201
|
Matsumiya S, Ishino S, Ishino Y, Morikawa K. Physical interaction between proliferating cell nuclear antigen and replication factor C fromPyrococcus furiosus. Genes Cells 2002; 7:911-22. [PMID: 12296822 DOI: 10.1046/j.1365-2443.2002.00572.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA), which is recognized as a DNA polymerase processivity factor, has direct interactions with various proteins involved in the important genetic information processes in Eukarya. We determined the crystal structure of PCNA from the hyperthermophilic archaeon, Pyrococcus furiosus (PfuPCNA) at 2.1 A resolution, and found that the toroidal ring-shaped structure, which consists of homotrimeric molecules, is highly conserved between the Eukarya and Archaea. This allowed us to examine its interaction with the loading factor at the atomic level. RESULTS The replication factor C (RFC) is known as the loading factor of PCNA on to the DNA strand. P. furiosus RFC (PfuRFC) has a PCNA binding motif (PIP-box) at the C-terminus of the large subunit (RFCL). An 11 residue-peptide containing a PIP-box sequence of RFCL inhibited the PCNA-dependent primer extension ability of P. furiosus PolI in a concentration-dependent manner. To understand the molecular interaction mechanism of PCNA with PCNA binding proteins, we solved the crystal structure of PfuPCNA complexed with the PIP-box peptide. The interaction mode of the two molecules is remarkably similar to that of human PCNA and a peptide containing the PIP-box of p21(WAF1/CIP1). Moreover, the PIP-box binding may have some effect on the stability of the ring structure of PfuPCNA by some domain shift. CONCLUSIONS Our structural analysis on PfuPCNA suggests that the interaction mode of the PIP-box with PCNA is generally conserved among the PCNA interacting proteins and that the functional meaning of the interaction via the PIP-box possibly depends on each protein. A movement of the C-terminal region of the PCNA monomer by PIP-box binding may cause the PCNA ring to be more rigid, suitable for its functions.
Collapse
Affiliation(s)
- Shigeki Matsumiya
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
202
|
Bruck I, Yuzhakov A, Yurieva O, Jeruzalmi D, Skangalis M, Kuriyan J, O'Donnell M. Analysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J Biol Chem 2002; 277:17334-48. [PMID: 11859073 DOI: 10.1074/jbc.m110198200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This report takes a proteomic/genomic approach to characterize the DNA polymerase III replication apparatus of the extreme thermophile, Aquifex aeolicus. Genes (dnaX, holA, and holB) encoding the subunits required for clamp loading activity (tau, delta, and delta') were identified. The dnaX gene produces only the full-length product, tau, and therefore differs from Escherichia coli dnaX that produces two proteins (gamma and tau). Nonetheless, the A. aeolicus proteins form a taudeltadelta' complex. The dnaN gene encoding the beta clamp was identified, and the taudeltadelta' complex is active in loading beta onto DNA. A. aeolicus contains one dnaE homologue, encoding the alpha subunit of DNA polymerase III. Like E. coli, A. aeolicus alpha and tau interact, although the interaction is not as tight as the alpha-tau contact in E. coli. In addition, the A. aeolicus homologue to dnaQ, encoding the epsilon proofreading 3'-5'-exonuclease, interacts with alpha but does not form a stable alpha.epsilon complex, suggesting a need for a brace or bridging protein to tightly couple the polymerase and exonuclease in this system. Despite these differences to the E. coli system, the A. aeolicus proteins function to yield a robust replicase that retains significant activity at 90 degrees C. Similarities and differences between the A. aeolicus and E. coli pol III systems are discussed, as is application of thermostable pol III to biotechnology.
Collapse
Affiliation(s)
- Irina Bruck
- Rockefeller University and Howard Hughes Medical Institute, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Nakajima R, Masukata H. SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol Biol Cell 2002; 13:1462-72. [PMID: 12006645 PMCID: PMC111119 DOI: 10.1091/mbc.02-01-0006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Initiation of DNA replication in eukaryotic cells is regulated through the ordered assembly of replication complexes at origins of replication. Association of Cdc45 with the origins is a crucial step in assembly of the replication machinery, hence can be considered a target for the regulation of origin activation. To examine the process required for SpCdc45 loading, we isolated fission yeast SpSld3, a counterpart of budding yeast Sld3 that interacts with Cdc45. SpSld3 associates with the replication origin during G1-S phases and this association depends on Dbf4-dependent (DDK) kinase activity. In the corresponding period, SpSld3 interacts with minichromosome maintenance (MCM) proteins and then with SpCdc45. A temperature-sensitive sld3-10 mutation suppressed by the multicopy of the sna41+ encoding SpCdc45 impairs loading of SpCdc45 onto chromatin. In addition, this mutation leads to dissociation of preloaded Cdc45 from chromatin in the hydroxyurea-arrested S phase, and DNA replication upon removal of hydroxyurea is retarded. Thus, we conclude that SpSld3 is required for stable association of Cdc45 with chromatin both in initiation and elongation of DNA replication. The DDK-dependent origin association suggests that SpSld3 is involved in temporal regulation of origin firing.
Collapse
Affiliation(s)
- Reiko Nakajima
- Department of Biology, Graduate School of Science, Osaka University, 560-0043, Japan
| | | |
Collapse
|
204
|
Bullard JM, Williams JC, Acker WK, Jacobi C, Janjic N, McHenry CS. DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem 2002; 277:13401-8. [PMID: 11823461 DOI: 10.1074/jbc.m110833200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.
Collapse
|
205
|
Bullard JM, Pritchard AE, Song MS, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS. A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex. J Biol Chem 2002; 277:13246-56. [PMID: 11809766 DOI: 10.1074/jbc.m108708200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex.
Collapse
|
206
|
Abstract
The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
Collapse
Affiliation(s)
- S J Benkovic
- Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
207
|
van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 2002; 1:409-59. [PMID: 11701636 DOI: 10.1146/annurev.genom.1.1.409] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are a highly conserved group of enzymes that unwind DNA. They function in all processes in which access to single-stranded DNA is required, including DNA replication, DNA repair and recombination, and transcription of RNA. Defects in helicases functioning in one or more of these processes can result in characteristic human genetic disorders in which genomic instability and predisposition to cancer are common features. So far, different helicase genes have been found mutated in six such disorders. Mutations in XPB and XPD can result in xeroderma pigmentosum, Cockayne syndrome, or trichothiodystrophy. Mutations in the RecQ-like genes BLM, WRN, and RECQL4 can result in Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. Because XPB and XPD function in both nucleotide excision repair and transcription initiation, the cellular phenotypes associated with a deficiency of each one of them include failure to repair mutagenic DNA lesions and defects in the recovery of RNA transcription after UV irradiation. The functions of the RecQ-like genes are unknown; however, a growing body of evidence points to a function in restarting DNA replication after the replication fork has become stalled. The genomic instability associated with mutations in the RecQ-like genes includes spontaneous chromosome instability and elevated mutation rates. Mouse models for nearly all of these entities have been developed, and these should help explain the widely different clinical features that are associated with helicase mutations.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
208
|
Leu FP, O'Donnell M. Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 2001; 276:47185-94. [PMID: 11572866 DOI: 10.1074/jbc.m106780200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.
Collapse
Affiliation(s)
- F P Leu
- Department of Pharmacology, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
209
|
O'Donnell M, Jeruzalmi D, Kuriyan J. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr Biol 2001; 11:R935-46. [PMID: 11719243 DOI: 10.1016/s0960-9822(01)00559-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent determinations of the crystal structure of the Escherichia coli gamma complex and delta-beta assembly have shed light on the bacterial clamp loading reaction. In this review, we discuss the structures of delta-beta and the gamma(3)deltadelta' complex and its mechanism of action as a clamp loader of the E. coli beta sliding clamp. We also expand upon the implications of the structural findings to the structure and function of the eukaryotic clamp loader, RFC, and the structure of E. coli DNA polymerase III holoenzyme.
Collapse
Affiliation(s)
- M O'Donnell
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
210
|
Song MS, Dallmann HG, McHenry CS. Carboxyl-terminal domain III of the delta' subunit of the DNA polymerase III holoenzyme binds delta. J Biol Chem 2001; 276:40668-79. [PMID: 11518714 DOI: 10.1074/jbc.m106373200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta and delta' subunits are essential components of the DNA polymerase III holoenzyme, required for assembly and function of the DnaX-complex clamp loader (tau2gammadeltadelta'chipsi). The x-ray crystal structure of delta' contains three structural domains (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localize the delta-binding domain of delta' to a carboxyl-terminal domain III by quantifying the interaction of delta with a series of delta' fusion proteins lacking specific domains. Purification and immobilization of the fusion proteins were facilitated by the inclusion of a tag containing hexahistidine and a short biotinylation sequence. Both NH2- and COOH-terminal-tagged full-length delta' were soluble and had specific activities comparable with that of native delta'. delta and delta' form a 1:1 heterodimer with a dissociation constant (K(D)) of 5 x 10(-7) m determined by equilibrium sedimentation. The K(D) determined by surface plasmon resonance was comparable. Domain III alone bound delta at an affinity comparable to that of wild type delta', whereas proteins lacking domain III did not bind delta. Using a panel of domain-specific anti-delta' monoclonal antibodies, we found that two of the domain III-specific monoclonal antibodies interfered with delta-delta' interaction and abolished the replication activity of DNA polymerase-III holoenzyme.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
211
|
Smelkova N, Marians KJ. Timely release of both replication forks from oriC requires modulation of origin topology. J Biol Chem 2001; 276:39186-91. [PMID: 11504719 DOI: 10.1074/jbc.m104411200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of DNA replication at oriC occurs bidirectionally both in vivo and in vitro. Although the proteins involved in establishing the replication forks are known, little is known about the events that ensure that initiation is bidirectional. We show here that in the absence of DNA gyrase, replication fork progression from oriC on a plasmid template in vitro is unidirectional, although both replication forks have formed at the origin. There was no bias in the release of one fork or the other, ruling out protein blockage of one fork as a possible reason for the asymmetric release. Timely release of both forks required the presence of either DNA gyrase or topoisomerase IV, suggesting that modulation of the topology of the origin region is the governing factor.
Collapse
Affiliation(s)
- N Smelkova
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
212
|
Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, McHenry CS. The delta and delta ' subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. J Biol Chem 2001; 276:35165-75. [PMID: 11432857 DOI: 10.1074/jbc.m100389200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
delta and delta' are required for assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. We developed protocols for generating highly purified preparations of delta and delta'. In holoenzyme reconstitution assays, delta' could not be replaced by delta, tau, or gamma, even when either of the latter were present at a 10,000-fold molar excess. Likewise, delta could not be replaced by delta', tau, or gamma. Bacterial strains bearing chromosomal knockouts of either the holA(delta) or holB(delta') genes were not viable, demonstrating that both delta and delta' are essential. Western blots of isolated initiation complexes demonstrated the presence of both delta and delta'. However, in the absence of chipsi and single-stranded DNA-binding protein, a stable initiation complex lacking deltadelta' was isolated by gel filtration. Lack of delta-delta' decreased the rate of elongation about 3-fold, and the extent of processive replication was significantly decreased. Adding back delta-delta' but not chipsi, delta, or delta' alone restored the diminished activity, indicating that in addition to being key components required for the beta loading activity of the DnaX complex, deltadelta' is present in initiation complex and is required for processive elongation.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Pritchard AE, McHenry CS. Assembly of DNA polymerase III holoenzyme: co-assembly of gamma and tau is inhibited by DnaX complex accessory proteins but stimulated by DNA polymerase III core. J Biol Chem 2001; 276:35217-22. [PMID: 11463784 DOI: 10.1074/jbc.m102735200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the two alternative Escherichia coli dnaX gene products, tau and gamma, are found co-assembled in purified DNA polymerase III holoenzyme, the pathway of assembly is not well understood. When the 10 subunits of holoenzyme are simultaneously mixed, they rapidly form a nine-subunit assembly containing tau but not gamma. We developed a new assay based on the binding of complexes containing biotin-tagged tau to streptavidin-coated agarose beads to investigate the effects of various DNA polymerase III holoenzyme subunits on the kinetics of co-assembly of gamma and tau into the same complex. Auxiliary proteins in combination with delta' almost completely blocked co-assembly, whereas chipsi or delta' alone slowed the association only moderately compared with the interaction of tau with gamma alone. In contrast, DNA polymerase III core, in the absence of deltadelta' and chipsi, accelerated the co-assembly of tau and gamma, suggesting a role for DNA polymerase III' [tau(2)(pol III core)(2)] in the assembly pathway of holoenzyme.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Biochemistry and Molecular Genetics and the Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
214
|
Kadyrov FA, Drake JW. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks. J Biol Chem 2001; 276:29559-66. [PMID: 11390383 DOI: 10.1074/jbc.m101310200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.
Collapse
Affiliation(s)
- F A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA.
| | | |
Collapse
|
215
|
Glover BP, McHenry CS. The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 2001; 105:925-34. [PMID: 11439188 DOI: 10.1016/s0092-8674(01)00400-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
216
|
Caspi R, Pacek M, Consiglieri G, Helinski DR, Toukdarian A, Konieczny I. A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J 2001; 20:3262-71. [PMID: 11406602 PMCID: PMC150194 DOI: 10.1093/emboj/20.12.3262] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmid RK2 is unusual in its ability to replicate stably in a wide range of Gram-negative bacteria. The replication origin (oriV) and a plasmid-encoded initiation protein (TrfA; expressed as 33 and 44 kDa forms) are essential for RK2 replication. To examine initiation events in bacteria unrelated to Escherichia coli, the genes encoding the replicative helicase, DnaB, of Pseudomonas putida and Pseudomonas aeruginosa were isolated and used to construct protein expression vectors. The purified proteins were tested for activity along with E.coli DnaB at RK2 oriV. Each helicase could be recruited and activated at the RK2 origin in the presence of the host-specific DnaA protein and the TrfA protein. Escherichia coli or P.putida DnaB was active with either TrfA-33 or TrfA-44, while P.aeruginosa DnaB required TrfA-44 for activation. Moreover, unlike the E.coli DnaB helicase, both Pseudomonas helicases could be delivered and activated at oriV in the absence of an ATPase accessory protein. Thus, a DnaC-like accessory ATPase is not universally required for loading the essential replicative helicase at a replication origin.
Collapse
Affiliation(s)
- Ron Caspi
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Marcin Pacek
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Giac Consiglieri
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Donald R. Helinski
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Aresa Toukdarian
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Igor Konieczny
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| |
Collapse
|
217
|
Stewart J, Hingorani MM, Kelman Z, O'Donnell M. Mechanism of beta clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 2001; 276:19182-9. [PMID: 11279099 DOI: 10.1074/jbc.m100592200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta sliding clamp encircles the primer-template and tethers DNA polymerase III holoenzyme to DNA for processive replication of the Escherichia coli genome. The clamp is formed via hydrophobic and ionic interactions between two semicircular beta monomers. This report demonstrates that the beta dimer is a stable closed ring and is not monomerized when the gamma complex clamp loader (gamma(3)delta(1)delta(1)chi(1)psi(1)) assembles the beta ring around DNA. delta is the subunit of the gamma complex that binds beta and opens the ring; it also does not appear to monomerize beta. Point mutations were introduced at the beta dimer interface to test its structural integrity and gain insight into its interaction with delta. Mutation of two residues at the dimer interface of beta, I272A/L273A, yields a stable beta monomer. We find that delta binds the beta monomer mutant at least 50-fold tighter than the beta dimer. These findings suggest that when delta interacts with the beta clamp, it binds one beta subunit with high affinity and utilizes some of that binding energy to perform work on the dimeric clamp, probably cracking one dimer interface open.
Collapse
Affiliation(s)
- J Stewart
- Rockefeller University and Howard Hughes Medical Institute, Laboratory of DNA Replication, New York, New York 10021, USA
| | | | | | | |
Collapse
|
218
|
Le Chatelier E, Jannière L, Ehrlich SD, Canceill D. The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMbeta 1 from Gram-positive bacteria. J Biol Chem 2001; 276:10234-46. [PMID: 11124267 DOI: 10.1074/jbc.m010118200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RepE protein of the broad host range pAMbeta1 plasmid from Gram-positive bacteria is absolutely required for replication. To elucidate its role, we purified the protein to near homogeneity and analyzed its interactions with different nucleic acids using gel retardation assays and footprinting experiments. We show that RepE is monomeric in solution and binds specifically, rapidly, and durably to the origin at a unique double-stranded binding site immediately upstream from the initiation site of DNA replication. The binding induces only a weak bend (31 degrees ). Unexpectedly, RepE also binds nonspecifically to single-stranded DNA with a 2-4-fold greater affinity than for double-stranded origin. On a supercoiled plasmid, RepE binding to the double-stranded origin leads to the denaturation of the AT-rich sequence immediately downstream from the binding site to form an open complex. This open complex is atypical since (i) its formation requires neither multiple RepE binding sites on the double-stranded origin nor strong bending of the origin, (ii) it occurs in the absence of any cofactors (only RepE and supercoiling are required), and (iii) its melted region serves as a substrate for RepE binding. These original properties together with the fact that pAMbeta1 replication depends on a transcription step through the origin on DNA polymerase I to initiate replication and on a primosome to load the replisome suggest that the main function of RepE is to assist primer generation at the origin.
Collapse
Affiliation(s)
- E Le Chatelier
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
219
|
Bárcena M, Ruiz T, Donate LE, Brown SE, Dixon NE, Radermacher M, Carazo JM. The DnaB.DnaC complex: a structure based on dimers assembled around an occluded channel. EMBO J 2001; 20:1462-8. [PMID: 11250911 PMCID: PMC145514 DOI: 10.1093/emboj/20.6.1462] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Replicative helicases are motor proteins that unwind DNA at replication forks. Escherichia coli DnaB is the best characterized member of this family of enzymes. We present the 26 A resolution three-dimensional structure of the DnaB hexamer in complex with its loading partner, DnaC, obtained from cryo-electron microscopy. Analysis of the volume brings insight into the elaborate way the two proteins interact, and provides a structural basis for control of the symmetry state and inactivation of the helicase by DnaC. The complex is arranged on the basis of interactions among DnaC and DnaB dimers. DnaC monomers are observed for the first time to arrange as three dumb-bell-shaped dimers that interlock into one of the faces of the helicase. This could be responsible for the freezing of DnaB in a C(3) architecture by its loading partner. The central channel of the helicase is almost occluded near the end opposite to DnaC, such that even single-stranded DNA could not pass through. We propose that the DnaB N-terminal domain is located at this face.
Collapse
Affiliation(s)
| | - Teresa Ruiz
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | | | - Susan E. Brown
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | - Nicholas E. Dixon
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | - Michael Radermacher
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| | - José María Carazo
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Max-Planck Institut für Biophysik, Heinrich Hoffmann Strasse 7, 60528 Frankfurt am Main, Germany and Research School of Chemistry, Australian National University, Canberra 0200, Australia Corresponding author e-mail:
| |
Collapse
|
220
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
221
|
Gao D, McHenry CS. tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J Biol Chem 2001; 276:4441-6. [PMID: 11078744 DOI: 10.1074/jbc.m009830200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction between the tau subunit of the DNA polymerase III holoenzyme and the DnaB helicase is critical for coupling the replicase and the primosomal apparatus at the replication fork (Kim, S., Dallmann, H. G., McHenry, C. S., and Marians, K. J. (1996) Cell 84, 643-650). In the preceding manuscript, we reported the identification of five putative structural domains within the tau subunit (Gao, D., and McHenry, C. (2000) J. Biol. Chem. 275, 4433-4440). As part of our systematic effort to assign functions to each of these domains, we expressed a series of truncated, biotin-tagged tau fusion proteins and determined their ability to bind DnaB by surface plasmon resonance on streptavidin-coated surfaces. Only tau fusion proteins containing domain IV bound DnaB. The DnaB-binding region was further limited to a highly basic 66-amino acid residue stretch within domain IV. Unlike the binding of immobilized tau(4) to the DnaB hexamer, the binding of monomeric domain IV to DnaB(6) was dependent upon the density of immobilized domain IV, indicating that DnaB(6) is bound by more than one tau protomer. This observation implies that both the leading and lagging strand polymerases are tethered to the DnaB helicase via dimeric tau. These double tethers of the leading and lagging strand polymerases proceeding through the tau-tau link and an additional tau-DnaB link are likely important for the dynamic activities of the replication fork.
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry, Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
222
|
Gao D, McHenry CS. tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain. J Biol Chem 2001; 276:4433-40. [PMID: 11078743 DOI: 10.1074/jbc.m009828200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau subunit dimerizes Escherichia coli DNA polymerase III core through interactions with the alpha subunit. In addition to playing critical roles in the structural organization of the holoenzyme, tau mediates intersubunit communications required for efficient replication fork function. We identified potential structural domains of this multifunctional subunit by limited proteolysis of C-terminal biotin-tagged tau proteins. The cleavage sites of each of eight different proteases were found to be clustered within four regions of the tau subunit. The second susceptible region corresponds to the hinge between domain II and III of the highly homologous delta' subunit, and the third region is near the C-terminal end of the tau-delta' alignment (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). We propose a five-domain structure for the tau protein. Domains I and II are based on the crystallographic structure of delta' by Guenther and colleagues. Domains III-V are based on our protease cleavage results. Using this information, we expressed biotin-tagged tau proteins lacking specific protease-resistant domains and analyzed their binding to the alpha subunit by surface plasmon resonance. Results from these studies indicated that the alpha binding site of tau lies within its C-terminal 147 residues (domain V).
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | | |
Collapse
|
223
|
Gao D, McHenry CS. Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by gamma and tau, binds delta delta ' and chi psi. J Biol Chem 2001; 276:4447-53. [PMID: 11078742 DOI: 10.1074/jbc.m009827200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex of the DNA polymerase holoenzyme assembles the beta(2) processivity factor onto the primed template enabling highly processive replication. The key ATPases within this complex are tau and gamma, alternative frameshift products of the dnaX gene. Of the five domains of tau, I-III are shared with gamma In vivo, gamma binds the auxiliary subunits deltadelta' and chipsi (Glover, B. P., and McHenry, C. S. (2000) J. Biol. Chem. 275, 3017-3020). To localize deltadelta' and chipsi binding domains within gamma domains I-III, we measured the binding of purified biotin-tagged DnaX proteins lacking specific domains to deltadelta' and chipsi by surface plasmon resonance. Fusion proteins containing either DnaX domains I-III or domains III-V bound deltadelta' and chipsi subunits. A DnaX protein only containing domains I and II did not bind deltadelta' or chipsi. The binding affinity of chipsi for DnaX domains I-III and domains III-V was the same as that of chipsi for full-length tau, indicating that domain III contained all structural elements required for chipsi binding. Domain III of tau also contained deltadelta' binding sites, although the interaction between deltadelta' and domains III-V of tau was 10-fold weaker than the interaction between deltadelta' and full length tau. The presence of both delta and chipsi strengthened the delta'-C(0)tau interaction by at least 15-fold. Domain III was the only domain common to all of tau fusion proteins whose interaction with delta' was enhanced in the presence of delta and chipsi. Thus, domain III of the DnaX proteins not only contains the deltadelta' and chipsi binding sites but also contains the elements required for the positive cooperative assembly of the DnaX complex.
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry, Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
224
|
Yamamoto K, Low B, Rutherford SA, Rajagopalan M, Madiraju MV. The Mycobacterium avium-intracellulare complex dnaB locus and protein intein splicing. Biochem Biophys Res Commun 2001; 280:898-903. [PMID: 11162608 DOI: 10.1006/bbrc.2000.4202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intein is a protein sequence mebedded in-frame within a precursor protein and is posttranslationally excised by a self-catalytic protein splicing process. Protein splicing is believed to follow a pathway requiring Cys, Ser, or Thr residues at the intein N-terminus and substitutions other than Cys, Ser, or Thr residues prevent splicing. We show that the dnaB locus in some strains of M. avium-intracellulare complex (MAC) contains intein and that the intein N-terminal amino acid is Ala [Ala-type]. We demonstrate that the M. avium DnaB precursor protein undergoes posttranslational proteolytic processing producing proteins corresponding to the sizes of the DnaB and intein. Further, by Western analysis we detect a protein corresponding to the size of the spliced DnaB protein in MAC cell extracts. Together, these results indicate that the Ala-type MAC DnaB inteins can splice and provide another example that points to an interesting alternative splicing mechanism (Southworth, M. W., Benner, J., and Perler, F. B., EMBO J. 19, 5019-5026, 2000).
Collapse
Affiliation(s)
- K Yamamoto
- Biomedical Research, University of Texas Health Center at Tyler, 11937 US Highway at 271, Tyler, Texas 75708-3154, USA
| | | | | | | | | |
Collapse
|
225
|
Marians KJ. Crawling and wiggling on DNA: structural insights to the mechanism of DNA unwinding by helicases. Structure 2000; 8:R227-35. [PMID: 11188698 DOI: 10.1016/s0969-2126(00)00539-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Crystal structures have recently been solved of the monomeric DNA helicase PcrA bound to forked DNA, and of the hexameric helicase domain of the bacteriophage T7 gene 4 protein, a replication fork DNA helicase/primase. These structures have led to the elaboration of the first molecular models to describe DNA helicase action.
Collapse
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
226
|
Maliszewska-Tkaczyk M, Jonczyk P, Bialoskorska M, Schaaper RM, Fijalkowska IJ. SOS mutator activity: unequal mutagenesis on leading and lagging strands. Proc Natl Acad Sci U S A 2000; 97:12678-83. [PMID: 11050167 PMCID: PMC18823 DOI: 10.1073/pnas.220424697] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major pathway of mutagenesis in Escherichia coli is mediated by the inducible SOS response. Current models of SOS mutagenesis invoke the interaction of RecA and UmuD'(2)C proteins with a stalled DNA replication complex at sites of DNA lesions or poorly extendable terminal mismatches, resulting in an (error-prone) continuation of DNA synthesis. The precise mechanisms of SOS-mediated lesion bypass or mismatch extension are not known. Here, we have studied mutagenesis on the E. coli chromosome in recA730 strains. In recA730 strains, the SOS system is expressed constitutively, resulting in a spontaneous mutator effect (SOS mutator) because of reduced replication fidelity. We investigated whether during SOS mutator activity replication fidelity might be altered differentially in the leading and lagging strand of replication. Pairs of recA730 strains were constructed differing in the orientation of the lac operon relative to the origin of replication. The strains were also mismatch-repair defective (mutL) to facilitate scoring of replication errors. Within each pair, a given lac sequence is replicated by the leading-strand machinery in one orientation and by the lagging-strand machinery in the other orientation. Measurements of defined lac mutant frequencies in such pairs revealed large differences between the two orientations. Furthermore, in all cases, the frequency bias was the opposite of that seen in normal cells. We suggest that, for the lacZ target used in this study, SOS mutator activity operates with very different efficiency in the two strands. Specifically, the lagging strand of replication appears most susceptible to the SOS mutator effect.
Collapse
Affiliation(s)
- M Maliszewska-Tkaczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
227
|
Leu FP, Hingorani MM, Turner J, O'Donnell M. The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli. J Biol Chem 2000; 275:34609-18. [PMID: 10924523 DOI: 10.1074/jbc.m005495200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.
Collapse
Affiliation(s)
- F P Leu
- Department of Pharmacology, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
228
|
Li X, Marians KJ. Two distinct triggers for cycling of the lagging strand polymerase at the replication fork. J Biol Chem 2000; 275:34757-65. [PMID: 10948202 DOI: 10.1074/jbc.m006556200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase III core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the 3'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5'-end of the previous Okazaki fragment.
Collapse
Affiliation(s)
- X Li
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
229
|
Walker JR, Hervas C, Ross JD, Blinkova A, Walbridge MJ, Pumarega EJ, Park MO, Neely HR. Escherichia coli DNA polymerase III tau- and gamma-subunit conserved residues required for activity in vivo and in vitro. J Bacteriol 2000; 182:6106-13. [PMID: 11029431 PMCID: PMC94745 DOI: 10.1128/jb.182.21.6106-6113.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli DNA polymerase III tau and gamma subunits are single-strand DNA-dependent ATPases (the latter requires the delta and delta' subunits for significant ATPase activity) involved in loading processivity clamp beta. They are homologous to clamp-loading proteins of many organisms from phages to humans. Alignment of 27 prokaryotic tau/gamma homologs and 1 eukaryotic tau/gamma homolog has refined the sequences of nine previously defined identity and functional motifs. Mutational analysis has defined highly conserved residues required for activity in vivo and in vitro. Specifically, mutations introduced into highly conserved residues within three of those motifs, the P loop, the DExx region, and the SRC region, inactivated complementing activity in vivo and clamp loading in vitro and reduced ATPase catalytic efficiency in vitro. Mutation of a highly conserved residue within a fourth motif, VIc, inactivated clamp-loading activity and reduced ATPase activity in vitro, but the mutant gene, on a multicopy plasmid, retained complementing activity in vivo and the mutant gene also supported apparently normal replication and growth as a haploid, chromosomal allele.
Collapse
Affiliation(s)
- J R Walker
- Section of Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
Replication fork arrest can cause DNA double-strand breaks (DSBs). These DSBs are caused by the action of the Holliday junction resolvase RuvABC, indicating that they are made by resolution of Holliday junctions formed at blocked forks. In this work, we study the homologous recombination functions required for RuvABC-mediated breakage in cells deficient for the accessory replicative helicase Rep or deficient for the main Escherichia coli replicative helicase DnaB. We show that, in the rep mutant, RuvABC-mediated breakage occurs in the absence of the homologous recombination protein RecA. In contrast, in dnaBts mutants, most of the RuvABC-mediated breakage depends on the presence of RecA, which suggests that RecA participates in the formation of Holliday junctions at forks blocked by the inactivation of DnaB. This action of RecA does not involve the induction of the SOS response and does not require any of the recombination proteins essential for the presynaptic step of homologous recombination, RecBCD, RecF or RecO. Consequently, our observations suggest a new function for RecA at blocked replication forks, and we propose that RecA acts by promoting homologous recombination without the assistance of known presynaptic proteins.
Collapse
Affiliation(s)
- M Seigneur
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
231
|
Villani G, Tanguy Le Gac N. Interactions of DNA helicases with damaged DNA: possible biological consequences. J Biol Chem 2000; 275:33185-8. [PMID: 10954729 DOI: 10.1074/jbc.r000011200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- G Villani
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 route de Narbonne 31077 Toulouse Cedex, France.
| | | |
Collapse
|
232
|
Donate LE, Llorca O, Bárcena M, Brown SE, Dixon NE, Carazo JM. pH-controlled quaternary states of hexameric DnaB helicase. J Mol Biol 2000; 303:383-93. [PMID: 11031115 DOI: 10.1006/jmbi.2000.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DnaB is the major helicase in the Escherichia coli replisome. It is a homohexameric enzyme that interacts with many other replisomal proteins and cofactors. It is usually loaded onto a single strand of DNA at origins of replication from its complex with its loading partner DnaC, then translocates in the 5' to 3' direction, unwinding duplex DNA in an NTP-driven process. Quaternary polymorphism has been described for the DnaB oligomer, a feature it has in common with some other hexameric helicases. In the present work, electron microscopy and in- depth rotational analysis studies of negatively stained specimens has allowed the establishment of conditions that govern the transition between the two different rotational symmetry states (C(3) and C(6)) of DnaB. It is shown: (a) that the pH value of the sample buffer, within the physiological range, dictates the quaternary organisation of the DnaB oligomer; (b) that the pH-induced transition is fully reversible; (c) that the type of adenine nucleotide complexed to DnaB, whether hydrolysable or not, does not affect its quaternary architecture; (d) that the DnaB.DnaC complex exists only as particles with C(3) symmetry; and (e) that DnaC interacts only with DnaB particles that have C(3) symmetry. Structural consequences of this quaternary polymorphism, as well as its functional implications for helicase activity, are discussed.
Collapse
Affiliation(s)
- L E Donate
- Campus de Cantoblanco, Centro Nacional de Biotecnología (CSIC), Madrid, 28049, Spain
| | | | | | | | | | | |
Collapse
|
233
|
Abstract
A strikingly large number of the proteins involved in DNA metabolism adopt a toroidal -- or ring-shaped -- quaternary structure, even though they have completely unrelated functions. Given that these proteins all use DNA as a substrate, their convergence to one shape is probably not a coincidence. Ring-forming proteins may have been selected during evolution for advantages conferred by the toroidal shape on their interactions with DNA.
Collapse
Affiliation(s)
- M M Hingorani
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
234
|
Chang P, Marians KJ. Identification of a region of Escherichia coli DnaB required for functional interaction with DnaG at the replication fork. J Biol Chem 2000; 275:26187-95. [PMID: 10833513 DOI: 10.1074/jbc.m001800200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fundamental activities of the replicative primosomes of Escherichia coli are provided by DnaB, the replication fork DNA helicase, and DnaG, the Okazaki fragment primase. As we have demonstrated previously, DnaG is recruited to the replication fork via a transient protein-protein interaction with DnaB. Here, using site-directed amino acid mutagenesis, we have defined the region on DnaB required for this protein-protein interaction. Mutations in this region of DnaB affect the DnaB-DnaG interaction during both general priming-directed and phiX174 complementary strand DNA synthesis, as well as at replication forks reconstituted in rolling circle DNA replication reactions. The behavior of the purified mutant DnaB proteins in the various replication systems suggests that access to the DnaG binding pocket on DnaB may be restricted at the replication fork.
Collapse
Affiliation(s)
- P Chang
- Molecular Biology Graduate Program, Weill Graduate School of Medical Sciences of Cornell University and the Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
235
|
Kaplan DL. The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J Mol Biol 2000; 301:285-99. [PMID: 10926510 DOI: 10.1006/jmbi.2000.3965] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DnaB helicase is a ring-shaped hexamer that unwinds DNA at a replication fork. To understand how this protein interacts with DNA during unwinding, DnaB from Thermus aquaticus was incubated with chemically modified forked-duplex DNA substrates and the unwinding rates were measured. Unwinding was inhibited by modifications made to the 5'-tail, but not the 3'-tail, suggesting that the helicase interacts with the 5'-tail but not the 3'-tail during unwinding. Using oligonucleotides of mixed polarity, it was confirmed that DnaB translocates in the 5' to 3' direction as it unwinds DNA. A substrate was synthesized that contained two duplexes in tandem. Experiments involving various modifications of this tandem duplex demonstrated that when the 3'-tail is short, two stands of DNA pass through the central channel of DnaB with no resultant unwinding. Thus, the role of the 3'-tail in stimulating unwinding has been elucidated. The 3'-tail does not bind to DnaB during unwinding, but sterically determines whether one or two DNA strands pass through the central channel of DnaB. Furthermore, a new substrate for DnaB locomotion has been discovered. DnaB may actively translocate in the 5' to 3' direction along single-stranded DNA, even when a complementary strand is also present within the protein's central channel. This new mode of action may regulate DnaB activity by inhibiting unwinding at regions of DNA that are not forked. Furthermore, this new function for DnaB may coordinate abortion of leading and lagging strand replication if a nick is encountered on the leading strand.
Collapse
Affiliation(s)
- D L Kaplan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
236
|
Eckert KA, Yan G. Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis. Nucleic Acids Res 2000; 28:2831-8. [PMID: 10908342 PMCID: PMC102660 DOI: 10.1093/nar/28.14.2831] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2000] [Revised: 05/31/2000] [Accepted: 05/31/2000] [Indexed: 11/14/2022] Open
Abstract
Mutagenesis at [GT/CA](10), [TC/AG](11) and [TTCC/AAGG](9) microsatellite sequences inserted in the herpes simplex virus thymidine kinase (HSV-tk) gene was analyzed in isogenic mutL(+) and mutL(-) Escherichia coli. In both strains, significantly more expansion than deletion mutations were observed at the [TTCC/AAGG](9) motif relative to either dinucleotide motif. As the HSV-tk coding sequence contains an endogenous [G/C](7) mononucleotide repeat and approximately 1000 bp of unique sequence, we were able to compare mutagenesis among various sequence motifs. We observed that the relative risk of mutation in E.COLI: is: [TTCC/AAGG](9) > [GT/CA](10) approximately [TC/AG](11) > unique approximately [G/C](7). The mutation frequency varied 1400-fold in mutL(+) cells between the tetranucleotide motif and the mononucleotide motif, but only 50-fold in mutL(-) cells. The [G/C](7) sequence was destabilized the greatest and the tetranucleotide motif the least by loss of mismatch repair. These results demonstrate that the quantitative risk of mutation at various microsatellites greatly depends on the DNA sequence composition. We suggest alternative models for the production of expansion mutations during lagging strand replication of the [TTCC/AAGG](9) microsatellite.
Collapse
Affiliation(s)
- K A Eckert
- The Jake Gittlen Cancer Research Institute, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, USA.
| | | |
Collapse
|
237
|
Sandler SJ. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 2000; 155:487-97. [PMID: 10835375 PMCID: PMC1461104 DOI: 10.1093/genetics/155.2.487] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Escherichia coli, the primosome assembly proteins, PriA, PriB, PriC, DnaT, DnaC, DnaB, and DnaG, are thought to help to restart DNA replication forks at recombinational intermediates. Redundant functions between priB and priC and synthetic lethality between priA2::kan and rep3 mutations raise the possibility that there may be multiple pathways for restarting replication forks in vivo. Herein, it is shown that priA2::kan causes synthetic lethality when placed in combination with either Deltarep::kan or priC303:kan. These determinations were made using a nonselective P1 transduction-based viability assay. Two different priA2::kan suppressors (both dnaC alleles) were tested for their ability to rescue the priA-priC and priA-rep double mutant lethality. Only dnaC809,820 (and not dnaC809) could rescue the lethality in each case. Additionally, it was shown that the absence of the 3'-5' helicase activity of both PriA and Rep is not the critical missing function that causes the synthetic lethality in the rep-priA double mutant. One model proposes that replication restart at recombinational intermediates occurs by both PriA-dependent and PriA-independent pathways. The PriA-dependent pathways require at least priA and priB or priC, and the PriA-independent pathway requires at least priC and rep. It is further hypothesized that the dnaC809 suppression of priA2::kan requires priC and rep, whereas dnaC809,820 suppression of priA2::kan does not.
Collapse
Affiliation(s)
- S J Sandler
- Department of Microbiology, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
238
|
Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS. Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks. J Biol Chem 2000; 275:15512-9. [PMID: 10748120 DOI: 10.1074/jbc.m909257199] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A contact between the dimeric tau subunit within the DNA polymerase III holoenzyme and the DnaB helicase is required for replication fork propagation at physiologically-relevant rates (Kim, S., Dallmann, H. G., McHenry, C. S., and Marians, K. J. (1996) Cell 84, 643-650). In this report, we exploit the OmpT protease to generate C-tau, a protein containing only the unique C-terminal sequences of tau, free of the sequences shared with the alternative gamma frameshifting product of dnaX. We have established that C-tau is a monomer by sedimentation equilibrium and sedimentation velocity ultracentrifugation. Monomeric C-tau binds the alpha catalytic subunit of DNA polymerase III with a 1:1 stoichiometry. C-tau also binds DnaB, revealed by a coupled immunoblotting method. C-tau restores the rapid replication rate of inefficient forks reconstituted with only the gamma dnaX gene product. The acceleration of the DnaB helicase can be observed in the absence of primase, when only leading-strand replication occurs. This indicates that C-tau, bound only to the leading-strand polymerase, can trigger the conformational change necessary for DnaB to assume the fast, physiologically relevant form.
Collapse
Affiliation(s)
- H G Dallmann
- Department of Biochemistry and Molecular Genetics and Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
239
|
Blinkova A, Ginés-Candelaria E, Ross JD, Walker JR. Suppression of a DnaX temperature-sensitive polymerization defect by mutation in the initiation gene, dnaA, requires functional oriC. Mol Microbiol 2000; 36:913-25. [PMID: 10844678 DOI: 10.1046/j.1365-2958.2000.01911.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temperature sensitivity of DNA polymerization and growth, resulting from mutation of the tau and gamma subunits of Escherichia coli DNA polymerase III, are suppressed by Cs,Sx mutations of the initiator gene, dnaA. These mutations simultaneously cause defective initiation at 20 degrees C. Efficient suppression, defined as restoration of normal growth rate at 39 degrees C to essentially all the cells, depends on functional oriC. Increasing DnaA activity in a strain capable of suppression, by introducing a copy of the wild-type allele, increasing the suppressor gene dosage or introducing a seqA mutation, reversed the suppression. This suggests that the suppression mechanism depends on reduced activity of DnaACs, Sx. Models that assume that suppression results from an initiation defect or from DnaACs,Sx interaction with polymerization proteins during nascent strand synthesis are proposed.
Collapse
Affiliation(s)
- A Blinkova
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
240
|
Abstract
The encounter of a replication fork with either a damaged DNA template, a nick in the template strand or a 'frozen' protein-DNA complex can stall the replisome and cause it to fall apart. Such an event generates a requirement for replication fork restart if the cell is going to survive. Recent evidence shows that replication fork restart is effected by the action of the recombination proteins generating a substrate for PriA-directed replication fork assembly.
Collapse
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
241
|
Walter J, Newport J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 2000; 5:617-27. [PMID: 10882098 DOI: 10.1016/s1097-2765(00)80241-5] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report that a plasmid replicating in Xenopus egg extracts becomes negatively supercoiled during replication initiation. Supercoiling requires the initiation factor Cdc45, as well as the single-stranded DNA-binding protein RPA, and therefore likely represents origin unwinding. When unwinding is prevented, Cdc45 binds to chromatin whereas DNA polymerase alpha does not, indicating that Cdc45, RPA, and DNA polymerase alpha bind chromatin sequentially at the G1/S transition. Whereas the extent of origin unwinding is normally limited, it increases dramatically when DNA polymerase alpha is inhibited, indicating that the helicase that unwinds DNA during initiation can become uncoupled from the replication fork. We discuss the implications of these results for the location of replication start sites relative to the prereplication complex.
Collapse
Affiliation(s)
- J Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
242
|
Abstract
Replication arrests are associated with genome rearrangements, which result from either homologous or non-homologous recombination. Interestingly, proteins involved in homologous recombination are able to convert an arrested replication fork into a recombination intermediate, which promotes replication restart and thus presumably prevents genome rearrangements.
Collapse
Affiliation(s)
- B Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| |
Collapse
|
243
|
Karam JD, Konigsberg WH. DNA polymerase of the T4-related bacteriophages. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:65-96. [PMID: 10697407 DOI: 10.1016/s0079-6603(00)64002-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The DNA polymerase of bacteriophage T4, product of phage gene 43 (gp43), has served as a model replicative DNA polymerase in nucleic acids research for nearly 40 years. The base-selection (polymerase, or Pol) and editing (3'-exonuclease, or Exo) functions of this multifunctional protein, which have counterparts in the replicative polymerases of other organisms, are primary determinants of the high fidelity of DNA synthesis in phage DNA replication. T4 gp43 is considered to be a member of the "B family" of DNA-dependent DNA polymerases (those resembling eukaryotic Pol alpha) because it exhibits striking similarities in primary structure to these enzymes. It has been extensively analyzed at the genetic, physiological, and biochemical levels; however, relationships between the in vivo properties of this enzyme and its physical structure have not always been easy to explain due to a paucity of structural data on the intact molecule. However, gp43 from phage RB69, a phylogenetic relative of T4, was crystallized and its structure solved in a complex with single-stranded DNA occupying the Exo site, as well as in the unliganded form. Analyses with these crystals, and crystals of a T4 gp43 proteolytic fragment harboring the Exo function, are opening new avenues to interpret existing biological and biochemical data on the intact T4 enzyme and are revealing new aspects of the microanatomy of gp43 that can now be explored further for functional significance. We summarize our current understanding of gp43 structure and review the physiological roles of this protein as an essential DNA-binding component of the multiprotein T4 DNA replication complex and as a nucleotide-sequence-specific RNA-binding translational repressor that controls its own biosynthesis and activity in vivo. We also contrast the properties of the T4 DNA replication complex to the functionally analogous complexes of other organisms, particularly Escherichia coli, and point out some of the unanswered questions about gp43 and T4 DNA replication.
Collapse
Affiliation(s)
- J D Karam
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
244
|
Zuo S, Bermudez V, Zhang G, Kelman Z, Hurwitz J. Structure and activity associated with multiple forms of Schizosaccharomyces pombe DNA polymerase delta. J Biol Chem 2000; 275:5153-62. [PMID: 10671561 DOI: 10.1074/jbc.275.7.5153] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase delta (Pol delta) isolated from Schizosaccharomyces pombe (sp) consists of at least four subunits, Pol3, Cdc1, Cdc27, and Cdm1. We have reconstituted the four-subunit complex by simultaneously expressing these polypeptides in baculovirus-infected insect cells. The properties of the purified cloned spPol delta were identical to the native spPol delta isolated from S. pombe cells. In addition, we also isolated a three-subunit complex containing Pol3, Cdc1, and Cdm1. Both three- and four-subunit complexes required replication factor C and proliferating cell nuclear antigen for DNA replication. However, in the presence of low levels of polymerase complexes, the three-subunit complex was less efficient than the four-subunit complex in supporting DNA replication. The inefficient synthesis of DNA by the three-subunit complex can be remedied by the addition of Cdc27, the subunit missing in the three-subunit complex. Gel filtration analysis demonstrated that the three-subunit complex is a monomer of the heterotrimer (Pol3, Cdc1, and Cdm1) and that the four-subunit complex is a dimer of the heterotetramer (Pol3, Cdc1, Cdc27, and Cdm1), similar to the structure of native spPol delta. We have further shown that Cdc1 and Cdc27 interact to form a heterodimeric complex. Gel filtration studies indicate that the structure of this complex is dimeric. These observations suggest that the Cdc27 subunit may play an important role contributing to the dimerization of Pol delta.
Collapse
Affiliation(s)
- S Zuo
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
245
|
Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF. Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci U S A 2000; 97:1683-8. [PMID: 10677518 PMCID: PMC26496 DOI: 10.1073/pnas.97.4.1683] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. gamma is two-thirds the size of tau and shares virtually all its amino acid sequence with tau. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between tau and gamma. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller gamma protein. In E. coli, approximately 50% of initiating ribosomes translate the dnaX mRNA conventionally to give tau, but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce gamma. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields tau. The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the gamma protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
Collapse
Affiliation(s)
- B Larsen
- Department of Human Genetics, University of Utah, 15 N 2030 East Building 533, Room 7410, Salt Lake City, UT 84112-5330, USA
| | | | | | | | | |
Collapse
|
246
|
Glover BP, McHenry CS. The DnaX-binding subunits delta' and psi are bound to gamma and not tau in the DNA polymerase III holoenzyme. J Biol Chem 2000; 275:3017-20. [PMID: 10652279 DOI: 10.1074/jbc.275.5.3017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex subassembly of the DNA polymerase III holoenzyme is comprised of the DnaX proteins tau and gamma and the auxiliary subunits delta, delta', chi, and psi, which together load the beta processivity factor onto primed DNA in an ATP-dependent reaction. delta' and psi bind directly to DnaX whereas delta and chi bind to delta' and psi, respectively (Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., and O'Donnell, M. (1995) J. Biol. Chem. 270, 13348-13357). Until now, it has been unclear which DnaX protein, tau or gamma, in holoenzyme binds the auxiliary subunits delta, delta', chi,and psi. Treatment of purified holoenzyme with the homobifunctional cross-linker bis(sulfosuccinimidyl)suberate produces covalently cross-linked gamma-delta' and gamma-psi complexes identified by Western blot analysis. Immunodetection of cross-linked species with anti-delta' and anti-psi antibodies revealed that no tau-delta' or tau-psi cross-links had formed, suggesting that the delta' and psi subunits reside only on gamma within holoenzyme.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
247
|
Iyer RR, Pluciennik A, Rosche WA, Sinden RR, Wells RD. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J Biol Chem 2000; 275:2174-84. [PMID: 10636923 DOI: 10.1074/jbc.275.3.2174] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The influence of mutations in the 3' to 5' exonucleolytic proofreading epsilon-subunit of Escherichia coli DNA polymerase III on the genetic instabilities of the CGG.CCG and the CTG.CAG repeats that cause human hereditary neurological diseases was investigated. The dnaQ49(ts) and the mutD5 mutations destabilize the CGG.CCG repeats. The distributions of the deletion products indicate that slipped structures containing a small number of repeats in the loop mediate the deletion process. The CTG.CAG repeats were destabilized by the dnaQ49(ts) mutation by a process mediated by long hairpin loop structures (>/=5 repeats). The mutD5 mutator strain stabilized the (CTG.CAG)(175) tract, which contained two interruptions. Since the mutD5 mutator strain has a saturated mismatch repair system, the stabilization is probably an indirect effect of the nonfunctional mismatch repair system in these strains. Shorter uninterrupted tracts expand readily in the mutD5 strain, presumably due to the greater stability of long CTG.CAG tracts (>100 repeats) in this strain. When parallel studies were conducted in minimal medium, where the mutD5 strain is defective in exonucleolytic proofreading but has a functional MMR system, both CTG.CAG and CGG.CCG repeats were destabilized, showing that the proofreading activity is essential for maintaining the integrity of TRS tracts. Thus, we conclude that the expansion and deletion of triplet repeats are enhanced by mutations that reduce the fidelity of replication.
Collapse
Affiliation(s)
- R R Iyer
- Institute of Biosciences and Technology, Texas A & M University, Department of Biochemistry and Biophysics, Texas Medical Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
248
|
Affiliation(s)
- S J Sandler
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
249
|
Miller C, Cohen SN. Separate roles of Escherichia coli replication proteins in synthesis and partitioning of pSC101 plasmid DNA. J Bacteriol 1999; 181:7552-7. [PMID: 10601213 PMCID: PMC94213 DOI: 10.1128/jb.181.24.7552-7557.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here that the Escherichia coli replication proteins DnaA, which is required to initiate replication of both the chromosome and plasmid pSC101, and DnaB, the helicase that unwinds strands during DNA replication, have effects on plasmid partitioning that are distinct from their functions in promoting plasmid DNA replication. Temperature-sensitive dnaB mutants cultured under conditions permissive for DNA replication failed to partition plasmids normally, and when cultured under conditions that prevent replication, they showed loss of the entire multicopy pool of plasmid replicons from half of the bacterial population during a single cell division. As was observed previously for DnaA, overexpression of the wild-type DnaB protein conversely stabilized the inheritance of partition-defective plasmids while not increasing plasmid copy number. The identification of dnaA mutations that selectively affected either replication or partitioning further demonstrated the separate roles of DnaA in these functions. The partition-related actions of DnaA were localized to a domain (the cell membrane binding domain) that is physically separate from the DnaA domain that interacts with other host replication proteins. Our results identify bacterial replication proteins that participate in partitioning of the pSC101 plasmid and provide evidence that these proteins mediate plasmid partitioning independently of their role in DNA synthesis.
Collapse
Affiliation(s)
- C Miller
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | |
Collapse
|
250
|
Marians KJ. PriA: at the crossroads of DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:39-67. [PMID: 10506828 DOI: 10.1016/s0079-6603(08)60719-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PriA is a single-stranded DNA-dependent ATPase, DNA translocase, and DNA helicase that was discovered originally because of its requirement in vitro for the conversion of bacteriophage phi X174 viral DNA to the duplex replicative form. Studies demonstrated that PriA catalyzes the assembly of a primosome, a multiprotein complex that primes DNA synthesis, on phi X174 DNA. The primosome was shown to be capable of providing both the DNA unwinding function and the Okazaki fragment priming function required for replication fork progression. However, whereas seven proteins, PriA, PriB, PriC, DnaT, DnaB, DnaC, and DnaG, were required for primosome assembly on phi X174 DNA, only DnaB, DnaC, and DnaG were required for replication from oriC, suggesting that the other proteins were not involved in chromosomal replication. Strains carrying priA null mutations, however, were constitutively induced for the SOS response, and were defective in homologous recombination, repair of UV-damaged DNA, and double-strand breaks, and both induced and constitutive stable DNA replication. The basis for this phenotype can now be explained by the ability of PriA to load replication forks at a D loop, an intermediate that forms during homologous recombination, double-strand break-repair, and stable DNA replication. Thus, a long-theorized connection between recombination and replication is demonstrated.
Collapse
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|