201
|
Ohyama A, Saito F, Ohuchi H, Noji S. Differential expression of two BMP antagonists, gremlin and Follistatin, during development of the chick feather bud. Mech Dev 2001; 100:331-3. [PMID: 11165492 DOI: 10.1016/s0925-4773(00)00525-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of four BMP antagonist genes, noggin, chordin, gremlin and Follistatin, was examined during chick feather development. Although expression of noggin and chordin was not detected, gremlin and Follistatin were expressed differentially in feather buds. The differential expression patterns of gremlin and Follistatin change dynamically from the nascent inter-feather bud region to the posterior domain of the feather bud.
Collapse
Affiliation(s)
- A Ohyama
- Aloka Co. Ltd., Imai, Ohme-shi, 198-8577, Tokyo, Japan
| | | | | | | |
Collapse
|
202
|
Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. . Dev Biol 2001; 229:287-306. [PMID: 11203696 DOI: 10.1006/dbio.2000.9950] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.
Collapse
Affiliation(s)
- M Faucourt
- Observatoire Oceanologique, UMR 7009 CNRS, Université de Paris VI, 06230, Villefranche-sur-Mer, France
| | | | | | | | | |
Collapse
|
203
|
Whitman M, Mercola M. TGF-beta superfamily signaling and left-right asymmetry. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752633 DOI: 10.1126/stke.2001.64.re1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an outwardly bilaterally symmetrical appearance, most internal organs of vertebrates display considerable left-right (LR) asymmetry in their anatomy and physiology. The orientation of LR asymmetry with respect to the dorsoventral and anteroposterior body axes is invariant such that fewer than 1 in 10,000 individuals exhibit organ reversals. The stereotypic orientation of LR asymmetry is ensured by distinct left- and right-side signal transduction pathways that are initiated by divergent members of the transforming growth factor-beta (TGF-beta) superfamily of secreted proteins. During early embryogenesis, the TGF-beta-like protein Nodal (or a Nodal-related ortholog) is expressed by the left lateral plate mesoderm and provides essential LR cues to the developing organs. In chick embryos at least, bone morphogenetic protein (BMP) signaling is active on the right side of the embryo and must be inhibited on the left in order for Nodal to be expressed. Thus, at a key point in the determination of LR asymmetry, left-sided signaling is mediated by the transcription factors Smad2 and Smad3 (regulated by Nodal), whereas signaling on the right depends on Smad1 and Smad5 (which are regulated by BMP). This review summarizes the considerable progress that has been made in recent years in understanding the complex network of feedback and feedforward circuitry that regulates both the left- and right-sided pathways. Also discussed is the problem of how signal transduction mediated by the Smad proteins can pattern LR asymmetry without interfering with coincident dorsoventral patterning, which relies on the same Smad proteins.
Collapse
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
204
|
|
205
|
Shiratori H, Sakuma R, Watanabe M, Hashiguchi H, Mochida K, Sakai Y, Nishino J, Saijoh Y, Whitman M, Hamada H. Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Mol Cell 2001; 7:137-49. [PMID: 11172719 DOI: 10.1016/s1097-2765(01)00162-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pitx2 is left--right (L--R) asymmetrically expressed initially in the lateral plate and later in primordial visceral organs. The transcriptional regulatory mechanisms that underlie L--R asymmetric expression of Pitx2 were investigated. Mouse Pitx2 has a left side-specific enhancer (ASE) that mediates both the initiation and maintenance of L--R asymmetric expression. This element contains three binding sites for the transcription factor FAST. The FAST binding sites function as Nodal-responsive elements and are sufficient for the initiation but not for the maintenance of asymmetric expression. The maintenance requires an Nkx2-5 binding site also present within the ASE. These results suggest that the left-sided expression of Pitx2 is directly initiated by Nodal signaling and is subsequently maintained by Nkx2. Such two-step control may represent a general mechanism for gene regulation during development.
Collapse
Affiliation(s)
- H Shiratori
- Division of Molecular Biology, Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
The vertebrate body plan has bilateral symmetry and left-right asymmetries that are highly conserved. The molecular pathways for left-right development are beginning to be elucidated. Several distinct mechanisms to initiate the vertebrate left-right axis have been proposed. These mechanisms appear to converge on highly conserved expression patterns of genes in the transforming growth factor-beta (TGFbeta) family of cell-cell signaling factors, nodal and lefty-2, and subsequently the expression of the transcription regulator Pitx2, in left lateral plate mesoderm. It is possible that downstream signaling pathways diverge in distinct classes of vertebrates.
Collapse
Affiliation(s)
- H J Yost
- Huntsman Cancer Institute, Center for Children, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
207
|
Franco D, Kelly R, Moorman AF, Lamers WH, Buckingham M, Brown NA. MLC3F transgene expression iniv mutant mice reveals the importance of left-right signalling pathways for the acquisition of left and right atrial but not ventricular compartment identity. Dev Dyn 2001; 221:206-15. [PMID: 11376488 DOI: 10.1002/dvdy.1135] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract Transcriptional differences between left and right cardiac chambers are revealed by an nlacZ reporter transgene controlled by regulatory sequences of the MLC3F gene, which is expressed in the left ventricle (LV), atrioventricular canal (AVC), and right atrium (RA). To examine the role of left-right signalling in the acquisition of left and right chamber identity, we have investigated MLC3F transgene expression in iv mutant mice. iv/iv mice exhibit randomised direction of heart looping and an elevated frequency of associated laterality defects, including atrial isomerism. At fetal stages, 3F-nlacZ-2E transgene expression remains confined to the morphological LV, AVC, and RA in L-loop hearts, although these appear on the opposite side of the body. In cases of morphologically distinguishable right atrial appendage isomerism, both atrial appendages show strong transgene expression. Conversely, specimens with morphological left atrial appendage isomerism show only weak expression in both atrial appendages. The earliest left-right atrial differences in the expression of the 3F-nlacZ-2E transgene are observed at E8.5. DiI labelling experiments confirmed that transcriptional regionalisation of the 3F-nlacZ-2E transgene at this stage reflects future atrial chamber identity. In some iv/iv embryos at E8.5, the asymmetry of 3F-nlacZ-2E expression was lost, suggesting atrial isomerism at the transcriptional level prior to chamber formation. These data suggest that molecular specification of left and right atrial but not ventricular chambers is dependent on left-right axial cues.
Collapse
Affiliation(s)
- D Franco
- Experimental and Molecular Cardiology Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
208
|
|
209
|
Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, Izpisúa Belmonte JC, Halpern ME. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 2000; 127:5101-12. [PMID: 11060236 DOI: 10.1242/dev.127.23.5101] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate brain develops from a bilaterally symmetric neural tube but later displays profound anatomical and functional asymmetries. Despite considerable progress in deciphering mechanisms of visceral organ laterality, the genetic pathways regulating brain asymmetries are unknown. In zebrafish, genes implicated in laterality of the viscera (cyclops/nodal, antivin/lefty and pitx2) are coexpressed on the left side of the embryonic dorsal diencephalon, within a region corresponding to the presumptive epiphysis or pineal organ. Asymmetric gene expression in the brain requires an intact midline and Nodal-related factors. RNA-mediated rescue of mutants defective in Nodal signaling corrects tissue patterning at gastrulation, but fails to restore left-sided gene expression in the diencephalon. Such embryos develop into viable adults with seemingly normal brain morphology. However, the pineal organ, which typically emanates at a left-to-medial site from the dorsal diencephalic roof, becomes displaced in position. Thus, a conserved signaling pathway regulating visceral laterality also underlies an anatomical asymmetry of the zebrafish forebrain.
Collapse
Affiliation(s)
- J O Liang
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
|
211
|
Chin AJ, Tsang M, Weinberg ES. Heart and gut chiralities are controlled independently from initial heart position in the developing zebrafish. Dev Biol 2000; 227:403-21. [PMID: 11071763 DOI: 10.1006/dbio.2000.9924] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A fundamental problem in developmental biology is how left-right (LR) asymmetry is generated, both on the whole organism level and at the level of an individual organ or structure. To investigate the relationship of organ sidedness to organ chirality, we examined 12 zebrafish mutants for initial heart tube position and later heart looping direction (chirality). Anomalous initial heart position was found in seven mutants, which also demonstrated loss of normal LR asymmetry in lateral plate mesoderm (LPM) antivin/lefty-1 and Pitx2 expression. Those with a relatively normal notochord (cyc(b16), din, and spt) displayed a predictive correlation between initial heart position and heart chirality, whereas initial heart position and heart chirality were independently randomized in those with a defective notochord (flh, boz, ntl, and mom). The predictability of heart chirality in spt, din, and b16 embryos, even in the absence of normal antivin/lefty-1 and Pitx2 expression, strongly suggests that heart chirality is controlled by a process distinct from that which controls appropriate left-sided LPM expression of antivin-Pitx2 signaling pathway molecules. In addition, there was correlation of initial heart position with gut chirality (and also between heart chirality and gut chirality) in the first class of mutants with normal notochord, but not in the second class, which appears to model human heterotaxy syndrome.
Collapse
Affiliation(s)
- A J Chin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
212
|
Wall NA, Craig EJ, Labosky PA, Kessler DS. Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene. Dev Biol 2000; 227:495-509. [PMID: 11071769 DOI: 10.1006/dbio.2000.9926] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TGFbeta signals play important roles in establishing the body axes and germ layers in the vertebrate embryo. Vg1 is a TGFbeta-related gene that, due to its maternal expression and vegetal localization in Xenopus, has received close examination as a potential regulator of development in Xenopus, zebrafish, and chick. However, a mammalian Vg1 ortholog has not been identified. To isolate mammalian Vg1 we screened a mouse expression library with a Vg1-specific monoclonal antibody and identified a single cross-reactive clone encoding mouse Gdf1. Gdf1 is expressed uniformly throughout the embryonic region at 5.5-6.5 days postcoitum and later in the node, midbrain, spinal cord, paraxial mesoderm, lateral plate mesoderm, and limb bud. When expressed in Xenopus embryos, native GDF1 is not processed, similar to Vg1. In contrast, a chimeric protein containing the prodomain of Xenopus BMP2 fused to the GDF1 mature domain is efficiently processed and signals via Smad2 to induce mesendoderm and axial duplication. Finally, right-sided expression of chimeric GDF1, but not native GDF1, reverses laterality and results in right-sided Xnr1 expression and reversal of intestinal and heart looping. Therefore, GDF1 can regulate left-right patterning, consistent with the Gdf1 loss-of-function analysis in the mouse (C. T. Rankin, T. Bunton, A. M. Lawler, and S. J. Lee, 2000, Nature Genet. 24, 262-265) and a proposed role for Vg1 in Xenopus. Our results establish that Gdf1 is posttranslationally regulated, that mature GDF1 activates a Smad2-dependent signaling pathway, and that mature GDF1 is sufficient to reverse the left-right axis. Moreover, these findings demonstrate that GDF1 and Vg1 are equivalent in biochemical and functional assays, suggesting that Gdf1 provides a Vg1-like function in the mammalian embryo.
Collapse
Affiliation(s)
- N A Wall
- Biology Department, Lawrence University, Appleton, Wisconsin 54912, USA
| | | | | | | |
Collapse
|
213
|
Smidt MP, Cox JJ, van Schaick HS, Coolen M, Schepers J, van der Kleij AM, Burbach JP. Analysis of three Ptx2 splice variants on transcriptional activity and differential expression pattern in the brain. J Neurochem 2000; 75:1818-25. [PMID: 11032870 DOI: 10.1046/j.1471-4159.2000.0751818.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three different transcripts of the homeodomain gene termed pituitary homeobox (Ptx) 2 (Pitx2/Brx/Rieg/Solurshin/Arp) were cloned from different species encoding proteins belonging to the paired-like family of homeodomain proteins. Ptx2a (324 amino acids), Ptx2b (271 amino acids), and Ptx2c (318 amino acids) share the C terminus, including the homeodomain, and have different N termini. Here we report the comparative analysis of all three different Ptx2 splice variants for their transcriptional activity and their expression pattern in the adult rat brain. Ptx2 is able to trans-activate via different model promoters in different cell lines. A mild difference in trans-activating potential is observed among the splice variants, but the underlying mechanism is at present unknown. It is surprising that all Ptx2 transcripts displayed an identical expression pattern in the brain. This markedly restricted pattern is limited to the following brain areas: the anterior and intermediate lobes of the pituitary gland, the subthalamic nucleus, the posterior hypothalamic nucleus, the mammillary bodies, the red nucleus, and the deep gray layer of the superior colliculus. The data presented suggest that all variants of Ptx2 are involved in the development and regulation of distinct neuronal cell groups and the pituitary gland.
Collapse
Affiliation(s)
- M P Smidt
- Section of Molecular Neuroscience, Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
214
|
Kitaguchi T, Nagai T, Nakata K, Aruga J, Mikoshiba K. Zic3 is involved in the left-right specification of the Xenopus embryo. Development 2000; 127:4787-95. [PMID: 11044394 DOI: 10.1242/dev.127.22.4787] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishment of left-right (L-R) asymmetry is fundamental to vertebrate development. Several genes involved in L-R asymmetry have been described. In the Xenopus embryo, Vg1/activin signals are implicated upstream of asymmetric nodal related 1 (Xnr1) and Pitx2 expression in L-R patterning. We report here that Zic3 carries the left-sided signal from the initial activin-like signal to determinative factors such as Pitx2. Overexpression of Zic3 on the right side of the embryo altered the orientation of heart and gut looping, concomitant with disturbed laterality of expression of Xnr1 and Pitx2, both of which are normally expressed in the left lateral plate mesoderm. The results indicate that Zic3 participates in the left-sided signaling upstream of Xnr1 and Pitx2. At early gastrula, Zic3 was expressed not only in presumptive neuroectoderm but also in mesoderm. Correspondingly, overexpression of Zic3 was effective in the L-R specification at the early gastrula stage, as revealed by a hormone-inducible Zic3 construct. The Zic3 expression in the mesoderm is induced by activin (beta) or Vg1, which are also involved in the left-sided signal in L-R specification. These findings suggest that an activin-like signal is a potent upstream activator of Zic3 that establishes the L-R axis. Furthermore, overexpression of the zinc-finger domain of Zic3 on the right side is sufficient to disturb the L-R axis, while overexpression of the N-terminal domain on the left side affects the laterality. These results suggest that Zic3 has at least two functionally important domains that play different roles and provide a molecular basis for human heterotaxy, which is an L-R pattern anomaly caused by a mutation in human ZIC3.
Collapse
Affiliation(s)
- T Kitaguchi
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan. jp
| | | | | | | | | |
Collapse
|
215
|
Chen JN, Fishman MC. Genetic dissection of heart development. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:107-22. [PMID: 10943307 DOI: 10.1007/978-3-662-04264-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- J N Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown 02129-2060, USA
| | | |
Collapse
|
216
|
Abstract
To achieve new insights into the coordinate regulation of gene expression during osteoblast differentiation we utilized an approach involving global analysis of gene expression to obtain the identities of messenger RNAs (mRNAs) expressed using an established in vitro model of bone development. MC3T3-E1 osteoblast-like cells were induced to differentiate by the addition of beta-glycerophosphate (beta-GP) and ascorbic acid. RNA samples derived from induced and uninduced control MC3T3-E1 cells were used to prepare complementary DNA (cDNA) for serial analysis of gene expression (SAGE). A preliminary SAGE database was produced and used to prepare a hybridization array to further facilitate the characterization of changes in the expression levels of 92 of the SAGE-mRNA assignments after induction of osteoblast differentiation, specifically after 6 days and 14 days of ascorbate treatment. SAGE-array hybridization analysis revealed coordinate induction of a number of mRNAs including Rab24, calponin, and calcyclin. Levels of MSY-1, SH3P2, fibronectin, alpha-collagen, procollagen, and LAMPI mRNAs, present at day 6 postinduction, were markedly reduced by day 14 postinduction. A number of unanticipated and potentially important developmental genes were identified including the transforming growth factor beta (TGF-beta) superfamily member Lefty-1. Lefty-1 transcript and translation product were found to be induced during the course of MC3T3-E1 cell differentiation. We present evidence, using transient transfection and antibody neutralization approaches, that Lefty-1 modulates the induction of alkaline phosphatase (ALP) after treatment of MC3T3-E1 cells with ascorbate and beta-GP. These data should provide useful new information for future analysis of transcriptional events in osteoblast differentiation and mineralization.
Collapse
Affiliation(s)
- A Seth
- MRC Group in Periodontal Physiology, and the Laboratory of Medicine and Pathobiology, University of Toronto, Sunnybrook, Canada
| | | | | | | |
Collapse
|
217
|
Welsh IC, O'Brien TP. Loss of late primitive streak mesoderm and interruption of left-right morphogenesis in the Ednrb(s-1Acrg) mutant mouse. Dev Biol 2000; 225:151-68. [PMID: 10964471 DOI: 10.1006/dbio.2000.9814] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study characterizes defects associated with abnormal mesoderm development in mouse embryos homozygous for the induced Ednrb(s-1Acrg) allele of the piebald deletion complex. The Ednrb(s-1Acrg) deletion results in recessive embryonic lethality and mutant embryos exhibit a truncated posterior body axis. The primitive streak and node become disfigured, consistent with evidence that cell migration is impaired in newly formed mesoderm. Additional defects related to mesoderm development include notochord degeneration, somite malformations, and abnormal vascular development. Arrested heart looping morphogenesis and a randomized direction of embryonic turning indicate that left-right development is also perturbed. The expression of nodal and leftb, Tgf-beta-related genes involved in a left-determinant signaling pathway, is variably lost in the left lateral plate mesoderm. Mutational analysis has demonstrated that Fgf8 and Brachyury (T) are required for normal mesoderm and left-right development and the asymmetric expression of nodal and leftb. Fgf8 expression in nascent mesoderm exiting the primitive streak is dramatically reduced in mutant embryos, and diminished T expression accompanies the progressive loss of paraxial, lateral, and primitive streak mesoderm. In contrast, axial mesoderm persists and T and nodal appear to be appropriately expressed in their specific domains in the node and notochord. We propose that this mutation disrupts a morphogenetic pathway, likely involving FGF signaling, important for the development of streak-derived posterior mesoderm and lateral morphogenesis.
Collapse
Affiliation(s)
- I C Welsh
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
| | | |
Collapse
|
218
|
Abstract
Recent advances have given us new insights into the molecular basis of organ position. A gene cascade that determines left-right positioning of organ primordia has emerged. In here we present the current knowledge of the molecular determinants of organ positioning during vertebrate embryogenesis.
Collapse
Affiliation(s)
- P Ruiz-Lozano
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613, USA.
| | | | | |
Collapse
|
219
|
Branford WW, Essner JJ, Yost HJ. Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. Dev Biol 2000; 223:291-306. [PMID: 10882517 DOI: 10.1006/dbio.2000.9739] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Lefty subfamily of TGFbeta signaling molecules has been implicated in early development in mouse, zebrafish, and chick. Here, we show that Xenopus lefty (Xlefty) is expressed both bilaterally in symmetric midline domains and unilaterally in left lateral plate mesoderm and anterior dorsal endoderm. To examine the roles of Xlefty in left-right development, we created a system for scoring gut asymmetry and examined the effects of unilateral Xlefty misexpression on gut development, heart development, and Xnr-1 and XPitx2 expression. In contrast to the unilateral effects of Vg1, Activin, Nodal, or BMPs, targeted expression of Xlefty in either the left or the right side of Xenopus embryos randomized the direction of heart looping, gut coiling, and left-right positioning of the gut and downregulated the asymmetric expression of Xnr-1 and XPitx2. It is currently thought that Lefty proteins act as feedback inhibitors of Nodal signaling. However, this would not explain the effects of right-sided Xlefty misexpression. Here, we show that Xlefty interacts with the signaling pathways of other members of the TGFbeta family during left-right development. Results from coexpression of Xlefty and Vg1 indicate that Xlefty can nullify the effects of Vg1 ectopic expression and that Xlefty is downstream of left-sided Vg1 signaling. Results from coexpression of Xlefty and XBMP4 indicate that XLefty and XBMP4 interact both synergistically and antagonistically in a context-dependent manner. We propose a model in which interactions of Xlefty with multiple members of the TGFbeta family enhance the differences between the right-sided BMP/ALK2/Smad pathway and the left-sided Vg1/anti-BMP/Nodal pathway, leading to left-right morphogenesis of the gut and heart.
Collapse
Affiliation(s)
- W W Branford
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences and Department of Pediatrics, University of Utah, Salt Lake City, Utah, 84112-5550, USA
| | | | | |
Collapse
|
220
|
Zile MH, Kostetskii I, Yuan S, Kostetskaia E, St Amand TR, Chen Y, Jiang W. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev Biol 2000; 223:323-38. [PMID: 10882519 DOI: 10.1006/dbio.2000.9754] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin A-deficient (VAD) quail embryos have severe abnormalities, including a high incidence of reversed cardiac situs. Using this model we examined in vivo the physiological function of vitamin A in the left/right (L/R) cardiac asymmetry pathway. Molecular analysis reveals the expression of early asymmetry genes activin receptor IIa, sonic hedgehog, Caronte, Lefty-1, and Fgf8 to be unaffected by the lack of retinoids, while expression of the downstream genes nodal-related, snail-related (cSnR), and Pitx2 is altered. In VAD embryos nodal expression in left lateral plate mesoderm (LPM) is severely downregulated and the expression domain altered during neurulation. Similarly, the expression of cSnR in the right LPM and of Pitx2 in the left side posterior heart-forming region (HFR) is downregulated in the VAD embryos. The lack of retinoids does not cause randomization or ectopic expression of nodal, cSnR, or Pitx2. At the six- to eight-somite stage nodal is expressed transiently in the left posterior HFR of normal quail embryos; this expression is missing in VAD embryos and may be linked to the loss of Pitx2 expression in this region of VAD quail embryos. Administration of retinoids to VAD embryos prior to the six-somite stage rescues the expression of nodal, cSnR, and Pitx2 as well as the randomized VAD cardiac phenotype. There is an absolute requirement for retinoids at the four- to five-somite developmental window for cardiogenesis and cardiac L/R specification to proceed normally. We conclude that retinoids do not regulate the left/right-specific sidedness assignments for expression of genes on the vertebrate cardiac asymmetry pathway, but are required during neurulation for the maintenance of adequate levels of their expression and for the development of the posterior heart tube and a loopable heart. Cardiac asymmetry may be but one of several critical events regulated by retinoid signaling in the retinoid-sensitive developmental window.
Collapse
Affiliation(s)
- M H Zile
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
221
|
Poulin G, Lebel M, Chamberland M, Paradis FW, Drouin J. Specific protein-protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol Cell Biol 2000; 20:4826-37. [PMID: 10848608 PMCID: PMC85932 DOI: 10.1128/mcb.20.13.4826-4837.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis.
Collapse
Affiliation(s)
- G Poulin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
222
|
Ohuchi H, Kimura S, Watamoto M, Itoh N. Involvement of fibroblast growth factor (FGF)18-FGF8 signaling in specification of left-right asymmetry and brain and limb development of the chick embryo. Mech Dev 2000; 95:55-66. [PMID: 10906450 DOI: 10.1016/s0925-4773(00)00331-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.
Collapse
Affiliation(s)
- H Ohuchi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, 606-8501, Kyoto, Japan.
| | | | | | | |
Collapse
|
223
|
Toyoizumi R, Mogi K, Takeuchi S. More than 95% reversal of left-right axis induced by right-sided hypodermic microinjection of activin into Xenopus neurula embryos. Dev Biol 2000; 221:321-36. [PMID: 10790329 DOI: 10.1006/dbio.2000.9666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, genes that show left-right (L-R) asymmetric expression patterns have been identified one after another in vertebrate gastrula-neurula embryos. However, we still have little information about when the irreversible L-R specification is established in vertebrate embryos. In this report, we show that almost 100% of the embryos develop to be L-R-inverted larvae after microinjection of activin molecules into the right lateral hypodermic space of Xenopus neurula embryos. After right-side injection of 10-250 pg activin protein, both early neurulae just after gastrulation movement (stage 13-14) and late neurulae just before neural tube closure (stage 17-18) showed almost 100% reversal of the heart and gut L-R axes. At higher doses of activin, more than 90% of the L-R-inverted embryos showed L-R reversal of both heart and gut. The survival ratio of the right-injected 4-day embryos was 90% on average. In the left-injected embryos, the occurrence of L-R inversion was less than 2% as observed in normal untreated siblings (1.7%). When the same amount of activin (1-50 pg) was microinjected into both sides of neurula embryos, the incidence of L-R inversion was reduced to 58%. The injection of activin along the dorsal midline in the trunk region also randomized the visceral L-R axis. Injection of activin into the right side changed normal left-handed expression of Xnr-1 to right-handed or bilateral expression. In contrast, left-handed expression of Pitx2 was switched to the right side by right activin injection. This is the first report of a method that achieves complete inversion of the visceral L-R axis by treatment of embryos at the neurula stage. Activin not only acts on the neurulae to cancel the original L-R specification up to the late neurula stage, but also rebuilds a new L-R axis whose left side coincides with the injection side. It is suggested that the left and right halves of neurulae have equal potential for L-R differentiation.
Collapse
Affiliation(s)
- R Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, 259-1293, Japan.
| | | | | |
Collapse
|
224
|
García-Castro MI, Vielmetter E, Bronner-Fraser M. N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science 2000; 288:1047-51. [PMID: 10807574 DOI: 10.1126/science.288.5468.1047] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Within the bilaterally symmetric vertebrate body plan, many organs develop asymmetrically. Here, it is demonstrated that a cell adhesion molecule, N-cadherin, is one of the earliest proteins to be asymmetrically expressed in the chicken embryo and that its activity is required during gastrulation for proper establishment of the left-right axis. Blocking N-cadherin function randomizes heart looping and alters the expression of Snail and Pitx2, later components of the molecular cascade that regulate left-right asymmetry. However, the expression of other components of this cascade (Nodal and Lefty) was unchanged after blocking N-cadherin function, suggesting the existence of parallel pathways in the establishment of left-right morphogenesis. Here, the results suggest that N-cadherin-mediated cell adhesion events are required for establishment of left-right asymmetry.
Collapse
Affiliation(s)
- M I García-Castro
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
225
|
Yashiro K, Saijoh Y, Sakuma R, Tada M, Tomita N, Amano K, Matsuda Y, Monden M, Okada S, Hamada H. Distinct transcriptional regulation and phylogenetic divergence of human LEFTY genes. Genes Cells 2000; 5:343-57. [PMID: 10886363 DOI: 10.1046/j.1365-2443.2000.00329.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mouse lefty1 and lefty2 genes are expressed on the left side of developing embryos and are required for left-right determination. Here we have studied expression and transcriptional regulatory mechanisms of human LEFTY genes. RESULTS The human LEFTY locus comprises two functional genes (LEFTY1 and LEFTY2) and a putative pseudogene. LEFTY1 is expressed in colon crypts. However, whereas LEFTY1 mRNA is present in basal cells of the crypts, LEFTY1 protein is localized in the apical region, suggesting that this secreted protein undergoes long-range transport. Human LEFTY2 possesses a left side-specific enhancer (ASE) like mouse lefty2; however, the LEFTY2 ASE shows markedly higher activity in the floor plate than does the lefty2 ASE. In contrast to mouse lefty1, which is expressed predominantly in the floor plate under the control of a right side-specific silencer, human LEFTY1 is expressed mainly in left lateral plate mesoderm under the control of an ASE-like left side-specific enhancer. The presence of FAST-binding sites in the LEFTY1 enhancer (and their absence in lefty1) contributes to the difference. CONCLUSION These observations suggest that humans and mice have acquired distinct strategies during evolution for determining the asymmetric expression of LEFTY and lefty genes.
Collapse
Affiliation(s)
- K Yashiro
- Division of Molecular Biology, Institute for Molecular and Cellular Biology, Osaka University, and CREST, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
In vertebrates, specification of anteroposterior (A/P) and left–right (L/R) axes depends on TGFβ-related signals, including Nodal, Lefty, and BMPs. Endoproteolytic maturation of these proteins is probably mediated by the proprotein convertase SPC1/Furin. In addition, precursor processing may be regulated by related activities such as SPC4 (also known as PACE4). Here, we show that a proportion of embryos lacking SPC4 develop situs ambiguus combined with left pulmonary isomerism or complex craniofacial malformations including cyclopia, or both. Gene expression analysis during early somite stages indicates that spc4 is genetically upstream of nodal, pitx2, lefty1, and lefty2 and perhaps maintains the balance between Nodal and BMP signaling in the lateral plate that is critical for L/R axis formation. Furthermore, genetic interactions betweennodal and spc4, together with our analysis of chimeric embryos, strongly suggest that during A/P axis formation, SPC4 acts primarily in the foregut. These findings establish an important role for SPC4 in patterning the early mouse embryo.
Collapse
|
227
|
Abstract
The development of the anterior pituitary gland is dependent upon a cascade of signalling molecules and developmental genes that function as transcription factors. Many of these genes are homeobox genes which contain a DNA-binding region or homeobox. Animal models have given a valuable insight into human pituitary disease. For example, Pit-1 and Prop1 mutants are known to have deficiencies of growth hormone, prolactin and thyroid-stimulating hormone. Human phenotypes arising as a result of mutations in these genes are similar to the mouse mutants. Mutations in the novel homeobox gene Hesx1/HESX1 are associated with the highly variable phenotype of septo-optic dysplasia in mouse and man. The unravelling of this complex developmental cascade is just commencing.
Collapse
Affiliation(s)
- M T Dattani
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, London, UK.
| | | |
Collapse
|
228
|
Cazorla P, Smidt MP, O'Malley KL, Burbach JP. A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem 2000; 74:1829-37. [PMID: 10800925 DOI: 10.1046/j.1471-4159.2000.0741829.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of catecholamines, which takes place in different types of neuronal systems and nonneuronal tissues. The transcriptional regulation of the TH gene, which is complex and highly variable among different tissues, reflects this heterogeneity. We recently isolated a homeodomain transcription factor, named Ptx3, that is uniquely expressed in the dopaminergic neurons of the substantia nigra pars compacta and ventral tegmental area, which together form the mesencephalic dopaminergic system. This strict localization and its coinciding induction of expression with the TH gene during development suggested a possible role for this transcription factor in the control of the TH gene. We report here the presence of a responsive element for Ptx3 located at position -50 to -45 of the rat TH promoter. Transient transfections using TH promoter constructs and electrophoretic mobility shift assays using Ptx3-containing nuclear extracts demonstrated that this region binds Ptx3 protein and confers a transcriptional effect on the TH gene. Depending on the cell type, the effect of Ptx3 was an eight- to 12-fold enhancement of TH promoter activity in Neuro2A neuroblastoma cells, or a 60-80% repression in nonneuronal human embryonic kidney 293 cells. Despite the close association of the Ptx3-binding site and the major cyclic AMP-response element in the TH gene, no interplay was found between Ptx3 and cyclic AMP-modulating agents. In combination with the orphan nuclear receptor Nurr1, which is required for the induction of the TH gene in mesencephalic dopaminergic neurons, the TH promoter activity to Ptx3 was enhanced in Neuro2A cells. Nurr1 alone displayed only very weak activity on the TH promoter in this cell type. The results demonstrate that the homeodomain protein Ptx3 has the potential to act on the promoter of the TH gene in a markedly cell type-dependent fashion. This suggests that Ptx3 contributes to the regulation of TH expression in mesencephalic dopaminergic neurons.
Collapse
Affiliation(s)
- P Cazorla
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Medical Faculty, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
229
|
Abstract
The Rieger syndrome, an autosomal dominant disorder involving ocular, dental, and umbilical defects is caused by mutations in PITX2, a Bicoid-type homeobox protein. Mouse Pitx2 mRNA is expressed in eye, tooth and umbilicus consistent with the human Riegers phenotype. Moreover, Pitx2 is involved in the Nodal/Sonic hedgehog pathway that determines left/right polarity. In this report we demonstrate a 32-kDa polypeptide on Western blots of nuclear extracts from a rat pituitary cell line, using a Pitx2 specific antibody (designated P2R10). We describe also for the first time expression of the Pitx2 protein in mouse. Pitx2 protein immunostaining was detectable during the development of the eye, tooth, umbilicus, and also in the pituitary, heart, gut, and limb. We demonstrate for the first time directly that Pitx2 is asymmetrically expressed in early heart, gut, and lung development.
Collapse
Affiliation(s)
- T A Hjalt
- Department of Pediatrics, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
230
|
|
231
|
Capdevila J, Vogan KJ, Tabin CJ, Izpisúa Belmonte JC. Mechanisms of left-right determination in vertebrates. Cell 2000; 101:9-21. [PMID: 10778851 DOI: 10.1016/s0092-8674(00)80619-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Capdevila
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
232
|
Rankin CT, Bunton T, Lawler AM, Lee SJ. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 2000; 24:262-5. [PMID: 10700179 DOI: 10.1038/73472] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily encompasses a large group of structurally related polypeptides that are capable of regulating cell growth and differentiation in a wide range of embryonic and adult tissues. Growth/differentiation factor-1 (Gdf-1, encoded by Gdf1) is a TGF-beta family member of unknown function that was originally isolated from an early mouse embryo cDNA library and is expressed specifically in the nervous systemin late-stage embryos and adult mice. Here we show that at early stages of mouse development, Gdfl is expressed initially throughout the embryo proper and then most prominently in the primitive node, ventral neural tube, and intermediate and lateral plate mesoderm. To examine its biological function, we generated a mouse line carrying a targeted mutation in Gdf1. Gdf1-/- mice exhibited a spectrum of defects related to left-right axis formation, including visceral situs inversus, right pulmonary isomerism and a range of cardiac anomalies. In most Gdf1-/- embryos, the expression of Ebaf (formerly lefty-1) in the left side of the floor plate and Leftb (formerly lefty-2), nodal and Pitx2 in the left lateral plate mesoderm was absent, suggesting that Gdf1 acts upstream of these genes either directly or indirectly to activate their expression. Our findings suggest that Gdf1 acts early in the pathway of gene activation that leads to the establishment of left-right asymmetry.
Collapse
Affiliation(s)
- C T Rankin
- Department of Molecular Biology and Genetics, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
233
|
Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM. Smad5 is essential for left-right asymmetry in mice. Dev Biol 2000; 219:71-8. [PMID: 10677256 DOI: 10.1006/dbio.1999.9594] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Left-right (L-R) asymmetry of the vertebrate body plan is established from an originally morphologically symmetric embryo. Recent studies have implicated several TGF-beta family signaling proteins (i.e., nodal, lefty-1, lefty-2, activin receptor type IIB, and Smad2) in L-R axis determination in the mouse. However, the genetic pathways underlying L-R patterning are still unclear. Smad5 is a downstream component in the TGF-beta family signaling cascade, and lack of Smad5 results in embryonic lethality between E9.5 and E11.5. In this report, we demonstrate that Smad5 mutant embryos have defects in heart looping and embryonic turning which are the first signs of L-R asymmetry in mice. To gain more insights into the molecular basis of the laterality defects in the Smad5-deficient embryos, we examined the expression of lefty-1, lefty-2, nodal, and Pitx2 since the asymmetric expression of these genes always closely correlates with the direction of heart looping and embryonic turning. In the absence of Smad5, lefty-1 was expressed at very low or undetectable levels, while nodal, lefty-2, and Pitx2 were expressed bilaterally. These data suggest that Smad5 is upstream of lefty-1, nodal, and lefty-2, and as a consequence also of Pitx2, and Smad5 is essential for L-R axis determination.
Collapse
Affiliation(s)
- H Chang
- Department of Pathology, Program in Developmental Biology, Houston, Texas, 77030, USA
| | | | | | | | | |
Collapse
|
234
|
Cheng AM, Thisse B, Thisse C, Wright CV. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development 2000; 127:1049-61. [PMID: 10662644 DOI: 10.1242/dev.127.5.1049] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In mouse, lefty genes play critical roles in the left-right (L-R) axis determination pathway. Here, we characterize the Xenopus lefty-related factor antivin (Xatv). Xatv expression is first observed in the marginal zone early during gastrulation, later becoming restricted to axial tissues. During tailbud stages, axial expression resolves to the neural tube floorplate, hypochord, and (transiently) the notochord anlage, and is joined by dynamic expression in the left lateral plate mesoderm (LPM) and left dorsal endoderm. An emerging paradigm in embryonic patterning is that secreted antagonists regulate the activity of intercellular signaling factors, thereby modulating cell fate specification. Xatv expression is rapidly induced by dorsoanterior-type mesoderm inducers such as activin or Xnr2. Xatv is not an inducer itself, but antagonizes both Xnr2 and activin. Together with its expression pattern, this suggests that Xatv functions during gastrulation in a negative feedback loop with Xnrs to affect the amount and/or character of mesoderm induced. Our data also provide insights into the way that lefty/nodal signals interact in the initiation of differential L-R morphogenesis. Right-sided misexpression of Xnr1 (endogenously expressed in the left LPM) induces bilateral Xatv expression. Left-sided Xatv overexpression suppresses Xnr1/XPitx2 expression in the left LPM, and leads to severely disturbed visceral asymmetry, suggesting that active ‘left’ signals are critical for L-R axis determination in frog embryos. We propose that the induction of lefty/Xatv in the left LPM by nodal/Xnr1 provides an efficient self-regulating mechanism to downregulate nodal/Xnr1 expression and ensure a transient ‘left’ signal within the embryo.
Collapse
Affiliation(s)
- A M Cheng
- Dept. Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-2175, USA
| | | | | | | |
Collapse
|
235
|
Essner JJ, Branford WW, Zhang J, Yost HJ. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 2000; 127:1081-93. [PMID: 10662647 DOI: 10.1242/dev.127.5.1081] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pitx2 gene is a member of the bicoid-homeodomain class of transcription factors that has been implicated in the control of left-right asymmetry during organogenesis. Here we demonstrate that in zebrafish there are two pitx2 isoforms, pitx2a and pitx2c, which show distinct expression patterns and have non-overlapping functions during mesendoderm and asymmetric organ development. pitx2c is expressed symmetrically in presumptive mesendoderm during late blastula stages and in the prechordal plate during late gastrulation. pitx2a expression is first detected at bud stage in the anterior prechordal plate. The regulation of early mesendoderm pitx2c expression is dependent on one-eyed pinhead (EGF-CFC-related gene) and spadetail (tbx-transcription factor) and can be induced by ectopic goosecoid expression. Maintenance of pitx2c midline expression is dependent on cyclops (nodal) and schmalspur, but not no tail (brachyury). Ectopic expression of pitx2 isoforms results in distinct morphological and molecular phenotypes, indicating that pitx2a and pitx2c have divergent regulatory functions. Both isoforms downregulate goosecoid on the dorsal side, but in contrast to earlier reports that nodal and lefty are upstream of pitx2, ectopic pitx2c in other regions induces cyclops, lefty2 and goosecoid expression. Asymmetric isoform expression occurs in non-overlapping domains, with pitx2c in left dorsal diencephalon and developing gut and pitx2a in left heart primordium. Targeted asymmetric expression in Xenopus shows that both isoforms can alter left-right development, but pitx2a has a slightly stronger effect on heart laterality. Our results indicate that distinct genetic pathways regulate pitx2a and pitx2c isoform expression, and each isoform regulates different downstream pathways during mesendoderm and asymmetric organ development.
Collapse
Affiliation(s)
- J J Essner
- Huntsman Cancer Institute, Center for Children, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
236
|
Capdevila I, Izpisúa Belmonte JC. Knowing left from right: the molecular basis of laterality defects. MOLECULAR MEDICINE TODAY 2000; 6:112-8. [PMID: 10689314 DOI: 10.1016/s1357-4310(00)01671-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The apparent symmetry of the vertebrate body conceals profound asymmetries in the development and placement of internal organs. Asymmetric organ development is controlled in part by genes expressed asymmetrically in the early embryo, and alterations in the activities of these genes can result in severe defects during organogenesis. Recently, data from different vertebrates have allowed researchers to put forward a model of genetic interactions that explains how asymmetric patterns of gene expression in the early embryo are translated into spatial patterns of asymmetric organ development. This model helps us to understand the molecular basis of a number of congenital malformations in humans.
Collapse
Affiliation(s)
- I Capdevila
- The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
237
|
Supp DM, Potter SS, Brueckner M. Molecular motors: the driving force behind mammalian left-right development. Trends Cell Biol 2000; 10:41-5. [PMID: 10652513 DOI: 10.1016/s0962-8924(99)01701-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The molecular motors dynein and kinesin are large protein complexes that convert the energy generated by ATP hydrolysis into directional movement along the microtubule cytoskeleton. They are required for a myriad of cellular processes, including mitotic spindle movement, axonal and vesicular transport, and ciliary beating. Recently, it has been shown that, in addition, they have a unique role during embryonic patterning: they are required to orient and establish the left-right axis in early vertebrate development.
Collapse
Affiliation(s)
- D M Supp
- Research Dept, Shriners Hospital for Children, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
238
|
St Amand TR, Zhang Y, Semina EV, Zhao X, Hu Y, Nguyen L, Murray JC, Chen Y. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol 2000; 217:323-32. [PMID: 10625557 DOI: 10.1006/dbio.1999.9547] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Members of the Pitx/RIEG family of homeodomain-containing transcription factors have been implicated in vertebrate organogenesis. In this study, we examined the expression and regulation of Pitx1 and Pitx2 during mouse tooth development. Pitx1 expression is detected in early development in a widespread pattern, in both epithelium and mesenchyme, covering the tooth-forming region in the mandible, and is then maintained in the dental epithelium from the bud stage to the late bell stage. Pitx2 expression, on the other hand, is restricted to the dental epithelium throughout odontogenesis. Interestingly, from E9.5 to E10.5, the expression domains of Pitx1 and Pitx2, in the developing mandible, overlap with that of Fgf8 but are exclusive to the zone of Bmp4 expression. Bead implantation experiments demonstrate that ectopic expression of Fgf8 can induce/maintain the expression of both Pitx1 and Pitx2 at E9.5. In contrast, Bmp4-expressing tissues and BMP4-soaked beads were able to repress Pitx1 expression in mandibular mesenchyme and Pitx2 expression in the presumptive dental epithelium, respectively. However, the effects of FGF8 and BMP4 are transient. It thus appears that the early expression patterns of Pitx1 and Pitx2 in the developing mandible are regulated by the antagonistic effects of FGF8 and BMP4 such that the Pitx1 and Pitx2 expression patterns are defined. These results indicate that the epithelial-derived signaling molecules are responsible not only for restricting specific gene expression in the dental mesenchyme, but also for defining gene expression in the dental epithelium.
Collapse
Affiliation(s)
- T R St Amand
- Department of Cell Biology, Tulane University, New Orleans, Louisiana, 70118, USA
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Ishimaru Y, Yoshioka H, Tao H, Thisse B, Thisse C, V E Wright C, Hamada H, Ohuchi H, Noji S. Asymmetric expression of antivin/lefty1 in the early chick embryo. Mech Dev 2000; 90:115-8. [PMID: 10585569 DOI: 10.1016/s0925-4773(99)00232-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mammalian lefty and zebrafish antivin, highly related to lefty, are shown to be expressed asymmetrically and involved in the specification of the left body side of early embryos. We isolated a chick homologue of the antivin/lefty1 cDNA and studied its expression pattern during early chick development. We found that antivin/lefty1 is expressed asymmetrically on the left side of the prospective floorplate, notochord and lateral plate mesoderm of the chick embryo.
Collapse
Affiliation(s)
- Y Ishimaru
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Schweickert A, Campione1 M, Steinbeisser H, Blum M. Pitx2 isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right asymmetry. Mech Dev 2000; 90:41-51. [PMID: 10585561 DOI: 10.1016/s0925-4773(99)00227-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During vertebrate left-right development the homeobox gene Pitx2 serves as a mediator between transient nodal signaling in the left lateral plate mesoderm (l-LPM) and asymmetric organ morphogenesis. Misexpression of Pitx2 in chick and frog led to alteration of organ situs. Here we report the presence of different Pitx2 isoforms in mouse and frog. Pitx2c but not Pitx2a or Pitx2b was asymmetrically expressed in the l-LPM, heart and gut, and was specifically induced by nodal in Xenopus animal cap explant cultures and whole embryos. Pitx2c induced its own transcription, suggesting a maintenance mechanism following the down-regulation of nodal in the l-LPM. Pitx2c thus represents the left-specific isoform involved in vertebrate left-right asymmetry.
Collapse
Affiliation(s)
- A Schweickert
- Forschungszentrum Karlsruhe, Institute of Genetics, P.O. Box 3640, D-76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|
241
|
Kathiriya IS, Srivastava D. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 97:271-9. [PMID: 11376438 DOI: 10.1002/1096-8628(200024)97:4<271::aid-ajmg1277>3.0.co;2-o] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proper morphogenesis and positioning of internal organs requires delivery and interpretation of precise signals along the anterior-posterior, dorsal-ventral, and left-right axes. An elegant signaling cascade determines left- versus right-sided identity in visceral organs in a concordant fashion, resulting in a predictable left-right (LR) organ asymmetry in all vertebrates. The complex morphogenesis of the heart and its connections to the vasculature are particularly dependent upon coordinated LR signaling pathways. Disorganization of LR signals can result in myriad congenital heart defects that are a consequence of abnormal looping and remodeling of the primitive heart tube into a multi-chambered organ. A framework for understanding how LR asymmetric signals contribute to normal organogenesis has emerged and begins to explain the basis of many human diseases of LR asymmetry. Here we review the impact of LR signaling pathways on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- I S Kathiriya
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 75390-9148, USA
| | | |
Collapse
|
242
|
Abstract
The spleen is a vertebrate organ that has both hematopoietic and immunologic function. The embryonic origins of the spleen are obscure, with most studies describing the earliest rudiment of the spleen as a condensation of mesodermal mesenchyme on the left side of the dorsal mesogastrium. The development of spleen handedness has not been described previously, presumably because of the difficulty in assaying spleen position in the embryo and the lack of early, organ-specific molecular markers. Here we show that expression of the homeobox gene Nkx2-5 serves as a marker for spleen precursor tissue. Pre-splenic tissue is initially located in symmetric domains on both sides of the embryo but, during subsequent development, only the left side goes on to form the mature spleen. Therefore, the final location of the spleen on the left side of the body axis appears to result from preferential development of the spleen precursor cells on the left side of the embryo. Our studies indicate that the spleen and heart become asymmetric via different cellular mechanisms. Nkx2-5 may function locally as part of the laterality cascade, downstream of nodal and Pitx2, or it may direct asymmetric morphogenesis after laterality has been determined.
Collapse
Affiliation(s)
- K D Patterson
- Section of Molecular Cell and Developmental Biology, School of Biological Sciences, University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
243
|
Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M, Miyazono K, Whitman M, Hamada H. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 2000; 5:35-47. [PMID: 10678167 DOI: 10.1016/s1097-2765(00)80401-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The left-right (L-R) asymmetric expression of lefty2 and nodal is controlled by a left side-specific enhancer (ASE). The transcription factor FAST2, which can mediate signaling by TGF beta and activin, has now been identified as a protein that binds to a conserved sequence in ASE. These FAST2 binding sites were both essential and sufficient for L-R asymmetric gene expression. The Fast2 gene is bilaterally expressed when nodal and lefty2 are expressed on the left side. TGF beta and activin can activate the ASE activity in a FAST2-dependent manner, while Nodal can do so in the presence of an EGF-CFC protein. These results suggest that the asymmetric expression of lefty2 and nodal is induced by a left side-specific TGF beta-related factor, which is most likely Nodal itself.
Collapse
Affiliation(s)
- Y Saijoh
- Division of Molecular Biology, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Constam DB, Robertson EJ. Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development 2000; 127:245-54. [PMID: 10603343 DOI: 10.1242/dev.127.2.245] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.
Collapse
Affiliation(s)
- D B Constam
- Harvard University, Department of Molecular Biology, Cambridge, MA 02138, USA
| | | |
Collapse
|
245
|
Homma S, Oppenheim RW, Yaginuma H, Kimura S. Expression pattern of GDNF, c-ret, and GFRalphas suggests novel roles for GDNF ligands during early organogenesis in the chick embryo. Dev Biol 2000; 217:121-37. [PMID: 10625540 DOI: 10.1006/dbio.1999.9543] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a partial cDNA of chicken glial cell line-derived neurotrophic factor (GDNF) and systematically examined its expression pattern as well as that of GDNF-binding components (GDNF family receptor alpha-1 and 2: GFRalpha-1 and 2) and a common signal transduction receptor (c-ret protooncogene: RET) during very early developmental stages. In addition, we also examined the expression pattern of an apparent avian-specific binding component, GFRalpha-4. The cloned chicken cDNA for GDNF had approximately 80% homology to mammalian counterparts. The expression of GDNF mRNA occurred in many spatially and temporally discrete regions such as the intermediate mesoderm, the floor plate of the spinal cord, pharyngeal endoderm contacting the epibranchial placodes, distal ganglia of cranial nerves, subpopulations of mesenchyme cells in the craniofacial region, and in the mesodermal wall of the digestive tract. Both a GDNF receptor signal transduction component (RET) and a binding component (GFRalpha-1 or GFRalpha-2) were independently expressed in nearby interacting tissues such as the somites, peripheral and central nervous system, and mesenchyme cells in the craniofacial region. These observations suggest that possible combinations of novel unidentified receptors acting with RET or with GFRalphas may mediate GDNF-derived signals and indicate that GDNF or other family members may have previously unidentified actions in early organogenesis in the chick embryo.
Collapse
Affiliation(s)
- S Homma
- Department of Anatomy, Fukushima Medical University, Fukushima, 960-1295, Japan.
| | | | | | | |
Collapse
|
246
|
Yasui K, Zhang S, Uemura M, Saiga H. Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development 2000; 127:187-95. [PMID: 10654612 DOI: 10.1242/dev.127.1.187] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The long-standing question of how asymmetric development or asymmetric body structures in lancelets (amphioxus) are phylogenetically related to the body plan of other animals is still untouched. Three anterior structures, the preoral pit, club-shaped gland and mouth, are remarkable asymmetric features in developing lancelets that all open on the left side of the body. A Ptx-related gene, BbPtx is the first identified transcription factor gene with an asymmetrical expression pattern in lancelets similar to that in vertebrates, and thus it may provide a clue for the above question. Expression of the BbPtx gene is first detected at the dorsal margin of the blastopore in early mid-gastrulae and then becomes restricted to the left anterodorsal wall of the primitive gut and to the developing left somitocoelomic system. Expression continues on the left side in the developing preoral pit, club-shaped gland and mouth as well as in the mesoderm at the caudal end. Unlike D-Ptx1 in Drosophila, BbPtx is not coexpressed with a fork head gene in lancelets; instead the two genes are expressed in a complementary fashion on the left side of the embryo. The expression pattern of BbPtx is not compatible with the calcichordate hypothesis of Jefferies, in which the proposed ancestor of chordates rotated its tail 90 degrees counterclockwise in relation to the head/trunk. The expression of both BbPtx and vertebrate Pitx2 in tissues derived from the coelom implies that the left-right asymmetric development has a common origin between cephalochordates and vertebrates. Considering the development of the coelom in deuterostomes, however, left-right asymmetric development involving Pitx2-related genes is rather likely to be a primitive character shared among deuterostomes.
Collapse
Affiliation(s)
- K Yasui
- Department of Oral Anatomy 1, Kagoshima University Dental School, Japan.
| | | | | | | |
Collapse
|
247
|
Supp DM, Brueckner M, Kuehn MR, Witte DP, Lowe LA, McGrath J, Corrales J, Potter SS. Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development 1999; 126:5495-504. [PMID: 10556073 PMCID: PMC1797880 DOI: 10.1242/dev.126.23.5495] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrates develop distinct asymmetries along the left-right axis, which are consistently aligned with the anteroposterior and dorsoventral axes. The mechanisms that direct this handed development of left-right asymmetries have been elusive, but recent studies of mutations that affect left-right development have shed light on the molecules involved. One molecule implicated in left-right specification is left-right dynein (LRD), a microtubule-based motor protein. In the LRD protein of the inversus viscerum (iv) mouse, there is a single amino acid difference at a conserved position, and the lrd gene is one of many genes deleted in the legless (lgl) mutation. Both iv and lgl mice display randomized left-right development. Here we extend the analysis of the lrd gene at the levels of sequence, expression and function. The complete coding sequence of the lrd gene confirms its classification as an axonemal, or ciliary, dynein. Expression of lrd in the node at embryonic day 7.5 is shown to be symmetric. At embryonic day 8.0, however, a striking asymmetric expression pattern is observed in all three germ layers of the developing headfold, suggesting roles in both the establishment and maintenance of left-right asymmetries. At later times, expression of lrd is also observed in the developing floorplate, gut and limbs. These results suggest function for LRD protein in both ciliated and non-ciliated cells, despite its sequence classification as axonemal. In addition, a targeted mutation of lrd was generated that deletes the part of the protein required for ATP binding, and hence motor function. The resulting left-right phenotype, randomization of laterality, is identical to that of iv and lgl mutants. Gross defects in ciliary structure were not observed in lrd/lrd mutants. Strikingly, however, the monocilia on mutant embryonic node cells were immotile. These results prove the identity of the iv and lrd genes. Further, they argue that LRD motor function, and resulting nodal monocilia movement, are required for normal left-right development.
Collapse
Affiliation(s)
- Dorothy M. Supp
- Divisions of Molecular and Developmental Biology, The Children’s Hospital Research Foundation, Cincinnati, Ohio, 45229, USA
| | - Martina Brueckner
- Department of Pediatrics/Cardiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Michael R. Kuehn
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David P. Witte
- Department of Pathology, The Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Linda A. Lowe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - James McGrath
- Department of Pediatrics/Cardiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - JoMichelle Corrales
- Department of Pediatrics/Cardiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - S. Steven Potter
- Divisions of Molecular and Developmental Biology, The Children’s Hospital Research Foundation, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
248
|
Kitamura K, Miura H, Miyagawa-Tomita S, Yanazawa M, Katoh-Fukui Y, Suzuki R, Ohuchi H, Suehiro A, Motegi Y, Nakahara Y, Kondo S, Yokoyama M. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development 1999; 126:5749-58. [PMID: 10572050 DOI: 10.1242/dev.126.24.5749] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pitx2, a bicoid-related homeobox gene, is involved in Rieger's syndrome and the left-right (L-R) asymmetrical pattern formation in body plan. In order to define the genomic structure and roles of Pitx2, we analyzed the genomic structure and generated Pitx2-deficient mice with the lacZ gene in the homeobox-containing exon of Pitx2. We were able to show that among three isoforms of Pitx2, Pitx2c shows asymmetrical expression whereas Pitx2a, Pitx2b and Pitx2c show symmetrical expression. In Pitx2(-)(/)(-) embryos there was an increase in mesodermal cells in the distal end of the left lateral body wall and an amnion continuous with the lateral body wall thickened in its mesodermal layer. These changes resulted in a failure of ventral body wall closure. In lung and heart in which Pitx2 is expressed asymmetrically, right pulmonary isomerism, atrioventricular canals with prominent swelling, and juxtaposition of the atrium were detected. The hearts failed to develop tricuspid and mitral valves and a common atrioventricular valve forms. Further, dysgenesis of the Pitx2(-)(/)(-) extraocular muscle and thickening of the mesothelial layer of cornea were observed in the ocular system where Pitx2 is expressed symmetrically, and these resulted in enophthalmos. The present study shows that Pitx2 expressed in various sites participates in morphogenesis through three types of actions: the involvement of asymmetric Pitx2 expression in the entire morphogenetic process of L-R asymmetric organs; the involvement of asymmetric Pitx2 expression in the regional morphogenesis of asymmetric organs; and finally the involvement of symmetric Pitx2 expression in the regional morphogenesis of symmetric organs.
Collapse
Affiliation(s)
- K Kitamura
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Ramsdell AF, Yost HJ. Cardiac looping and the vertebrate left-right axis: antagonism of left-sided Vg1 activity by a right-sided ALK2-dependent BMP pathway. Development 1999; 126:5195-205. [PMID: 10556046 DOI: 10.1242/dev.126.23.5195] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rightward looping of the primary heart tube is dependent upon upstream patterning events that establish the vertebrate left-right axis. In Xenopus, a left-sided Vg1 signaling pathway has been implicated in instructing cells to adopt a ‘left-sided identity’; however, it is not known whether ‘right-sided identity’ is acquired by a default pathway or by antagonism of Vg1 signaling. Here, we propose that an antagonistic, BMP/ALK2/Smad-mediated signaling pathway is active on the right side of the Xenopus embryo. Truncated ALK2 receptor expression on the right side of the blastula elicits heart reversals and altered nodal expression. Consistent with these findings, constitutively active ALK2 (CA-ALK2) receptor expression on the left side of the blastula also elicits heart reversals and altered nodal expression. Coexpression of CA-ALK2 with mature Vg1 ligand results in predominantly left-sided nodal expression patterns and normal heart looping, demonstrating that the ALK2 pathway can ‘rescue’ left-right reversals that otherwise occur following right-sided misexpression of mature Vg1 ligand alone. Results with chimeric precursor proteins indicate that the mature domain of BMP ligands can mimic the ability of the ALK2 signaling pathway to antagonize the Vg1 pathway. Consistent with the observed antagonism between BMP and Vg1 ligands, left-sided ectopic expression of Xolloid results in heart reversals. Moreover, ectopic expression of Smad1 or Smad7 identified two downstream modulators of the BMP/ALK2 signaling pathway that also can regulate cardiac orientation. Collectively, these results define a BMP/ALK2-mediated pathway on the right side of the Xenopus embryo and, moreover, suggest that left-right patterning preceding cardiac morphogenesis involves the activation of two distinct and antagonistic, left- and right-sided TGF(beta)-related signaling pathways.
Collapse
Affiliation(s)
- A F Ramsdell
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112-5550, USA
| | | |
Collapse
|
250
|
Bohring A, Lewin SO, Reynolds JF, Voigtl�nder T, Rittinger O, Carey JC, K�pernik M, Smith R, Zackai EH, Leonard NJ, Gritter HL, Bamforth JS, Okun N, McLeod DR, Super M, Powell P, Mundlos S, Hennekam RC, van Langen IM, Viskochil DH, Wiedemann HR, Opitz JM. Polytopic anomalies with agenesis of the lower vertebral column. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19991119)87:2<99::aid-ajmg1>3.0.co;2-q] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|