201
|
Amazan D, Rey A, Fernández E, López-Bote C. Natural vitamin E (d-α-tocopherol) supplementation in drinking water prevents oxidative stress in weaned piglets. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
202
|
Kedika B, Patri SV. Synthesis and Gene Transfer Activities of Novel Serum Compatible Reducible Tocopherol-Based Cationic Lipids. Mol Pharm 2012; 9:1146-62. [DOI: 10.1021/mp200435y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bhavani Kedika
- Department of Chemistry, National Institute of Technology, Warangal 506004, Andhra Pradesh, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology, Warangal 506004, Andhra Pradesh, India
| |
Collapse
|
203
|
Patel V, Rink C, Gordillo GM, Khanna S, Gnyawali U, Roy S, Shneker B, Ganesh K, Phillips G, More JL, Sarkar A, Kirkpatrick R, Elkhammas EA, Klatte E, Miller M, Firstenberg MS, Chiocca EA, Nesaretnam K, Sen CK. Oral tocotrienols are transported to human tissues and delay the progression of the model for end-stage liver disease score in patients. J Nutr 2012; 142:513-9. [PMID: 22298568 PMCID: PMC3278267 DOI: 10.3945/jn.111.151902] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The natural vitamin E family is composed of 8 members equally divided into 2 classes: tocopherols (TCP) and tocotrienols (TE). A growing body of evidence suggests TE possess potent biological activity not shared by TCP. The primary objective of this work was to determine the concentrations of TE (200 mg mixed TE, b.i.d.) and TCP [200 mg α-TCP, b.i.d.)] in vital tissues and organs of adults receiving oral supplementation. Eighty participants were studied. Skin and blood vitamin E concentrations were determined from healthy participants following 12 wk of oral supplementation of TE or TCP. Vital organ vitamin E levels were determined by HPLC in adipose, brain, cardiac muscle, and liver of surgical patients following oral TE or TCP supplementation (mean duration, 20 wk; range, 1-96 wk). Oral supplementation of TE significantly increased the TE tissue concentrations in blood, skin, adipose, brain, cardiac muscle, and liver over time. α-TE was delivered to human brain at a concentration reported to be neuroprotective in experimental models of stroke. In prospective liver transplantation patients, oral TE lowered the model for end-stage liver disease (MELD) score in 50% of patients supplemented, whereas only 20% of TCP-supplemented patients demonstrated a reduction in MELD score. This work provides, to our knowledge, the first evidence demonstrating that orally supplemented TE are transported to vital organs of adult humans. The findings of this study, in the context of the current literature, lay the foundation for Phase II clinical trials testing the efficacy of TE against stroke and end-stage liver disease in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bassel Shneker
- Department of Neurology, The Ohio State University Medical Center, Columbus, OH
| | | | - Gary Phillips
- Center for Biostatistics, The Ohio State University, Columbus, OH
| | - J. Layne More
- Department of Neurology, The Ohio State University Medical Center, Columbus, OH
| | | | | | | | - Emily Klatte
- Department of Neurology, The Ohio State University Medical Center, Columbus, OH
| | | | | | | | - Kalanithi Nesaretnam
- Food Technology and Nutrition Unit, Malaysian Palm Oil Board, Selangor, Malaysia
| | - Chandan K. Sen
- Department of Surgery,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
204
|
Guan F, Li G, Liu AB, Lee MJ, Yang Z, Chen YK, Lin Y, Shih W, Yang CS. δ- and γ-tocopherols, but not α-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats. Cancer Prev Res (Phila) 2012; 5:644-54. [PMID: 22366914 DOI: 10.1158/1940-6207.capr-11-0521] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cancer preventive activity of vitamin E has been extensively discussed, but the activities of specific forms of tocopherols have not received sufficient attention. Herein, we compared the activities of δ-tocopherol (δ-T), γ-T, and α-T in a colon carcinogenesis model. Male F344 rats, seven weeks old, were given two weekly subcutaneous injections of azoxymethane (AOM) each at a dose of 15 mg/kg body weight. Starting 1 week before the AOM injection, the animals were maintained on a modified AIN76A diet, or the same diet containing 0.2% of δ-T, γ-T, α-T, or a γ-T-rich mixture of tocopherols (γ-TmT), until the termination of the experiment at 8 weeks after the second AOM injection. δ-T treatment showed the strongest inhibitory effect, decreasing the numbers of aberrant crypt foci by 62%. γ-T and γ-TmT were also effective, but α-T was not. Immunohistochemical analysis showed that δ-T and γ-T treatments reduced the levels of 4-hydroxynonenal and nitrotyrosine and the expression of cyclin D1 in the colon, preserved the expression of PPAR-γ, and decreased the serum levels of prostaglandin E2 and 8-isoprostane. Supplementation with 0.2% δ-T, γ-T, or α-T increased the respective levels of tocopherols and their side-chain degradation metabolites in the serum and colon tissues. Rather high concentrations of δ-T and γ-T and their metabolites were found in colon tissues. Our study provides the first evidence for the much higher cancer preventive activity of δ-T and γ-T than α-T in a chemically induced colon carcinogenesis model. It further suggests that δ-T is more effective than γ-T.
Collapse
Affiliation(s)
- Fei Guan
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Lysosomal vitamin E accumulation in Niemann–Pick type C disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:150-60. [DOI: 10.1016/j.bbadis.2011.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022]
|
206
|
Fairus S, Nor RM, Cheng HM, Sundram K. Alpha-tocotrienol is the most abundant tocotrienol isomer circulated in plasma and lipoproteins after postprandial tocotrienol-rich vitamin E supplementation. Nutr J 2012; 11:5. [PMID: 22252050 PMCID: PMC3286415 DOI: 10.1186/1475-2891-11-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/17/2012] [Indexed: 11/27/2022] Open
Abstract
Background Tocotrienols (T3) and tocopherols (T), both members of the natural vitamin E family have unique biological functions in humans. T3 are detected in circulating human plasma and lipoproteins, although at concentrations significantly lower than α-tocopherol (α-T). T3, especially α-T3 is known to be neuropotective at nanomolar concentrations and this study evaluated the postprandial fate of T3 and α-T in plasma and lipoproteins. Methods Ten healthy volunteers (5 males and 5 females) were administered a single dose of vitamin E [526 mg palm tocotrienol-rich fraction (TRF) or 537 mg α-T] after 7-d pre-conditioning on a T3-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of T and T3 isomers in plasma, triacylglycerol-rich particles (TRP), LDL, and HDL were measured at each postprandial interval. Results After TRF supplementation, plasma α-T3 and γ-T3 peaked at 5 h (α-T3: 4.74 ± 1.69 μM; γ-T3: 2.73 ± 1.27 μM). δ-T3 peaked earlier at 4 h (0.53 ± 0.25 μM). In contrast, α-T peaked at 6 h (30.13 ± 2.91 μM) and 8 h (37.80 ± 3.59 μM) following supplementation with TRF and α-T, respectively. α-T was the major vitamin E isomer detected in plasma, TRP, LDL, and HDL even after supplementation with TRF (composed of 70% T3). No T3 were detected during fasted states. T3 are detected postprandially only after TRF supplementation and concentrations were significantly lower than α-T. Conclusions Bio-discrimination between vitamin E isomers in humans reduces the rate of T3 absorption and affects their incorporation into lipoproteins. Although low absorption of T3 into circulation may impact some of their physiological functions in humans, T3 have biological functions well below concentration noted in this study.
Collapse
Affiliation(s)
- Syed Fairus
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | | |
Collapse
|
207
|
Da Costa LA, García-Bailo B, Badawi A, El-Sohemy A. Genetic determinants of dietary antioxidant status. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:179-200. [PMID: 22656378 DOI: 10.1016/b978-0-12-398397-8.00008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress refers to a physiological state in which an imbalance between pro-oxidants and antioxidants results in oxidative damage. Oxidative stress has been associated with the development of numerous chronic diseases such as type 2 diabetes, cardiovascular disease (CVD), osteoporosis, and cancer. Endogenous production of free radicals occurs during normal physiological processes, such as aerobic metabolism, oxidation of biological molecules, and enzymatic activity. Environmental factors such as ultraviolet radiation, air pollution, and cigarette smoking can also contribute to the accumulation of free radicals in the body. Excess free radicals can damage tissues and promote the upregulation of disease-related pathways such as inflammation. Modulating oxidative stress by dietary supplementation with antioxidant micronutrients such as vitamins C and E or phytochemicals such as different carotenoids may help prevent or delay the development of certain diseases. However, research on antioxidant supplementation and disease has yielded inconsistent findings, which may be due, in part, to interindividual genetic variation. Polymorphisms in genes coding for endogenous antioxidant enzymes or proteins responsible for the absorption, transport, distribution, or metabolism of dietary antioxidants have been shown to affect antioxidant status and response to supplementation. These genetic variants may also interact with environmental factors, such as diet, to determine an individual's overall antioxidant status. This chapter examines current knowledge of the relationship between genetic variation and dietary antioxidant status.
Collapse
Affiliation(s)
- Laura A Da Costa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
208
|
Vasanthi HR, Parameswari RP, Das DK. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. GENES & NUTRITION 2012; 7:19-28. [PMID: 21604025 PMCID: PMC3250529 DOI: 10.1007/s12263-011-0227-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/08/2011] [Indexed: 01/01/2023]
Abstract
Tocotrienols are a class of vitamin E which modulates several mechanisms associated with cardioprotection, anti-cancer, anti-diabetic, and neuroprotection. Unlike other Vitamin E-like compounds, tocotrienols possess inimitable properties. Quite a lot of studies have determined the cardioprotective abilities of tocotrienols and have been shown to possess novel hypocholesterolemic effects together with an ability to reduce the atherogenic apolipoprotein and lipoprotein plasma levels. In addition, tocotrienol has been suggested to have an antioxidant, anti-thrombotic, and anti-tumor effect indicating that tocotrienol may serve as an effective agent in the prevention and/or treatment of cardiovascular disease and cancer. The bioactivity exhibited is due to the structural characteristics of tocotrienols. Rich sources of tocotrienols which include rice bran, palm oil, and other edible oils exhibit protective effect against cardiovascular disorders. The conclusions drawn from the early literature that vitamin E group of compounds provides an inevitable role in cardioprotection is sustained in many more recent studies.
Collapse
Affiliation(s)
- Hannah R. Vasanthi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry India
| | - R. P. Parameswari
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
| | - Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110 USA
| |
Collapse
|
209
|
Increased antioxidant capacity in the plasma of dogs after a single oral dosage of tocotrienols. Br J Nutr 2011; 106 Suppl 1:S116-9. [PMID: 22005405 DOI: 10.1017/s0007114511000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The intestinal absorption of tocotrienols (TCT) in dogs is, to our knowledge, so far unknown. Adult Beagle dogs (n 8) were administered a single oral dosage of a TCT-rich fraction (TRF; 40 mg/kg body weight) containing 32 % α-TCT, 2 % β-TCT, 27 % γ-TCT, 14 % δ-TCT and 25 % α-tocopherol (α-TCP). Blood was sampled at baseline (fasted), 1, 2, 3, 4, 5, 6, 8 and 12 h after supplementation. Plasma and chylomicron concentrations of TCT and α-TCP were measured at each time point. Plasma TAG were measured enzymatically, and plasma antioxidant capacity was assessed by the Trolox equivalent antioxidant capacity assay. In fasted dogs, levels of TCT were 0·07 (sd 0.03) μmol/l. Following the administration of the TRF, total plasma TCT peaked at 2 h (7.16 (SD 3.88) μmol/l; P < 0.01) and remained above baseline levels (0.67 (SD 0.44) μmol/l; P < 0.01) at 12 h. The TCT response in chylomicrons paralleled the increase in TCT in plasma with a maximum peak (3.49 (SD 2.06) μmol/l; P < 0.01) at 2 h post-dosage. α-TCP was the major vitamin E detected in plasma and unaffected by TRF supplementation. The Trolox equivalent values increased from 2 h (776 (SD 51.2) μmol/l) to a maximum at 12 h (1130 (SD 7.72) μmol/l; P < 0.01). The results show that TCT are detected in postprandial plasma of dogs. The increase in antioxidant capacity suggests a potential beneficial role of TCT supplementation in the prevention or treatment of several diseases in dogs.
Collapse
|
210
|
Shichiri M, Kono N, Shimanaka Y, Tanito M, Rotzoll DE, Yoshida Y, Hagihara Y, Tamai H, Arai H. A novel role for α-tocopherol transfer protein (α-TTP) in protecting against chloroquine toxicity. J Biol Chem 2011; 287:2926-34. [PMID: 22147702 PMCID: PMC3268449 DOI: 10.1074/jbc.m111.321281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chloroquine (CQ) is a widely prescribed anti-malarial agent and is also prescribed to treat autoimmune diseases. Clinical treatment with CQ is often accompanied by serious side effects such as hepatitis and retinopathy. As a weak base, CQ accumulates in intracellular acidic organelles, raises the pH, and induces osmotic swelling and permeabilization of acidic organelles, which account for CQ-induced cytotoxicity. We reported previously that CQ treatment caused α-tocopherol transfer protein (α-TTP), a gene product of familial vitamin E deficiency, to change its location from the cytosol to the surface of acidic organelles. Here we show that α-TTP plays a novel role in protecting against CQ toxicity both in vitro and in vivo. In the presence of CQ, rat hepatoma McARH7777 cells, which do not express α-TTP endogenously, showed more severe cytotoxicity, such as larger vacuolation of acidic organelles and caspase activation, than α-TTP transfectant cells. Similarly, α-TTP knockout mice showed more severe CQ toxicity, such as hepatotoxicity and retinopathy, than wild-type mice. These effects were not ameliorated by vitamin E supplementation. In contrast to bafilomycin A1 treatment, which prevents CQ accumulation in cells by raising the pH of acidic organelles, α-TTP expression prevented CQ accumulation without affecting the pH of acidic organelles. Taken together, our data suggest that α-TTP protects against CQ toxicity by preventing CQ accumulation in acidic organelles through a mechanism distinct from vitamin E transport.
Collapse
Affiliation(s)
- Mototada Shichiri
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Hentati F, El-Euch G, Bouhlal Y, Amouri R. Ataxia with vitamin E deficiency and abetalipoproteinemia. HANDBOOK OF CLINICAL NEUROLOGY 2011; 103:295-305. [PMID: 21827896 DOI: 10.1016/b978-0-444-51892-7.00018-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
212
|
Poston L, Igosheva N, Mistry HD, Seed PT, Shennan AH, Rana S, Karumanchi SA, Chappell LC. Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am J Clin Nutr 2011; 94:1980S-1985S. [PMID: 21613560 DOI: 10.3945/ajcn.110.001156] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress is widely implicated in failed reproductive performance, including infertility, miscarriage, diabetes-related congenital malformations, and preeclampsia. Maternal obesity is a strong risk factor for preeclampsia, and in a recent study we observed oxidative stress in the oocytes of obese animals before pregnancy as well as in early-stage embryos. This adds to the growing evidence that investigators need to focus more on the preconceptual period in efforts to prevent pregnancy disorders, including those related to oxidative stress. Our research has also focused on the role of free radicals and antioxidant capacity in preeclampsia. By measuring markers of lipid peroxidation and antioxidant capacity, we obtained unequivocal evidence for oxidative stress in this disorder. Partial failure of the process of placentation has been implicated, and recent findings suggest that ischemia-reperfusion in the placenta may contribute to oxidative stress in trophoblasts. Endoplasmic reticulum stress in the placenta may also play a role. Randomized controlled trials have been conducted by our group as well as others to determine whether early supplementation with vitamins C and E in women at risk of preeclampsia is beneficial, but these trials have shown no evidence that these supplements can prevent preeclampsia. Whether this indicates that an inappropriate antioxidant strategy was used or supplementation was administered too late in gestation to be beneficial is not known. Other potential approaches for preventing preeclampsia through amelioration of oxidative stress include the use of supplements in the preconceptual period, selenium supplements, antiperoxynitrite strategies, and statins.
Collapse
Affiliation(s)
- Lucilla Poston
- Division of Women's Health, King's College London, Kings Health Partners-Women's Health, Clinical Academic Grouping, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Miyazawa T, Nakagawa K, Sookwong P. Health benefits of vitamin E in grains, cereals and green vegetables. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
214
|
Webster RD. Voltammetry of the liposoluble vitamins (A, D, E and K) in organic solvents. CHEM REC 2011; 12:188-200. [DOI: 10.1002/tcr.201100005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Indexed: 12/31/2022]
|
215
|
Smolarek AK, Suh N. Chemopreventive activity of vitamin E in breast cancer: a focus on γ- and δ-tocopherol. Nutrients 2011; 3:962-86. [PMID: 22254089 PMCID: PMC3257724 DOI: 10.3390/nu3110962] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/20/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023] Open
Abstract
Vitamin E consists of eight different variants: α-, β-, γ-, and δ-tocopherols (saturated phytyl tail) and α-, β-, γ-, and δ-tocotrienols (unsaturated phytyl tail). Cancer prevention studies with vitamin E have primarily utilized the variant α-tocopherol. To no avail, a majority of these studies focused on variant α-tocopherol with inconsistent results. However, γ-tocopherol, and more recently δ-tocopherol, have shown greater ability to reduce inflammation, cell proliferation, and tumor burden. Recent results have shown that γ-enriched mixed tocopherols inhibit the development of mammary hyperplasia and tumorigenesis in animal models. In this review, we discuss the possible differences between the variant forms, molecular targets, and cancer-preventive effects of tocopherols. We recommend that a γ-enriched mixture, γ- and δ-tocopherol, but not α-tocopherol, are promising agents for breast cancer prevention and warrant further investigation.
Collapse
Affiliation(s)
- Amanda K. Smolarek
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, 164 Frelinghuysen Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-732-445-3400 (ext. 226); Fax: +1-732-445-0687
| |
Collapse
|
216
|
Analyses of marine-derived tocopherol in processed foods containing fish. Food Chem 2011; 129:279-283. [DOI: 10.1016/j.foodchem.2011.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
|
217
|
Tissue Distribution of α- and γ-Tocotrienol and γ-Tocopherol in Rats and Interference with Their Accumulation by α-Tocopherol. Lipids 2011; 47:129-39. [DOI: 10.1007/s11745-011-3620-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
|
218
|
Effect of level and source of vitamin E addition of a diet enriched with sunflower and linseed oils on growth and slaughter traits of rabbits. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
219
|
Uto-Kondo H, Tani M, Kiyose C, Usuda M, Taguchi C, Hasegawa M, Machida N, Kishimoto Y, Saito H, Ueda T, Igarashi O, Kondo K. gamma-Tocopherol Accelerated Sodium Excretion in a Dose-Dependent Manner in Rats with a High Sodium Intake. J Clin Biochem Nutr 2011; 41:211-7. [PMID: 18299718 PMCID: PMC2243243 DOI: 10.3164/jcbn.2007030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 05/09/2007] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that γ-tocopherol (γ-Toc) displays a natriuretic potency in rats fed a NaCl diet and administered 20 mg γ-Toc. In this study, we investigated whether γ-Toc has natriuretic potency at a dose lower or higher than 20 mg in rats given a NaCl diet. Male rats were fed a control diet or a NaCl diet and administered either placebo or 10, 20 or 40 mg of γ-Toc. The rat urine was collected for 24 hours (divided into 6 hour periods) and the 2,7,8-trimethyl-2-(2'-carboxyethyl)-6-hydroxychroman (γ-CEHC) level, the sodium excretion content, and the urine volume were determined. The 24-hour γ-CEHC and sodium levels in the urine of the NaCl groups given 20 mg or 40 mg γ-Toc were significantly higher than those in the placebo group. The peak levels of urine sodium and γ-CEHC in the NaCl group given 40 mg γ-Toc appeared at 0–6 h, which was a more rapid increase than that seen in the group given 20 mg γ-Toc. The 24-hour urine volumes of the NaCl groups given 10 and 20 mg γ-Toc were significantly higher than the urine volume of the placebo group. Our findings suggested that γ-Toc increased sodium excretion in a dose-dependent manner in rats fed a NaCl diet. Moreover, a high dose of γ-Toc may accelerate its metabolism and cause an increase in the rate of sodium excretion.
Collapse
Affiliation(s)
- Harumi Uto-Kondo
- Institute of Environmental Science for Human Life, Ochanomizu University, Tokyo 112-8610, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Antioxidant-rich food intakes and their association with blood total antioxidant status and vitamin C and E levels in community-dwelling seniors from the Quebec longitudinal study NuAge. Exp Gerontol 2011; 46:475-81. [DOI: 10.1016/j.exger.2011.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/17/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
|
221
|
Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E. GENES AND NUTRITION 2011; 7:29-41. [PMID: 21505906 DOI: 10.1007/s12263-011-0219-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/23/2022]
Abstract
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated "highly metabolized" T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.
Collapse
|
222
|
Vignini A, Alidori A, Montesi L, Raffaelli F, Nanetti L, Bertoli E, Mazzanti L. Vitamin E, diabetes and related diseases: an update. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2011; 4:3-9. [DOI: 10.1007/s12349-010-0006-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
223
|
Fukuzawa K, Ouchi A, Shibata A, Nagaoka SI, Mukai K. Kinetic study of aroxyl radical-scavenging action of vitamin E in membranes of egg yolk phosphatidylcholine vesicles. Chem Phys Lipids 2011; 164:205-10. [DOI: 10.1016/j.chemphyslip.2011.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
224
|
Gee PT. Unleashing the untold and misunderstood observations on vitamin E. GENES & NUTRITION 2011; 6:5-16. [PMID: 21437026 PMCID: PMC3040795 DOI: 10.1007/s12263-010-0180-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/07/2010] [Indexed: 02/07/2023]
Abstract
Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways for tocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect on tocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.
Collapse
Affiliation(s)
- Ping Tou Gee
- Palm Nutraceuticals Sdn. Bhd., Batu 7, Jalan Mawai, 81900 Kota Tinggi, Johor Malaysia
| |
Collapse
|
225
|
Zhang WX, Thakur V, Lomize A, Pogozheva I, Panagabko C, Cecchini M, Baptist M, Morley S, Manor D, Atkinson J. The contribution of surface residues to membrane binding and ligand transfer by the α-tocopherol transfer protein (α-TTP). J Mol Biol 2011; 405:972-88. [PMID: 21110980 PMCID: PMC3038628 DOI: 10.1016/j.jmb.2010.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/13/2010] [Indexed: 12/20/2022]
Abstract
Previous work has shown that the α-tocopherol transfer protein (α-TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which α-TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of α-TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of α-TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired α-TTP-assisted secretion of α-tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.
Collapse
Affiliation(s)
- Wen Xiao Zhang
- Department of Chemistry, and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Varsha Thakur
- Department of Nutrition, CASE School of Medicine, Case Western Reserve University, Cleveland OH, 44106, USA
| | - Andrei Lomize
- College of Pharmacy, University of Michigan Ann Arbor, MI 48109-1065, USA
| | - Irina Pogozheva
- College of Pharmacy, University of Michigan Ann Arbor, MI 48109-1065, USA
| | - Candace Panagabko
- Department of Chemistry, and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Matt Cecchini
- Department of Chemistry, and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Matilda Baptist
- Department of Chemistry, and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Samantha Morley
- Department of Nutrition, CASE School of Medicine, Case Western Reserve University, Cleveland OH, 44106, USA
| | - Danny Manor
- Department of Nutrition, CASE School of Medicine, Case Western Reserve University, Cleveland OH, 44106, USA
| | - Jeffrey Atkinson
- Department of Chemistry, and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| |
Collapse
|
226
|
Alpsoy L, Yalvac ME. Key roles of vitamins A, C, and E in aflatoxin B1-induced oxidative stress. VITAMINS AND HORMONES 2011; 86:287-305. [PMID: 21419276 DOI: 10.1016/b978-0-12-386960-9.00012-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Aflatoxins (Aspergillus flavus toxins) are one of the natural toxic molecules which are produced by a group of fungi called Aspergillus. Foods and drinks contaminated with aflatoxins cause global health and environmental problems. Today in many developing countries, these toxins are leading cause of some liver cancers and serious gastrointestinal problems. Aflatoxins, which are well known to be mutagenic, carcinogenic, hepatotoxic, and immunosuppressive, exert inhibitory effects on biological processes including DNA synthesis, DNA-dependent RNA synthesis, DNA repair, and protein synthesis. Aflatoxins B(1) (AFB(1)) is the most widespread oxidative agent of the aflatoxins. Numerous diverse compounds and extracts have been reported to reduce the aflatoxins induced oxidative stress in the body. Most of these inhibitors including phenylpropanoids, terpenoids, alkaloids, and vitamins are originally derived from plants. Among these, being essential biomolecules, vitamins are used as coenzymes in very significant biological reactions. They also function as nonenzymatic antioxidative agents protecting the cells from oxidative stress-induced toxicity and transformation. This chapter reviews the mechanism of AFB(1)-induced oxidative stress and focuses on the protective effects of vitamins A, C, and E on reducing this stress.
Collapse
Affiliation(s)
- Lokman Alpsoy
- Fatih University, Science and Art Faculty, Department of Biology, Buyukcekmece, Istanbul, Turkey
| | | |
Collapse
|
227
|
|
228
|
Kedika B, Patri SV. Design, Synthesis, and inVitro Transfection Biology of Novel Tocopherol Based Monocationic Lipids: A Structure−Activity Investigation. J Med Chem 2010; 54:548-61. [DOI: 10.1021/jm100704u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bhavani Kedika
- Department of Chemistry, National Institute of Technology, Warangal 506004, Andhra Pradesh, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology, Warangal 506004, Andhra Pradesh, India
| |
Collapse
|
229
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
230
|
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80:1613-31. [PMID: 20696139 PMCID: PMC2956867 DOI: 10.1016/j.bcp.2010.07.043] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Initially discovered in 1938 as a "fertility factor," vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
231
|
Rey A, López-Bote C, Daza A, Lauridsen C. Accumulation and evolution of tocopherols in dry-cured hams from Iberian pigs as affected by their feeding and rearing system. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.05.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
232
|
Saito Y, Nishio K, Akazawa YO, Yamanaka K, Miyama A, Yoshida Y, Noguchi N, Niki E. Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med 2010; 49:1542-1549. [PMID: 20736061 DOI: 10.1016/j.freeradbiomed.2010.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/29/2010] [Accepted: 08/14/2010] [Indexed: 02/08/2023]
Abstract
Glutamate plays a critical role in pathological cell death within the nervous system. Vitamin E is known to protect cells from glutamate cytotoxicity, either by direct antioxidant action or by indirect nonantioxidant action. Further, α-tocotrienol (α-T3) has been reported to be more effective against glutamate-induced cytotoxicity than α-tocopherol (α-T). To shed more light on the function of vitamin E against glutamate toxicity, the protective effects of eight vitamin E homologues and related compounds, 2,2,5,7,8-pentamethyl-6-chromanol (PMC) and 2-carboxy-2,5,7,8-pentamethyl-6-chromanol (Trolox), against glutamate-induced cytotoxicity on immature primary cortical neurons were examined using different protocols. Glutamate induced the depletion of glutathione and generation of reactive oxygen species and lipid hydroperoxides, leading to cell death. α-, β-, γ-, and δ-T and -T3; PMC; and Trolox all exerted cytoprotective effects against glutamate-induced cytotoxicity, and a longer preincubation time increased both the cellular content and the cytoprotective effects of T more significantly than those of T3, the effect of preincubation being relatively small for T3 and PMC. The protective effect of Trolox was less potent than that of PMC. The cytoprotective effects of α-T and α-T3 corresponded to their intracellular content. Further, lipid peroxidation products were measured after reduction with triphenylphosphine followed by saponification with potassium hydroxide. It was found that glutamate treatment increased the formation of hydroxyeicosatetraenoic acid, hydroxyoctadecadienoic acid, and 8-F(2)-isoprostane 2α, which was suppressed by α-T. This study shows that vitamin E protects cells from glutamate-induced toxicity primarily by direct antioxidant action and that the apparent higher capacity of T3 compared to T is ascribed to the faster uptake of T3 compared to T into the cells. It is suggested that, considering the bioavailability, α-T should be more effective than α-T3 against glutamate toxicity in vivo.
Collapse
Affiliation(s)
- Yoshiro Saito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Associations of dietary dark-green and deep-yellow vegetables and fruits with cervical intraepithelial neoplasia: modification by smoking. Br J Nutr 2010; 105:928-37. [DOI: 10.1017/s0007114510004447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Smoking has been positively and fruit and vegetable intake has been negatively associated with cervical cancer, the second most common cancer among women worldwide. However, a lower consumption of fruits and reduced serum carotenoids have been observed among smokers. It is not known whether the smoking effect on the risk of cervical neoplasia is modified by a low intake of fruits and vegetables. The present study examined the combined effects of tobacco smoking and diet using a validated FFQ and serum carotenoid and tocopherol levels on cervical intraepithelial neoplasia grade 3 (CIN3) risk in a hospital-based case–control study conducted in São Paulo, Brazil, between 2003 and 2005. The sample comprised 231 incident, histologically confirmed cases of CIN3 and 453 controls. A low intake ( ≤ 39 g) of dark-green and deep-yellow vegetables and fruits without tobacco smoking had a lesser effect on CIN3 (OR 1·14; 95 % CI 0·49, 2·65) than among smokers with higher intake ( ≥ 40 g; OR 1·83; 95 % CI 0·73, 4·62) after adjusting for confounders. The OR for the joint exposure of tobacco smoking and low intake of vegetables and fruits was greater (3·86; 95 % CI 1·74, 8·57; P for trend < 0·001) compared with non-smokers with higher intake after adjusting for confounding variables and human papillomavirus status. Similar results were observed for total fruit, serum total carotene (including β-, α- and γ-carotene) and tocopherols. These findings suggest that the effect of nutritional factors on CIN3 is modified by smoking.
Collapse
|
234
|
Antioxidant vitamins and their use in preventing cardiovascular disease. Molecules 2010; 15:8098-110. [PMID: 21063272 PMCID: PMC3602790 DOI: 10.3390/molecules15118098] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 10/21/2010] [Accepted: 10/27/2010] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis remains one of the leading causes of death in Western populations. Subsequent to the discovery that oxidative stress plays a pivotal role in the development and progression of atherosclerosis, vitamins C and E, along with other antioxidants, were studied as potential therapies for the disease. However, while in vitro and in vivo studies showed promising antiatherogenic effects for vitamins C and E, clinical trials in which patients were given high doses of vitamin E or C showed no benefit and even possible harm. This review will attempt to summarize the known mechanistic data regarding the biochemical effects of vitamins C and E and their relevance to atherosclerosis, and offer an explanation for the failure of clinical trials to show that supplementation with these vitamins provides any benefit when given indiscriminately. We provide one example of how pharmacogenomics may be used to identify a sub-population which may indeed benefit from antioxidant supplementation.
Collapse
|
235
|
Ledesma MC, Jung-Hynes B, Schmit TL, Kumar R, Mukhtar H, Ahmad N. Selenium and vitamin E for prostate cancer: post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) status. Mol Med 2010; 17:134-43. [PMID: 20882260 DOI: 10.2119/molmed.2010.00136] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/16/2010] [Indexed: 01/08/2023] Open
Abstract
Various formulations of selenium and vitamin E, both essential human dietary components, have been shown to possess a therapeutic and preventive effect against prostate cancer. Fortuitous results of clinical trials also implied a risk-reduction effect of selenium and vitamin E supplements. The Selenium and Vitamin E Cancer Prevention Trial (SELECT), using oral selenium and vitamin E supplementation in disease-free volunteers, was designed to test a prostate cancer chemoprevention hypothesis. SELECT was terminated early because of both safety concerns and negative data for the formulations and doses given. Here, we review and discuss the studies done before and since the inception of SELECT, as well as the parameters of the trial itself. We believe that there is a lack of appropriate in vivo preclinical studies on selenium and vitamin E despite many promising in vitro studies on these agents. It seems that the most effective doses and formulations of these agents for prostate cancer chemoprevention have yet to be tested. Also, improved understanding of selenium and vitamin E biology may facilitate the discovery of these doses and formulations.
Collapse
Affiliation(s)
- Mark C Ledesma
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
236
|
Abstract
Vitamin E is known as the most important lipid antioxidant and is widely used to prevent age-associated diseases. Despite increasing knowledge about human vitamin E metabolism, little is known to justify its widespread use. As meta-analyses revealed even harmful effects of high vitamin E doses, a profound understanding of vitamin E metabolism is mandatory. By recent advances in analytical methodology, new metabolites with distinct physicochemical and biological properties were discovered. This review covers current methods to analyze vitamin E metabolites in biological samples. Special emphasis is laid on analytical applications for the identification and quantification of metabolites with a modified hydroxychromanol ring or a truncated side chain.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
237
|
Gille L, Staniek K, Rosenau T, Duvigneau JC, Kozlov AV. Tocopheryl quinones and mitochondria. Mol Nutr Food Res 2010; 54:601-15. [PMID: 20169582 DOI: 10.1002/mnfr.200900386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past, the role of tocopherols and tocopheryl hydroquinones as antioxidants in mitochondria has been examined. However, structural properties of tocopherols and tocopheryl quinones (arrangement of polar/apolar moieties) have also been recognized as being crucial for the selective transport of RRR-alpha-congeners compared with other tocopherols in the cell, suggesting that these properties might be generally important for the binding of vitamin E-related compounds to proteins and enzymes in mitochondria. Therefore, direct modulation of mitochondrial activities, such as bioenergetics, production of reactive oxygen species and apoptosis, not exclusively related to the redox activity of these compounds is increasingly studied. This overview focuses on the influence of alpha-/gamma-tocopheryl quinones and their parent alpha-/gamma-tocopherols on mitochondrial functions, including formation of tocopheryl quinones, their analytical aspects, their potential as alternative substrates and their inhibitory activity for some mitochondrial functions. It is shown that the understanding of how tocopheryl quinones and tocopherols interfere with mitochondrial functions on the molecular level is still incomplete and that a better comprehension requires further research activities.
Collapse
Affiliation(s)
- Lars Gille
- Molecular Pharmacology and Toxicology Unit, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
238
|
Nazrun A, Norazlina M, Norliza M, Nirwana SI. Comparison of the Effects of Tocopherol and Tocotrienol on Osteoporosis in Animal Models. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.561.568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
239
|
LeBlanc MA, McMaster CR. Surprising roles for phospholipid binding proteins revealed by high throughput geneticsThis paper is one of a selection of papers published in this special issue entitled “Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:565-74. [DOI: 10.1139/o09-171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccharomyces cerevisiae remains an ideal organism for studying the cell biological roles of lipids in vivo, as yeast has phospholipid metabolic pathways similar to mammalian cells, is easy and economical to manipulate, and is genetically tractable. The availability of isogenic strains containing specific genetic inactivation of each non-essential gene allowed for the development of a high-throughput method, called synthetic genetic analysis (SGA), to identify and describe precise pathways or functions associated with specific genes. This review describes the use of SGA to aid in elucidating the function of two lipid-binding proteins that regulate vesicular transport, Sec14 and Kes1. Sec14 was first identified as a phosphatidylcholine (PC) – phosphatidylinositol (PI) transfer protein required for viability, with reduced Sec14 function resulting in diminished vesicular transport out of the trans-Golgi. Although Sec14 is required for cell viability, inactivating the KES1 gene that encodes for a member of the oxysterol binding protein family in cells lacking Sec14 function results in restoration of vesicular transport and cell growth. SGA analysis identified a role for Kes1 and Sec14 in regulating the level and function of Golgi PI-4-phosphate (PI-4-P). SGA also determined that Sec14 not only regulates vesicular transport out of the trans-Golgi, but also transport from endosomes to the trans-Golgi. Comparing SGA screens in databases, coupled with genetic and cell biological analyses, further determined that the PI-4-P pool affected by Kes1 is generated by the PI 4-kinase Pik1. An important biological role for Sec14 and Kes1 revealed by SGA is coordinate regulation of the Pik1-generated Golgi PI-4-P pool that in turn is essential for vesicular transport into and out of the trans-Golgi.
Collapse
Affiliation(s)
- Marissa A. LeBlanc
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | - Christopher R. McMaster
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
240
|
Sylvester PW, Kaddoumi A, Nazzal S, El Sayed KA. The Value of Tocotrienols in the Prevention and Treatment of Cancer. J Am Coll Nutr 2010; 29:324S-333S. [DOI: 10.1080/07315724.2010.10719847] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
241
|
Abstract
A growing body of research supports that members of the vitamin E family are not redundant with respect to their biological function. Palm oil derived from Elaeis guineensis represents the richest source of the lesser characterized vitamin E, alpha-tocotrienol. One of 8 naturally occurring and chemically distinct vitamin E analogs, alpha-tocotrienol possesses unique biological activity that is independent of its potent antioxidant capacity. Current developments in alpha-tocotrienol research demonstrate neuroprotective properties for the lipid-soluble vitamin in brain tissue rich in polyunsaturated fatty acids (PUFAs). Arachidonic acid (AA), one of the most abundant PUFAs of the central nervous system, is highly susceptible to oxidative metabolism under pathologic conditions. Cleaved from the membrane phospholipid bilayer by cytosolic phospholipase A(2), AA is metabolized by both enzymatic and nonenzymatic pathways. A number of neurodegenerative conditions in the human brain are associated with disturbed PUFA metabolism of AA, including acute ischemic stroke. Palm oil-derived alpha-tocotrienol at nanomolar concentrations has been shown to attenuate both enzymatic and nonenzymatic mediators of AA metabolism and neurodegeneration. On a concentration basis, this represents the most potent of all biological functions exhibited by any natural vitamin E molecule. Despite such therapeutic potential, the scientific literature on tocotrienols accounts for roughly 1% of the total literature on vitamin E, thus warranting further investment and investigation.
Collapse
Affiliation(s)
- Chandan K Sen
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA.
| | | | | |
Collapse
|
242
|
Soeta S, Higuchi M, Yoshimura I, Itoh R, Kimura N, Aamsaki H. Effects of vitamin E on the osteoblast differentiation. J Vet Med Sci 2010; 72:951-7. [PMID: 20215720 DOI: 10.1292/jvms.09-0487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin E is thought to affect bone formation and bone remodeling. In this study, we investigated the effects of vitamin E (alpha-tocopherol and delta-tocopherol) on the osteoblasts isolated from rat calvariae. At 4 and 7 days (Day 4 and 7) after induction of osteoblastic differentiation, treatment of alpha-tocopherol (100 and 200 microM) and delta-tocopherol (2 and 20 microM) for 3 days significantly decreased alkaline phophatase activity of the cultured osteoblasts. At Day 14, however, no significant change was detected in ALP activity and expression of bone sialoprotein mRNA in the osteoblasts treated with alpha-tocopherol or delta-tocopherol for 3 days. Expression of osteocalcin mRNA was decreased by treatment of alpha-tocopherol (100 and 200 microM) and delta-tocopherol (2 and 20 microM) at Day 4 and 7. At Day 14, expression of osteocalcin mRNA was decreased only with treatment of 200 microM alpha-tocopherol. In addition, the noncalcified nodules were decreased by treatment of alpha-tocopherol (200 microM) and delta-tocopherol (20 microM) at Day 7. However, treatment of alpha-tocopherol and delta-tocopherol showed no significant change of formation of calcified nodules at Day 14. These results indicate that vitamin E inhibits differentiation of osteoblasts especially from early stage to osteoid-producing stage.
Collapse
Affiliation(s)
- Satoshi Soeta
- Department of Veterinary Anatomy, Nippon Veterinary and Animal Science University, Japan.
| | | | | | | | | | | |
Collapse
|
243
|
|
244
|
Vitamin E. Antioxidants (Basel) 2010. [DOI: 10.1201/9781439822173.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
245
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
246
|
|
247
|
|
248
|
|
249
|
Replacement of alpha-tocopherol by beta-tocopherol enhances resistance to photooxidative stress in a xanthophyll-deficient strain of Chlamydomonas reinhardtii. EUKARYOTIC CELL 2009; 8:1648-57. [PMID: 19717743 DOI: 10.1128/ec.00124-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tocopherols (vitamin E) comprise a class of lipid-soluble antioxidants synthesized only in plants, algae, and some cyanobacteria. The majority of tocopherols in photosynthetic cells is in the alpha form, which has the highest vitamin E activity in humans, whereas the beta, gamma, and delta forms normally account for a small percentage of total tocopherols. The antioxidant activities of these forms of tocopherol differ depending on the experimental system, and their relative activities in vivo are unclear. In a screen for suppressors of the xanthophyll-deficient npq1 lor1 double mutant of Chlamydomonas reinhardtii, we isolated a vte3 mutant lacking alpha-tocopherol but instead accumulating beta-tocopherol. The vte3 mutant contains a mutation in the homolog of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase gene found in plants. The vte3 npq1 lor1 triple mutant with beta-tocopherol survived better under photooxidative stress than did the npq1 lor1 mutant, but the vte3 mutant on its own did not have an obvious phenotype. Following transfer from low light to high light, the triple mutant showed a higher efficiency of photosystem II, a higher level of cell viability, and a lower level of lipid peroxide, a marker for oxidative stress, than did the npq1 lor1 mutant. After high-light transfer, the level of the photosystem II reaction center protein, D1, was also higher in the vte3 npq1 lor1 mutant, but the rate of D1 photodamage was not significantly different from that of the npq1 lor1 mutant. Taken together, these results suggest that the replacement of alpha-tocopherol by beta-tocopherol in a xanthophyll-deficient strain of Chlamydomonas reinhardtii contributes to better survival under conditions of photooxidative stress.
Collapse
|
250
|
Dersjant-Li Y, Peisker M. Utilization of stereoisomers from alpha-tocopherol in livestock animals. J Anim Physiol Anim Nutr (Berl) 2009; 94:413-21. [PMID: 19663978 DOI: 10.1111/j.1439-0396.2009.00924.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-tocopherol derived from natural source is a single stereoisomer (i.e. RRR-alpha-tocopherol), whereas synthetic alpha-tocopherol consists of a mixture of eight stereoisomers, including RRR-, RRS-, RSR-, RSS-alpha-tocopherol (the 2R isomers, R configuration at positions 2' of the phytyl tail) and SRR-, SSR-, SRS- and SSS-alpha-tocopherol (the 2S isomers, S configuration at positions 2' of the phytyl tail). R and S are assigned by the sequence-rule procedure, i.e. the priorities of the substituents decrease in clockwise direction or anti-clockwise direction at each chiral centre. Not all these stereoisomers are equally bio-available, which can be explained by the differences in the rate of degradation, transportation and retention. Humans and livestock animals can only utilize the 2R forms, while the 2S forms have very low bio-availability or basically are not bio-available. The utilization of 2R forms differs between different animal species. For humans and livestock animals, RRR-alpha-tocopherol has the highest bio-availability compared with other stereoisomers, while other 2R forms have lower bio-availability compared with RRR-alpha-tocopherol. The relative bio-availability of RRR- and all-rac-alpha-tocopherol is related to animal species, ages of animals and assessment criteria. In general, recent literature studies have demonstrated that the relative bioavailability of RRR- and all-rac-alpha-tocopherol is 2:1, differing from the commonly used conversion factor of 1.36:1. The latter was based on rat-resorption-gestation test. Most recent studies have shown that this conversion factor of 1.36:1 is not applicable to livestock animals and based on other metabolic functions. When IU is required to express vitamin E activity, new conversion factors need to be defined for livestock animals. Quantitative determination of bio-availability of the individual alpha-tocopherol stereoisomers will give a more detailed picture of the bioavailability of natural and synthetic vitamin E forms.
Collapse
Affiliation(s)
- Y Dersjant-Li
- ADM Specialty Ingredients (Europe) B.V., Koog aan de Zaan, The Netherlands.
| | | |
Collapse
|