaks was observed after treatment with hydrogen peroxide in all cell types studied. The most prominent effect was observed in lymphocytes, whereas only a slight increase of DNA breaks was observed in hepatocytes. Visible light-excited methylene blue caused significant oxidative DNA damage, which did not significantly differ between the cell types used with the exception of hepatocytes, for which a lower level of DNA damage was observed. N-Nitrosomorpholine and benzo[a]pyrene induced a moderate but significant increase of DNA strand breaks in pneumocytes and hepatocytes while in lymphocytes no effect was observed. Our results clearly demonstrate that due to their differential function which is also expressed by the level of drug metabolizing and/or antioxidant enzymes, freshly isolated rat cells (lymphocytes, testicular cells, type II pneumocytes and hepatocytes) respond differently to the exposure to genotoxic agents as detected by comet assay.
Collapse
Affiliation(s)
- Monika Lazarová
- Cancer Research Institute SAS, Vlarska 7, 83391 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
227
|
Cao J, Jia L, Zhou HM, Liu Y, Zhong LF. Mitochondrial and Nuclear DNA Damage Induced by Curcumin in Human Hepatoma G2 Cells. Toxicol Sci 2006; 91:476-83. [PMID: 16537656 DOI: 10.1093/toxsci/kfj153] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Curcumin is extensively used as a spice and pigment and has anticarcinogenic effects that could be linked to its antioxidant properties. However, some studies suggest that this natural compound possesses both pro- and antioxidative effects. In this study, we found that curcumin induced DNA damage to both the mitochondrial and nuclear genomes in human hepatoma G2 cells. Using quantitative polymerase chain reaction and immunocytochemistry staining of 8-hydroxydeoxyguanosine, we demonstrated that curcumin induced dose-dependent damage in both the mitochondrial and nuclear genomes and that the mitochondrial damage was more extensive. Nuclear DNA fragments were also evident in comet assays. The mechanism underlies the elevated level of reactive oxygen species and lipid peroxidation generated by curcumin. The lack of DNA damage at low doses suggested that low levels of curcumin does not induce DNA damage and may play an antioxidant role in carcinogenesis. But at high doses, we found that curcumin imposed oxidative stress and damaged DNA. These data reinforce the hypothesis that curcumin plays a conflicting dual role in carcinogenesis. Also, the extensive mitochondrial DNA damage might be an initial event triggering curcumin-induced cell death.
Collapse
Affiliation(s)
- Jun Cao
- Department of Toxicology, College of Laboratory Medicine, Dalian Medical University, Dalian 116027, China
| | | | | | | | | |
Collapse
|
228
|
Diodovich C, Urani C, Maurici D, Malerba I, Melchioretto P, Orlandi M, Zoia L, Campi V, Carfi' M, Pellizzer C, Gribaldo L. Modulation of different stress pathways after styrene and styrene-7,8-oxide exposure in HepG2 cell line and normal human hepatocytes. J Appl Toxicol 2006; 26:317-25. [PMID: 16705669 DOI: 10.1002/jat.1142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Styrene is one of the most important monomers produced worldwide. IARC classified styrene as a possible carcinogen to humans (group 2B). Styrene-7,8-oxide (SO) is the main reactive metabolite of styrene, and it is found to be genotoxic in several in vitro test systems. Styrene and styrene-7,8-oxide (SO) toxicity to HepG2 cells was investigated by evaluating end-points such as heat shock proteins (Hsps), metallothioneins (MT), apoptosis-related proteins, accumulation of styrene within the cells and expression of two isoforms of cytochrome P450. The potential activity of styrene and styrene-7,8-oxide in modulating gene expression was also investigated. The results showed induction of Hsp70, metallothioneins, BclX(S/L) and c-myc expression and a decrease in Bax expression in HepG2 after treatments, confirming that these compounds activated protective mechanisms. Moreover, up-regulation of TGFbeta2 and TGFbetaRIII in HepG2 cells was found after exposure to styrene, while in human primary hepatocytes these genes were down-regulated after both treatments. Finally, it was found that styrene and SO treatments did not induce CYP1A2 and CYP2E1 protein expression. In conclusion, both compounds caused toxic stress in HepG2 cells, with SO being more toxic; in the meantime, a different effect of the two compounds in HepG2 cells and primary human hepatocytes was observed regarding their activity in gene modulation.
Collapse
|
229
|
Yuan J, Wu XJ, Lu WQ, Cheng XL, Chen D, Li XY, Liu AL, Wu JJ, Xie H, Stahl T, Mersch-Sundermann V. Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells. Int J Hyg Environ Health 2005; 208:481-8. [PMID: 16325558 DOI: 10.1016/j.ijheh.2005.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 08/05/2005] [Accepted: 09/03/2005] [Indexed: 11/15/2022]
Abstract
Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Occupational and Environmental Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Urani C, Melchioretto P, Canevali C, Crosta GF. Cytotoxicity and induction of protective mechanisms in HepG2 cells exposed to cadmium. Toxicol In Vitro 2005; 19:887-92. [PMID: 16081243 DOI: 10.1016/j.tiv.2005.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/17/2005] [Indexed: 11/28/2022]
Abstract
Cadmium is a widespread industrial pollutant. The primary route of exposure occurs via contaminated drinking water or food supplies, and tobacco. Its chronic introduction and ingestion lead to bio-magnification in target organs, as the liver. The aim of this paper is to determine Cd cytotoxic concentrations in the human hepatoma cell line HepG2. Further aims are the study of the activation and involvement of protection mechanisms against Cd hepatotoxicity. Cd was accumulated within the cells, as measured by ICP-AES. Metallothioneins (MT-1 and -2), a family of metal-binding proteins, were induced in a dose-dependent way after treatment with concentrations below the IC(50) value (mean value 22 microM). The over-expression of MT by Zn pre-treatment was able to defend against Cd cytotoxicity. Heat shock protein 70 kDa (hsp70) was induced at high non-cytotoxic concentrations (5, 10 microM) probably as a consequence of proteotoxicity, but its over-expression by a sub-lethal heat shock was not able to protect the cells from Cd cytotoxic concentrations (20, 50, 100 microM).
Collapse
Affiliation(s)
- C Urani
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano Bicocca, piazza della Scienza, 1 20126 Milano, Italy.
| | | | | | | |
Collapse
|
231
|
Knasmüller S, Cavin C, Chakraborty A, Darroudi F, Majer BJ, Huber WW, Ehrlich VA. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: implications for risk assessment. Nutr Cancer 2005; 50:190-7. [PMID: 15623466 DOI: 10.1207/s15327914nc5002_9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
To elucidate the effects of three structurally related mycotoxins, namely, ochratoxin A (OTA), ochratoxin B (OTB), and citrinin (CIT), on human health, we investigated their acute toxic, mitogenic, and genotoxic effects in the human-derived liver cell line (HepG2). These compounds are found in moldy foods in endemic areas of nephropathy, which is associated with urinary tract cancers. In agreement with previous experiments, we found that OTA causes a dose-dependent induction of micronuclei (MN) and DNA migration in the single-cell gel electrophoresis (SCGE) assay, which was statistically significant at concentrations of > or =5 microg/ml. In contrast, OTB was devoid of genotoxic activity under identical conditions, but the compound caused pronounced inhibition of cell division even at doses lower than OTA (10 microg/ml). CIT caused an effect similar to that of OTA in MN assays (significant at dose levels of > or =2.5 microg/ml) but was negative in the SCGE test. All compounds failed to induce mutations in Salmonella/microsome assays in strains TA 98 and TA 100 after addition of HepG2-derived enzyme homogenate (S9-mix). By use of DNA-centromeric probes we found that induction of MN by OTA involves chromosome breaking effects (55-60% of the MN were centromere negative), whereas CIT-induced MN were predominantly centromere positive (78-82%). Our findings indicate that OTB is devoid of genotoxic activity in human-derived cells and therefore probably not a genotoxic carcinogen in humans. In contrast, CIT was an equally potent inducer of MN in HepG2 cells as OTA, but this effect is caused by a different mechanism, namely, aneuploidy. Furthermore, our data suggest that combined exposure to structurally related mycotoxins that cause DNA damage via completely different mechanisms may significantly increase the cancer risk of humans consuming moldy foods.
Collapse
|
232
|
Majer BJ, Hofer E, Cavin C, Lhoste E, Uhl M, Glatt HR, Meinl W, Knasmüller S. Coffee diterpenes prevent the genotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and N-nitrosodimethylamine in a human derived liver cell line (HepG2). Food Chem Toxicol 2005; 43:433-41. [PMID: 15680679 DOI: 10.1016/j.fct.2004.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 11/03/2004] [Indexed: 10/26/2022]
Abstract
Aim of the present experiments was to study the genotoxic effects of coffee diterpenoids, namely cafestol palmitate and a mix of cafestol and kahweol (C+K) in human derived hepatoma (HepG2) cells. Furthermore, we investigated the potential protective properties of these substances towards carcinogens contained in the human diet, namely N-nitrosodimethylamine (NDMA) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). C+K and cafestol palmitate were tested over a broad dose range in micronucleus (MN) assays and no indication for genotoxic effects was seen. In combination experiments with PhIP (300 microM), pronounced inhibition (approximately 1.7-fold) of MN formation was observed with C+K and cafestol palmitate at dose levels > or = 0.9 and 1.7 microg/ml, respectively. Enzyme measurements indicate that the protection is due to inhibition of sulfotransferase, an enzyme involved in the activation of the amine, and/or to induction of UDP-glucuronosyltransferase which detoxifies the DNA-reactive metabolites of PhIP. Furthermore, a significant increase of glutathione-S-transferase was seen, whereas the activities of cytochrome P-450 1A1 and N-acetyltransferase 1 were not significantly altered. Also in combination experiments with C+K and NDMA, strong protective effects (50% reduction of genotoxicity) were seen at low dose levels (> or = 0.3 microg/ml). Since inhibition of MN was also observed when C+K were added after incubation with NDMA, it is likely that the chemoprotective effects are due to induction of DNA repair enzymes. Comparison of data on the effects of C+K on the cholesterol metabolism, which was investigated in earlier in vivo studies, with the present findings suggests that DNA-protective effects take place at exposure levels which are substantially lower than those which cause hypercholesterolemia.
Collapse
Affiliation(s)
- B J Majer
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 2004; 198:315-28. [PMID: 15138058 DOI: 10.1016/j.tox.2004.02.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article gives an overview of the results of genotoxicity tests, which have been conducted within the last 5 years with the human liver cell line HepG2. It is an update of an earlier review from 1998 (by Knasmüller et al.). In addition, a number of publications are discussed which are relevant for the use of human derived liver cell lines in genetic toxicology. They concern the establishment of new endpoints, the development of new cell lines and possible pitfalls and problems. HepG2 cells have been used to test a wide variety of compounds over the last years. The most interesting observations are that the cells are highly sensitive toward polycyclic aromatic hydrocarbons and that genotoxic effects are seen with a number of carcinogenic mycotoxins, that give negative results in other in vitro assays. Carcinogenic metals such as As and Cd caused positive results as well, whereas only marginal or negative results were seen with nitrosamines. The low sensitivity toward these latter carcinogens is probably due to a lack of cytochrome P4502E1 which catalyses their activation. Also, a number of structurally different synthetic pesticides as well as bioactive plant constituents ("natural pesticides") have been tested and with some of them genotoxic effects were found. In most experiments, the formation of micronuclei was used as an endpoint; however also the single cell gel electrophoresis assay is increasingly used. Several transfectant lines of HepG2 have been constructed which express increased levels of phase I enzymes (such as CYP1A1, CYP1A2, CYP2E1 etc.); furthermore, cell lines became available which express human glutathione-S-transferases. These new clones might be particularly useful for the investigation of specific classes of genotoxicants and also for mechanistic studies. Apart from HepG2 cells, a number of other human derived liver cell lines have been isolated, but so far no data from genotoxicity experiments are available, except for Hep3B cells, which were compared with HepG2 and found to be less sensitive in general. Studies with HepG2 clones of a different origin indicate that the cells differ in regard to their sensitivity toward genotoxicants; also medium effects and the cultivation time might affect the outcome of genotoxicity studies. Overall, the results support the assumption that HepG2 cells are a suitable tool for genotoxicity testing.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|