201
|
Roos M, van Geel AB, Aarsman ME, Veuskens JT, Woldringh CL, Nanninga N. The replicated ftsQAZ and minB chromosomal regions of Escherichia coli segregate on average in line with nucleoid movement. Mol Microbiol 2001; 39:633-40. [PMID: 11169104 DOI: 10.1046/j.1365-2958.2001.02263.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The average cellular positions of the ftsQAZ region (2 min) and the minB region (26.5 min) during the cell cycle was determined by fluorescent in situ hybridization using the position of oriC as a reference point. At the steady-state growth conditions used, newborn cells had replicated about 50% of the chromosome. By measuring the distances of the labelled oriCs with respect to mid-cell, we found two well-separated average oriC positions in cells of newborn length. These average oriC positions moved further apart along with cell elongation. The cellular position of the ftsQAZ gene region resembled the position of oriC, although its average position was closer to mid-cell. In contrast, a single minB focus was observed at cell birth. Separated minB foci appeared towards the end of DNA replication. The average positions of oriC, ftsQAZ and minB relative to each other fitted a model in which DNA replication takes place in the cell centre and subsequent gene regions pass sequentially through this centre. We have interpreted the polarized orientation of the studied gene regions as a consequence of the mode of DNA segregation.
Collapse
Affiliation(s)
- M Roos
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
202
|
Izard J, Samsonoff WA, Limberger RJ. Cytoplasmic filament-deficient mutant of Treponema denticola has pleiotropic defects. J Bacteriol 2001; 183:1078-84. [PMID: 11208807 PMCID: PMC94976 DOI: 10.1128/jb.183.3.1078-1084.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Treponema denticola, a ribbon-like structure of cytoplasmic filaments spans the cytoplasm at all stages of the cell division process. Insertional inactivation was used as a first step to determine the function of the cytoplasmic filaments. A suicide plasmid was constructed that contained part of cfpA and a nonpolar erythromycin resistance cassette (ermF and ermAM) inserted near the beginning of the gene. The plasmid was electroporated into T. denticola, and double-crossover recombinants which had the chromosomal copy of cfpA insertionally inactivated were selected. Immunoblotting and electron microscopy confirmed the lack of cytoplasmic filaments. The mutant was further analyzed by dark-field microscopy to determine cell morphology and by the binding of two fluorescent dyes to DNA to assess the distribution of cellular nucleic acids. The cytoplasmic filament protein-deficient mutant exhibited pleiotropic defects, including highly condensed chromosomal DNA, compared to the homogeneous distribution of the DNA throughout the cytoplasm in a wild-type cell. Moreover, chains of cells are formed by the cytoplasmic filament-deficient mutant, and those cells show reduced spreading in agarose, which may be due to the abnormal cell length. The chains of cells and the highly condensed chromosomal DNA suggest that the cytoplasmic filaments may be involved in chromosome structure, segregation, or the cell division process in Treponema.
Collapse
Affiliation(s)
- J Izard
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | | | |
Collapse
|
203
|
Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc Natl Acad Sci U S A 2001. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.011506098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet disruption of these systems does not cause an obvious defect in growth or viability. We have found that the replication termination system of Bacillus subtilis contributes to accurate chromosome partitioning. Partitioning of the terminus region requires that chromosome dimers, that have formed as a result of RecA-mediated homologous recombination, be resolved to monomers by the site-specific recombinase encoded by ripX. In addition, the chromosome must be cleared from the region of formation of the division septum. This process is facilitated by the spoIIIE gene product which is required for movement of a chromosome out of the way of the division septum during sporulation. We found that deletion of rtp, which encodes the replication termination protein, in combination with mutations in ripX or spoIIIE, led to an increase in production of anucleate cells. This increase in production of anucleate cells depended on recA, indicating that there is probably an increase in chromosome dimer formation in the absence of the replication termination system. Our results also indicate that SpoIIIE probably enhances the function of the RipX recombinase system. We also determined the subcellular location of the replication termination protein and found that it is a good marker for the position of the chromosome terminus.
Collapse
|
204
|
Lemon KP, Kurtser I, Grossman AD. Effects of replication termination mutants on chromosome partitioning in
Bacillus subtilis. Proc Natl Acad Sci U S A 2001; 98:212-7. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.98.1.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet
disruption of these systems does not cause an obvious defect in growth
or viability. We have found that the replication termination system of
Bacillus subtilis
contributes to accurate chromosome
partitioning. Partitioning of the terminus region requires that
chromosome dimers, that have formed as a result of RecA-mediated
homologous recombination, be resolved to monomers by the site-specific
recombinase encoded by
ripX
. In addition, the chromosome
must be cleared from the region of formation of the division septum.
This process is facilitated by the
spoIIIE
gene product
which is required for movement of a chromosome out of the way of the
division septum during sporulation. We found that deletion of
rtp
, which encodes the replication termination protein,
in combination with mutations in
ripX
or
spoIIIE
, led to an increase in production of anucleate
cells. This increase in production of anucleate cells depended on
recA
, indicating that there is probably an increase in
chromosome dimer formation in the absence of the replication
termination system. Our results also indicate that SpoIIIE probably
enhances the function of the RipX recombinase system. We also
determined the subcellular location of the replication termination
protein and found that it is a good marker for the position of the
chromosome terminus.
Collapse
Affiliation(s)
- K P Lemon
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
205
|
Abstract
The mechanism responsible for creating the division site in the right place at the right time in bacteria is unknown. It has been attributed to the formation of proteolipid domains in the cytoplasmic membrane surrounding the nucleoids. We interpret the growing evidence for this hypothesis by invoking hyperstructures, which exist at a level of organization intermediate between macromolecules and genes. Non-equilibrium hyperstructures comprise the genes, mRNA proteins and lipids required for a particular function such as cell division, and assemble and disassemble according to the needs of the cell.
Collapse
Affiliation(s)
- V Norris
- Laboratoire des Processus Intégratifs Cellulaires, UPRESA CNRS 6037, IFR 'Systèmes Intégrés', Faculté des Sciences et Techniques, Université de Rouen, 76821 cedex, Mont-Saint-Aignan, France.
| | | |
Collapse
|
206
|
Abstract
Segregation in Escherichia coli, the process of separating the replicated chromosomes into daughter progeny cells, seems to start long before the duplication of the genome reaches completion. Soon after initiation in mid-cell region, the daughter oriCs rapidly move apart to fixed positions inside the cell (quarter length positions from each pole) and are anchored there by yet unknown mechanism(s). As replication proceeds, the rest of the chromosome is sequentially unwound and then refolded. At termination, the two sister chromosomes are unlinked by decatenation and separated by supercoiling and/or condensation. Muk and Seq proteins are involved in different stages of this replication-cum-partition process and thus can be categorized as important partition proteins along with topoisomerases. E. coli strains, lacking mukB or seqA functions, are defective in segregation and cell division. The nucleoids in these mutant strains exhibit altered condensation and superhelicity as can be demonstrated by sedimentation analysis and by fluorescence microscopy. As the supercoiling of an extrachromosomal element (a plasmid DNA) was also influenced by the mukB and seqA mutations we concluded that the MukB and SeqA proteins are possibly involved in maintaining the general supercoiling activity in the cell. The segregation of E. coli chromosome might therefore be predominantly driven by factors that operate by affecting the superhelicity and condensation of the nucleoid (MukB, SeqA, topoisomerases and additional unknown proteins). A picture thus emerges in which replication and partition are no longer compartmentalized into separable stages with clear gaps (S and M phases in eukaryotes) but are parallel processes that proceed concomitantly through a cell cycle continuum.
Collapse
Affiliation(s)
- K Nordström
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, 751 24, Uppsala, Sweden.
| | | |
Collapse
|
207
|
Abstract
DNA replication in Escherichia coli is controlled at the initiation stage, possibly by regulation of the essential activity of DnaA protein. The cellular membrane has long been hypothesized to be involved in chromosomal replication. Accumulating evidence, both in vitro and in vivo, that supports the importance of membrane phospholipids influencing the initiation activity of DnaA is reviewed.
Collapse
Affiliation(s)
- E Crooke
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
208
|
Yamaichi Y, Niki H. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci U S A 2000; 97:14656-61. [PMID: 11121066 PMCID: PMC18974 DOI: 10.1073/pnas.97.26.14656] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial genes required for proper partitioning consist of two transacting genes that encode proteins and a cis-acting gene that functions like a centromere. Plasmids actively partitioning by means of these genes migrate from midcell to the cell quarters and are tethered to these sites until the cells divide. Previously the partitioning genes were mainly found on plasmids and phages in Escherichia coli. However, progress in genome sequencing reveals that partitioning genes are ubiquitous in many bacterial plasmids and chromosomes. Each homologue of the two transacting genes belongs to a family, ParA or ParB. Moreover, phylogenic analysis of members of the ParA and ParB families indicates that each member falls into a chromosomal group or an extrachromosomal group. It is known that the parAB genes in the chromosomal group are located on relatively conserved chromosomal regions in several bacterial species. This suggests that the parAB genes were transferred from a chromosome to plasmids and phages, so the genes have diverged among bacterial species. To support this possibility, we show that the Bacillus subtilis Soj and Spo0J members of the ParAB families are responsible for the specific localization of plasmids at cell quarters in E. coli and can function as partition proteins. Host factors to tether actively partitioning plasmids at subcellular sites may be conserved in Gram-negative and Gram-positive bacteria so that phages and plasmids with the ParAB partitioning system can be stably inherited in host cells across bacterial species.
Collapse
Affiliation(s)
- Y Yamaichi
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 4-24-1, Kuhonji, Japan
| | | |
Collapse
|
209
|
Abstract
We found that DNA is replicated at a central stationary polymerase, and each replicated region moves away from the replisome. In Bacillus subtilis, DNA polymerase is predominantly located at or near midcell. When replication was blocked in a specific chromosomal region, that region was centrally located with DNA polymerase. Upon release of the block, each copy of the duplicated region was located toward opposite cell poles, away from the central replisome. In a roughly synchronous population of cells, a region of chromosome between origin and terminus moved to the replisome prior to duplication. Thus, the polymerase at the replication forks is stationary, and the template is pulled in and released outward during duplication. We propose that B. subtilis, and probably many bacteria, harness energy released during nucleotide condensation by a stationary replisome to facilitate chromosome partitioning.
Collapse
Affiliation(s)
- K P Lemon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
210
|
Bath J, Wu LJ, Errington J, Wang JC. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 2000; 290:995-7. [PMID: 11062134 DOI: 10.1126/science.290.5493.995] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The SpoIIIE protein of Bacillus subtilis is required for chromosome segregation during spore formation. The COOH-terminal cytoplasmic part of SpoIIIE was shown to be a DNA-dependent adenosine triphosphatase (ATPase) capable of tracking along DNA in the presence of ATP, and the NH(2)-terminal part of the protein was found to mediate its localization to the division septum. Thus, during sporulation, SpoIIIE appears to act as a DNA pump that actively moves one of the replicated pair of chromosomes into the prespore. The presence of SpoIIIE homologs in a broad range of bacteria suggests that this mechanism for active transport of DNA may be widespread.
Collapse
Affiliation(s)
- J Bath
- Department of Molecular and Cellular Biology, Harvard University, MA 02138, USA
| | | | | | | |
Collapse
|
211
|
Rosche TM, Siddique A, Larsen MH, Figurski DH. Incompatibility protein IncC and global regulator KorB interact in active partition of promiscuous plasmid RK2. J Bacteriol 2000; 182:6014-26. [PMID: 11029420 PMCID: PMC94734 DOI: 10.1128/jb.182.21.6014-6026.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 08/05/2000] [Indexed: 11/20/2022] Open
Abstract
Replication of the broad-host-range, IncPalpha plasmid RK2 requires two plasmid loci: trfA, the replication initiator gene, and oriV, the origin of replication. While these determinants are sufficient for replication in a wide variety of bacteria, they do not confer the stable maintenance of parental RK2 observed in its hosts. The product of the incC gene has been proposed to function in the stable maintenance of RK2 because of its relatedness to the ParA family of ATPases, some of which are known to be involved in the active partition of plasmid and chromosomal DNA. Here we show that IncC has the properties expected of a component of an active partition system. The smaller polypeptide product of incC (IncC2) exhibits a strong, replicon-independent incompatibility phenotype with RK2. This incompatibility phenotype requires the global transcriptional repressor, KorB, and the target for incC-mediated incompatibility is a KorB-binding site (O(B)). We found that KorB and IncC interact in vivo by using the yeast two-hybrid system and in vitro by using partially purified proteins. Elevated expression of the incC and korB genes individually has no obvious effect on Escherichia coli cell growth, but their simultaneous overexpression is toxic, indicating a possible interaction of IncC-KorB complexes with a vital host target. A region of RK2 bearing incC, korB, and multiple KorB-binding sites is able to stabilize an unstable, heterologous plasmid in an incC-dependent manner. Finally, elevated levels of IncC2 cause RK2 to aggregate, indicating a possible role for IncC in plasmid pairing. These findings demonstrate that IncC, KorB, and at least one KorB-binding site are components of an active partition system for the promiscuous plasmid RK2.
Collapse
Affiliation(s)
- T M Rosche
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
212
|
Graumann PL. Bacillus subtilis SMC is required for proper arrangement of the chromosome and for efficient segregation of replication termini but not for bipolar movement of newly duplicated origin regions. J Bacteriol 2000; 182:6463-71. [PMID: 11053392 PMCID: PMC94794 DOI: 10.1128/jb.182.22.6463-6471.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMC protein is required for chromosome condensation and for the faithful segregation of daughter chromosomes in Bacillus subtilis. The visualization of specific sites on the chromosome showed that newly duplicated origin regions in growing cells of an smc mutant were able to segregate from each other but that the location of origin regions was frequently aberrant. In contrast, the segregation of replication termini was impaired in smc mutant cells. This analysis was extended to germinating spores of an smc mutant. The results showed that during germination, newly duplicated origins, but not termini, were able to separate from each other in the absence of SMC. Also, DAPI (4',6'-diamidino-2-phenylindole) staining revealed that chromosomes in germinating spores were able to undergo partial or complete replication but that the daughter chromosomes were blocked at a late stage in the segregation process. These findings were confirmed by time-lapse microscopy, which showed that after duplication in growing cells the origin regions underwent rapid movement toward opposite poles of the cell in the absence of SMC. This indicates that SMC is not a required component of the mitotic motor that initially drives origins apart after their duplication. It is also concluded that SMC is needed to maintain the proper layout of the chromosome in the cell and that it functions in the cell cycle after origin separation but prior to complete segregation or replication of daughter chromosomes. It is proposed here that chromosome segregation takes place in at least two steps: an SMC-independent step in which origins move apart and a subsequent SMC-dependent step in which newly duplicated chromosomes condense and are thereby drawn apart.
Collapse
Affiliation(s)
- P L Graumann
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
213
|
Weitao T, Dasgupta S, Nordström K. Role of the mukB gene in chromosome and plasmid partition in Escherichia coli. Mol Microbiol 2000; 38:392-400. [PMID: 11069664 DOI: 10.1046/j.1365-2958.2000.02138.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intracellular locations of oriC and oriR1, the replication origins of the chromosome and plasmid R1, respectively, were visualized by fluorescence in situ hybridization (FISH) in exponentially growing populations of Escherichia coli. The locations of oriC and oriR1 (from a Par+ R1 plasmid) were unique and different in the wild-type host. In a mukB mutant, the positions were perturbed for both origins. The position of oriR1 from a plasmid with active partition (Par+) in the mukB host was as randomized as that of oriR1 from the Par- plasmid in a wild-type host. However, this mukB-induced randomization did not result in unstable inheritance of the Par+ plasmid, as measured by the conventional segregation assay. This might result from the preferential association of the Par+ plasmid with the bigger, decondensed nucleoid-containing daughters during cell division of MukB- cells, whereas the Par- plasmids were distributed at random and were lost by frequently ending up in anucleate cells.
Collapse
Affiliation(s)
- T Weitao
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
214
|
Abstract
Advances in recent years have led to exciting new ideas about the initiation, regulation and coordination of DNA replication. Structural studies have yielded fascinating glimpses of replisome action. In addition, the involvement of replication proteins in other cellular processes has blurred the lines between replication, repair and recombination.
Collapse
Affiliation(s)
- M J Davey
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
215
|
Norris V, Fralick J, Danchin A. A SeqA hyperstructure and its interactions direct the replication and sequestration of DNA. Mol Microbiol 2000; 37:696-702. [PMID: 10972793 DOI: 10.1046/j.1365-2958.2000.02019.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A level of explanation in biology intermediate between macromolecules and cells has recently been proposed. This level is that of hyperstructures. One class of hyperstructures comprises the genes, mRNA, proteins and lipids that assemble to fulfil a particular function and disassemble when no longer required. To reason in terms of hyperstructures, it is essential to understand the factors responsible for their formation. These include the local concentration of sites on DNA and their cognate DNA-binding proteins. In Escherichia coli, the formation of a SeqA hyperstructure via the phenomenon of local concentration may explain how the binding of SeqA to hemimethylated GATC sequences leads to the sequestration of newly replicated origins of replication.
Collapse
Affiliation(s)
- V Norris
- Laboratoire des Processus Intégratifs Cellulaires, UPRES A CNRS 6037, IFR 'Systèmes Intégrés', Faculté des Sciences et Techniques, Université de Rouen, F76821 Mont Saint Aignan Cedex, France.
| | | | | |
Collapse
|
216
|
Abstract
Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal origin regions to specific subcellular sites (i.e. the poles or quarter-cell positions). Two types of partitioning ATPases are known: the Walker-type ATPases encoded by the par/sop gene family (type I partitioning loci) and the actin-like ATPase encoded by the par locus of plasmid R1 (type II partitioning locus). A phylogenetic analysis of the large family of Walker type of partitioning ATPases yielded a surprising pattern: most of the plasmid-encoded ATPases clustered into distinct subgroups. Surprisingly, however, the par loci encoding these distinct subgroups have different genetic organizations and thus divide the type I loci into types Ia and Ib. A second surprise was that almost all chromosome-encoded ATPases, including members from both Gram-negative and Gram-positive Bacteria and Archaea, clustered into one distinct subgroup. The phylogenetic tree is consistent with lateral gene transfer between Bacteria and Archaea. Using database mining with the ParM ATPase of plasmid R1, we identified a new par gene family from enteric bacteria. These type II loci, which encode ATPases of the actin type, have a genetic organization similar to that of type Ib loci.
Collapse
Affiliation(s)
- K Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense University, Campusvej 55, DK-5230 Odense M,
| | | | | |
Collapse
|
217
|
Meijer WJ, Lewis PJ, Errington J, Salas M. Dynamic relocalization of phage phi 29 DNA during replication and the role of the viral protein p16.7. EMBO J 2000; 19:4182-90. [PMID: 10921898 PMCID: PMC306615 DOI: 10.1093/emboj/19.15.4182] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have examined the localization of DNA replication of the Bacillus subtilis phage phi 29 by immunofluorescence. To determine where phage replication was localized within infected cells, we examined the distribution of phage replication proteins and the sites of incorporation of nucleotide analogues into phage DNA. On initiation of replication, the phage DNA localized to a single focus within the cell, nearly always towards one end of the host cell nucleoid. At later stages of the infection cycle, phage replication was found to have redistributed to multiple sites around the periphery of the nucleoid, just under the cell membrane. Towards the end of the cycle, phage DNA was once again redistributed to become located within the bulk of the nucleoid. Efficient redistribution of replicating phage DNA from the initial replication site to various sites surrounding the nucleoid was found to be dependent on the phage protein p16.7.
Collapse
Affiliation(s)
- W J Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
218
|
Abstract
Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning.
Collapse
Affiliation(s)
- J Møller-Jensen
- Dept of Biochemistry and Molecular Biology, SDU-Odense University, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
219
|
Imai Y, Ogasawara N, Ishigo-Oka D, Kadoya R, Daito T, Moriya S. Subcellular localization of Dna-initiation proteins of Bacillus subtilis: evidence that chromosome replication begins at either edge of the nucleoids. Mol Microbiol 2000; 36:1037-48. [PMID: 10844689 DOI: 10.1046/j.1365-2958.2000.01928.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the intracellular distribution of Bacillus subtilis Dna-initiation proteins by immunofluorescence microscopy to visualize the initiation complex of replication in vivo. DnaA was distributed throughout the cytoplasm, but both DnaB and DnaI were always detected as foci during the cell-division cycle. Interaction of DnaI with the DnaC helicase by the yeast two-hybrid assay suggests that DnaI acts as a helicase loader. The number of DnaB and DnaI foci within the cell exceeded that of oriC. Although the foci were not always co-localized with oriC, they seemed to be localized near the outer or inner edges of the nucleoids at initiation of replication. When the replication cycle was synchronized in cells using a temperature-sensitive dnaA mutant, duplication of the oriC region was observed predominantly near an edge of the nucleoid. Before initiation occurred, each one of the DnaB and DnaI foci was frequently observed near there. Furthermore, DnaX-GFP (DnaX is a component of DNA polymerase III) foci were detected near either of the edges of the nucleoids at the onset of replication. These results suggest that the replisome is recruited into oriC near either edge of the nucleoids to initiate chromosome replication in B. subtilis.
Collapse
Affiliation(s)
- Y Imai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
220
|
Hoppert M, Mayer F. Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem Biophys 2000; 31:247-84. [PMID: 10736750 DOI: 10.1007/bf02738242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Structural organization of the cytoplasm by compartmentation is a well established fact for the eukaryotic cell. In prokaryotes, compartmentation is less obvious. Most prokaryotes do not need intracytoplasmic membranes to maintain their vital functions. This review, especially dealing with prokaryotes, will point out that compartmentation in prokaryotes is present, but not only achieved by membranes. Besides membranes, the nucleoid, multienzyme complexes and metabolons, storage granules, and cytoskeletal elements are involved in compartmentation. In this respect, the organization of the cytoplasm of prokaryotes is similar to that in the eukaryotic cell. Compartmentation influences properties of water in cells.
Collapse
Affiliation(s)
- M Hoppert
- Abteilung Strukfurelle Mikrobiologie, Georg-August-Universitat, Göttingen, Germany.
| | | |
Collapse
|
221
|
Newman G, Crooke E. DnaA, the initiator of Escherichia coli chromosomal replication, is located at the cell membrane. J Bacteriol 2000; 182:2604-10. [PMID: 10762265 PMCID: PMC111327 DOI: 10.1128/jb.182.9.2604-2610.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the lack of a nucleus in prokaryotic cells, the significance of spatial organization in bacterial chromosome replication is only beginning to be fully appreciated. DnaA protein, the initiator of chromosomal replication in Escherichia coli, is purified as a soluble protein, and in vitro it efficiently initiates replication of minichromosomes in membrane-free DNA synthesis reactions. However, its conversion from a replicatively inactive to an active form in vitro occurs through its association with acidic phospholipids in a lipid bilayer. To determine whether the in situ residence of DnaA protein is cytoplasmic, membrane associated, or both, we examined the cellular location of DnaA using immunogold cryothin-section electron microscopy and immunofluorescence. Both of these methods revealed that DnaA is localized at the cell membrane, further suggesting that initiation of chromosomal replication in E. coli is a membrane-affiliated event.
Collapse
Affiliation(s)
- G Newman
- Department of Biochemistry, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | |
Collapse
|
222
|
Sun YL, Sharp MD, Pogliano K. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J Bacteriol 2000; 182:2919-27. [PMID: 10781563 PMCID: PMC102003 DOI: 10.1128/jb.182.10.2919-2927.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the stage of engulfment in the Bacillus subtilis spore formation pathway, the larger mother cell engulfs the smaller forespore. We have tested the role of forespore-specific gene expression in engulfment using two separate approaches. First, using an assay that unambiguously detects sporangia that have completed engulfment, we found that a mutant lacking the only forespore-expressed engulfment protein identified thus far, SpoIIQ, is able to efficiently complete engulfment under certain sporulation conditions. However, we have found that the mutant is defective, under all conditions, in the expression of the late-forespore-specific transcription factor sigma(G); thus, SpoIIQ is essential for spore production. Second, to determine if engulfment could proceed in the absence of forespore-specific gene expression, we made use of a strain in which activation of the mother cell-specific sigma factor sigma(E) was uncoupled from forespore-specific gene expression. Remarkably, engulfment occurred in the complete absence of sigma(F)-directed gene expression under the same conditions permissive for engulfment in the absence of SpoIIQ. Our results demonstrate that forespore-specific gene expression is not essential for engulfment, suggesting that the machinery used to move the membranes around the forespore is within the mother cell.
Collapse
Affiliation(s)
- Y L Sun
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | |
Collapse
|
223
|
Hiraga S, Ichinose C, Onogi T, Niki H, Yamazoe M. Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli. Genes Cells 2000; 5:327-41. [PMID: 10886362 DOI: 10.1046/j.1365-2443.2000.00334.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously found that SeqA protein, which binds preferentially to newly replicated hemimethylated DNA, is localized as discrete fluorescent foci in Escherichia coli cells. A single SeqA focus, localized at midcell, separates into two foci and these foci migrate abruptly in opposite directions. RESULTS The present study shows that (i) appearance of SeqA foci depends on continuous DNA replication, suggesting that the SeqA foci represent clusters consisting of SeqA and newly replicated hemimethylated DNA, (ii) in a synchronous round of replication, a single SeqA focus at midcell separates into two foci and these foci abruptly migrate in opposite directions midway through replication from oriC to the terminus, and (iii) oriC is replicated at midcell but replicated oriC copies remain linked with each other at midcell for 40 min after replication at 30 degrees C. Subsequently, the linked oriC copies separate and migrate gradually towards both borders of the nucleoid before cell division. CONCLUSIONS A single cluster of SeqA-bound hemimethylated DNA segment separates into two clusters and these clusters migrate abruptly in a bipolar fashion during progress of replication and prior to separation of linked sister oriC copies.
Collapse
Affiliation(s)
- S Hiraga
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 862-0976, Japan.
| | | | | | | | | |
Collapse
|
224
|
Ridgway P, Quivy JP, Almouzni G. Tetracycline-regulated gene expression switch in Xenopus laevis. Exp Cell Res 2000; 256:392-9. [PMID: 10772812 DOI: 10.1006/excr.2000.4853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus is a well-characterized model system for the investigation of biological processes at the molecular, cellular, and developmental level. The successful application of a rapid and reliable method for transgenic approaches in Xenopus has led to renewed interest in this system. We have explored the applicability of tetracycline-regulated gene expression, first described by Gossen and Bujard in 1992, to the Xenopus system. By optimizing conditions, tetracycline repressor induced expression of a luciferase reporter gene was readily and reproducibly achieved in both the Xenopus oocyte and developing embryo. This high level of expression was effectively abrogated by addition of low levels of tetracycline. The significance of this newly defined system for studies of chromatin dynamics and developmental processes is discussed.
Collapse
Affiliation(s)
- P Ridgway
- Section de Recherche UMR218 du CNRS, Institut Curie, 26 rue d'Ulm, Paris Cedex 05, 75231, France
| | | | | |
Collapse
|
225
|
Kumar RB, Xie YH, Das A. Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol Microbiol 2000; 36:608-17. [PMID: 10844650 DOI: 10.1046/j.1365-2958.2000.01876.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens transforms plants by transferring DNA to the plant cell nucleus. The VirB membrane proteins are postulated to form a pore for the transport of the DNA across the bacterial membranes. Immunofluorescence and immunoelectron microscopy were used to study the transport pore complex. Three likely components of the transport pore, VirB8, VirB9 and VirB10, localized primarily to the inner membrane, outer membrane and periplasm respectively. A significant amount of VirB10 was also found associated with the outer membrane. When expressed alone VirB9 and VirB10 were randomly distributed along the cell membrane. Subcellular location of both proteins changed dramatically in the presence of the other VirB proteins. Both proteins localized to fewer sites and most of the gold particles representing protein molecules were found in clusters suggesting that the two proteins are in a protein complex. VirB8, on the other hand, localized to clusters even in the absence of the other VirB proteins. To investigate the role of VirB8 in the formation of VirB9 and VirB10 protein complexes, we studied the effect of deletion of virB8 on the subcellular location of VirB9 and VirB10. In a virB8 deletion mutant both proteins were distributed randomly on the cell membrane indicating that VirB8 is essential for complex assembly.
Collapse
Affiliation(s)
- R B Kumar
- Department of Biochemistry, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
226
|
Pérals K, Cornet F, Merlet Y, Delon I, Louarn JM. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 2000; 36:33-43. [PMID: 10760161 DOI: 10.1046/j.1365-2958.2000.01847.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, chromosome dimers are generated by recombination between circular sister chromosomes. Dimers are lethal unless resolved by a system that involves the XerC, XerD and FtsK proteins acting at a site (dif) in the terminus region. Resolution fails if dif is moved from its normal position. To analyse this positional requirement, dif was transplaced to a variety of positions, and deletions and inversions of portions of the dif region were constructed. Resolution occurs only when dif is located at the convergence of multiple, oppositely polarized DNA sequence elements, inferred to lie in the terminus region. These polar elements may position dif at the cell septum and be general features of chromosome organization with a role in nucleoid dynamics.
Collapse
Affiliation(s)
- K Pérals
- Laboratoire de Microbiologie et de Génétique moléculaires, Centre National de la Recherche Scientifique, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
227
|
Kim HJ, Calcutt MJ, Schmidt FJ, Chater KF. Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 2000; 182:1313-20. [PMID: 10671452 PMCID: PMC94417 DOI: 10.1128/jb.182.5.1313-1320.2000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1999] [Accepted: 12/13/1999] [Indexed: 11/20/2022] Open
Abstract
Candidate partitioning genes (parA and parB) for the linear chromosome of Streptomyces coelicolor were identified by DNA sequencing in a series of seven genes located between rnpA and trxA near the chromosomal replication origin. The most likely translation start point of parB overlapped the parA stop codon, suggestive of coregulation, and transcription analysis suggested that the two genes formed an operon. Deletion of part of parB had no effect on the growth or appearance of colonies but caused a deficiency in DNA partitioning during the multiple septation events involved in converting aerial hyphae into long chains of spores. At least 13% of spore compartments failed to inherit the normal DNA allocation. The same phenotype was obtained with a deletion removing a segment of DNA from both parA and parB. Reinforcing the idea of a special role for the par locus during sporulation, the stronger of two parAB promoters was greatly upregulated at about the time when sporulation septation was maximal in colonies. Three copies of a 14-bp inverted repeat (GTTTCACGTGAAAC) were found in or near the parAB genes, and at least 12 more identical copies were identified within 100 kb of oriC from the growing genome sequence database. Only one perfect copy of the 14-bp sequence was present in approximately 5 Mb of sequence available from the rest of the genome. The 14-bp sequence was similar to sequences identified as binding sites for Spo0J, a ParB homologue from Bacillus subtilis believed to be important for DNA partitioning (D. C.-H. Lin and A. D. Grossman, Cell 92:675-685, 1998). One of these sites encompassed the transcription start point of the stronger parA promoter.
Collapse
Affiliation(s)
- H J Kim
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
228
|
Kim PD, Firshein W. Isolation of an inner membrane-derived subfraction that supports in vitro replication of a mini-RK2 plasmid in Escherichia coli. J Bacteriol 2000; 182:1757-60. [PMID: 10692384 PMCID: PMC94476 DOI: 10.1128/jb.182.6.1757-1760.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results have demonstrated that the inner, but not the outer, membrane fraction of Escherichia coli is the site of membrane-associated DNA replication of plasmid RK2, a broad-host-range plasmid capable of replication in a wide variety of gram-negative hosts (K. Michaels, J. Mei, and W. Firshein, Plasmid 32:19-31, 1994). To resolve the inner membrane replication site further, the procedure of Ishidate et al. (K. Ishidate, E. S. Creeger, J. Zrike, S. Deb, G. Glauner, T. J. MacAlister, and L. I. Rothfield, J. Biol. Chem. 261:428-443, 1986) was used to separate the inner membrane into a number of subfractions, of which only one, a small subfraction containing only 10% of the entire membrane, was found to synthesize DNA inhibited by antibody prepared against the plasmid-encoded initiation protein TrfA. This is the same subfraction that was also found to bind oriV and TrfA to the greatest extent in filter binding assays (J. Mei, S. Benashski, and W. Firshein, J. Bacteriol. 177:6766-6772, 1995).
Collapse
Affiliation(s)
- P D Kim
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
229
|
Pedersen LB, Setlow P. Penicillin-binding protein-related factor A is required for proper chromosome segregation in Bacillus subtilis. J Bacteriol 2000; 182:1650-8. [PMID: 10692371 PMCID: PMC94463 DOI: 10.1128/jb.182.6.1650-1658.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that the ponA gene, encoding penicillin-binding protein 1 (PBP1), is in a two-gene operon with prfA (PBP-related factor A) (also called recU), which encodes a putative 206-residue basic protein (pI = 10.1) with no significant sequence homology to proteins with known functions. Inactivation of prfA results in cells that grow slower and vary significantly in length relative to wild-type cells. We now show that prfA mutant cells have a defect in chromosome segregation resulting in the production of approximately 0.9 to 3% anucleate cells in prfA cultures grown at 30 or 37 degrees C in rich medium and that the lack of PrfA exacerbates the chromosome segregation defect in smc and spoOJ mutant cells. In addition, overexpression of prfA was found to be toxic for and cause nucleoid condensation in Escherichia coli.
Collapse
Affiliation(s)
- L B Pedersen
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
230
|
Abstract
Sporulating bacteria need to temporally coordinate DNA replication, chromosome partitioning and sporulation initiation. Recent work has shown that one aspect of this coordination lies with the interdependent subcellular localization of two proteins, Spo0J and Soj, and in the Spo0J-dependent spatial oscillation of Soj.
Collapse
Affiliation(s)
- S M Sullivan
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
231
|
Sawitzke JA, Austin S. Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc Natl Acad Sci U S A 2000; 97:1671-6. [PMID: 10660686 PMCID: PMC26494 DOI: 10.1073/pnas.030528397] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1999] [Accepted: 12/06/1999] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli muk mutants are temperature-sensitive and produce anucleate cells. A spontaneously occurring mutation was found in a DeltamukBkan mutant strain that suppressed the temperature-sensitive phenotype and mapped in or near topA, the gene that encodes topoisomerase I. Previously characterized topA mutations, topA10 and topA66, were found to be general suppressors of muk mutants: they suppressed temperature sensitivity and anucleate cell production of cells containing null or point mutations in mukB and null mutations in mukE or mukF. The suppression correlated with excess negative supercoiling by DNA gyrase, and the gyrase inhibitor, coumermycin, reversed it. Defects in topA allow 99% of cell division events in muk null mutants to proceed without chromosome loss or loss of cell viability. This observation imposes important limitations on models for Muk activity and is consistent with a role for MukBEF in chromosome folding and DNA condensation.
Collapse
Affiliation(s)
- J A Sawitzke
- Advanced BioScience Laboratories Basic Research Program, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
232
|
Abstract
We have revealed the subcellular localization of different DNA segments that are located at ∼230-kb intervals on theEscherichia coli chromosome using fluorescence in situ hybridization (FISH). The series of chromosome segments is localized within the cell in the same order as the chromosome map. The large chromosome region including oriC shows similar localization patterns, which we call the Ori domain. In addition, the localization pattern of the large segment including dif is characteristic of the replication terminus region. The segment also shows similar localization patterns, which we call the Ter domain. In newborn cells, Ori and Ter domains of the chromosome are differentially localized near opposite cell poles. Subsequently, in the B period, the Ori domain moves toward mid-cell before the initiation of replication, and the Ter domain tends to relocate at mid-cell. An inversion mutant, in which the Ter domain is located close to oriC, shows abnormal subcellular localization of ori and dif segments, resulting in frequent production of anucleate cells. These studies thus suggest that the E. coli chromosome is organized to form a compacted ring structure with the Ori and Ter domains; these domains participate in the cell cycle-dependent localization of the chromosome.
Collapse
|
233
|
Affiliation(s)
- L Shapiro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
234
|
Margolin W. Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 2000; 20:62-72. [PMID: 10610805 DOI: 10.1006/meth.1999.0906] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Green fluorescent protein (GFP) is a highly useful fluorescent tag for studying the localization, structure, and dynamics of macromolecules in living cells, and has quickly become a primary tool for analysis of DNA and protein localization in prokaryotes. Several properties of GFP make it an attractive and versatile reporter. It is fluorescent and soluble in a wide variety of species, can be monitored noninvasively by external illumination, and needs no external substrates. Localization of GFP fusion proteins can be analyzed in live bacteria, therefore eliminating potential fixation artifacts and enabling real-time monitoring of dynamics in situ. Such real-time studies have been facilitated by brighter, more soluble GFP variants. In addition, red-shifted GFPs that can be excited by blue light have lessened the problem of UV-induced toxicity and photobleaching. The self-contained domain structure of GFP reduces the chance of major perturbations to GFP fluorescence by fused proteins and, conversely, to the activities of the proteins to which it is fused. As a result, many proteins fused to GFP retain their activities. The stability of GFP also allows detection of its fluorescence in vitro during protein purification and in cells fixed for indirect immunofluorescence and other staining protocols. Finally, the different properties of GFP variants have given rise to several technological innovations in the study of cellular physiology that should prove useful for studies in live bacteria. These include fluorescence resonance energy transfer (FRET) for studying protein-protein interactions and specially engineered GFP constructs for direct determination of cellular ion fluxes.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
235
|
Christodoulides M, Everson JS, Liu BL, Lambden PR, Watt PJ, Thomas EJ, Heckels JE. Interaction of primary human endometrial cells with Neisseria gonorrhoeae expressing green fluorescent protein. Mol Microbiol 2000; 35:32-43. [PMID: 10632875 DOI: 10.1046/j.1365-2958.2000.01694.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infection of the endometrium by Neisseria gonorrhoeae is a pivotal stage in the development of pelvic inflammatory disease in women. An ex vivo model of cultures of primary human endometrial cells was developed to study gonococcal-host cell interactions. To facilitate these studies, gonococci were transformed with a hybrid shuttle vector containing the gfp gene from Aequoria victoria, encoding the green fluorescent protein (GFP), to produce intrinsically fluorescent bacteria. The model demonstrated that both pili and Opa proteins were important for both mediating gonococcal interactions with endometrial cells and inducing the secretion of pro-inflammatory cytokines and chemokines. Pil+ gonococci showed high levels of adherence and invasion, regardless of Opa expression, which was associated with increased secretion of IL-8 chemokine and reduced secretion of IL-6 cytokine. Gonococcal challenge also caused increased secretion of TNF-alpha cytokine, but this did not correlate with expression of pili or Opa, suggesting that release of components from non-adherent bacteria may be involved in TNF-alpha induction. Thus, the use of cultured primary endometrial cells, together with gonococci expressing green fluorescent protein, has the potential to extend significantly our knowledge, at the molecular level, of the role of this important human pathogen in the immunobiology of pelvic inflammatory disease.
Collapse
Affiliation(s)
- M Christodoulides
- Molecular Microbiology Group, University of Southampton Medical School, UK.
| | | | | | | | | | | | | |
Collapse
|
236
|
Erdmann N, Petroff T, Funnell BE. Intracellular localization of P1 ParB protein depends on ParA and parS. Proc Natl Acad Sci U S A 1999; 96:14905-10. [PMID: 10611311 PMCID: PMC24746 DOI: 10.1073/pnas.96.26.14905] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The P1 partition system promotes faithful plasmid segregation during the Escherichia coli cell cycle. This system consists of two proteins, ParA and ParB, that act on a plasmid site called parS. By immunofluorescence microscopy, we observed that ParB localizes to discrete foci that are most often located close to the one-quarter and three-quarters positions of cell length. The visualization of ParB foci depended completely on the presence of parS, although their visualization was independent of the chromosomal context of parS (in P1 or the bacterial chromosome). In integration host factor-defective mutants, in which ParB binding to parS is weakened, only a fraction of the total pool of ParB had converged into foci. Taken together, these results indicate that parS recruits a pool of ParB into foci and that the resulting ParB-parS complexes serve as substrates for the segregation reaction. In the absence of ParA, the position of ParB foci in cells is perturbed, indicating that at least one of the roles of ParA is to direct ParB-parS complexes to the proper one-quarter positions from a cell pole. Finally, inhibition of cell division did not inhibit localization of ParB foci in cells, indicating that the positioning signals in the E. coli host that are needed for P1 partition do not depend on early division events.
Collapse
Affiliation(s)
- N Erdmann
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
237
|
Sharp MD, Pogliano K. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci U S A 1999; 96:14553-8. [PMID: 10588743 PMCID: PMC24474 DOI: 10.1073/pnas.96.25.14553] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shortly after the synthesis of the two cells required for sporulation in Bacillus subtilis, the membranes of the larger mother cell begin to migrate around and engulf the smaller forespore cell. At the completion of this process the leading edges of the migrating membrane meet and fuse, releasing the forespore into the mother cell cytoplasm. We developed a fluorescent membrane stain-based assay for this membrane fusion event, and we isolated mutants defective in the final stages of engulfment or membrane fusion. All had defects in spoIIIE, which is required for translocation of the forespore chromosome across the polar septum. We isolated one spoIIIE mutant severely defective in chromosome translocation, but not in membrane fusion; this mutation disrupts the ATP/GTP-binding site of SpoIIIE, suggesting that ATP binding and hydrolysis are required for DNA translocation but not for the late engulfment function of SpoIIIE. We also correlated relocalization of SpoIIIE-green fluorescent protein from the sporulation septum to the forespore pole with the completion of membrane fusion and engulfment. We suggest that SpoIIIE is required for the final steps of engulfment and that it may regulate or catalyze membrane fusion events.
Collapse
Affiliation(s)
- M D Sharp
- Department of Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | |
Collapse
|
238
|
Niki H, Hiraga S. Subcellular localization of plasmids containing the oriC region of the Escherichia coli chromosome, with or without the sopABC partitioning system. Mol Microbiol 1999; 34:498-503. [PMID: 10564491 DOI: 10.1046/j.1365-2958.1999.01611.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescence in situ hybridization (FISH) analysis has revealed the subcellular localization of specific chromosomal segments and plasmid molecules during the cell division cycle in Escherichia coli: the replication origin (oriC) segments on the chromosome are localized at nucleoid borders, and actively partitioning mini-F plasmid molecules are localized at the 1/4 and 3/4 positions of the cell. In contrast, mini-F plasmid molecules lacking the sopABC segment are randomly localized in cytoplasmic areas at cell poles. In this study, we analysed the subcellular localization of an oriC plasmid that contains the minimum E. coli chromosomal replication origin and its flanking regions. These oriC plasmid molecules were mainly localized in cytosolic areas at cell poles. On the other hand, oriC plasmid DNA molecules carrying the sopABC segment of F plasmid were localized at cell quarter sites, as were actively partitioning mini-F plasmid DNA molecules. Therefore, we conclude that oriC itself and its flanking regions are not sufficient for positioning the replication origin domain of the E. coli chromosome within the cell.
Collapse
Affiliation(s)
- H Niki
- 'Unit Process and Combined Circuit' PRESTO, Japan Science and Technology Corporation (JST), Kumamoto.
| | | |
Collapse
|
239
|
Marston AL, Errington J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 1999; 4:673-82. [PMID: 10619015 DOI: 10.1016/s1097-2765(00)80378-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Spo0J and Soj proteins of B. subtilis belong to a widespread family of bacterial proteins required for accurate segregation of plasmids and chromosomes. Spo0J binds to several sites around the oriC region of the chromosome, which are organized into compact foci that may play a centromere-like role in active chromosome segregation. We now show that Soj has a role in organization or compaction of Spo0J-oriC complexes and possibly other regions of the nucleoid. This activity is accompanied by a dynamic localization pattern in which Soj protein undergoes assembly and disassembly into large nucleoid-associated patches on a timescale of minutes. The dynamic behavior of Soj, like its previously described transcriptional repression activity, is controlled by Spo0J. These interactions may constitute a checkpoint coupling developmental transcription to cell cycle progression.
Collapse
Affiliation(s)
- A L Marston
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
240
|
Bignell CR, Haines AS, Khare D, Thomas CM. Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol 1999; 34:205-16. [PMID: 10564465 DOI: 10.1046/j.1365-2958.1999.01565.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The incC and korB genes of IncP-1 plasmid RK2 encode homologues of ubiquitous ParA and ParB partitioning proteins of bacterial plasmids and chromosomes. Using immunofluorescence microscopy, we found that KorB, which binds to 12 widely distributed sites on the genome, is located in symmetrically placed foci in cells containing IncP-1 plasmids. When maintained by the low-copy-number P7 replicon, an RK2 segment including incC, korB and the kla, kle and korC regions encodes an efficient partitioning system that gives a pattern of foci similar to RK2 itself. Symmetrical distribution of KorB foci correlates with segregational stability conferred by either the IncP-1 or P7 partitioning systems; KorB distribution follows plasmid distribution. In the absence of a second partitioning system, incC inactivation resulted in paired or clumped foci that were not symmetrically distributed. At a slow growth rate, position analysis of foci showed a cycle from one central focus to two foci (at one- and three-quarter positions) and back, and at a high growth rate it showed a cycle from two foci to four and back. This pattern fits with the plasmid being coupled to the replication zones in the cell and being moved to successively younger zones by active partitioning, indicating a tight association between replication and partitioning.
Collapse
Affiliation(s)
- C R Bignell
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
241
|
Fang L, Davey MJ, O'Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol Cell 1999; 4:541-53. [PMID: 10549286 DOI: 10.1016/s1097-2765(00)80205-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.
Collapse
Affiliation(s)
- L Fang
- Microbiology Department, Joan and Sanford I. Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
242
|
Weitao T, Nordström K, Dasgupta S. Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure. Mol Microbiol 1999; 34:157-68. [PMID: 10540294 DOI: 10.1046/j.1365-2958.1999.01589.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A strain of Escherichia coli in which both the seqA and mukB genes were inactivated displayed partial suppressions of their individual phenotypes. Temperature sensitivity, anucleate cell production and poor nucleoid folding seen in the mukB strain were suppressed by the seqA null mutation, whereas filamentation, asymmetric septation and compact folding of the nucleoids observed in the seqA strain were suppressed by inactivation of the mukB gene function. However, the asynchronous initiation of chromosome replication in the seqA strain was not reversed in the mukBseqA double mutant. Membrane-associated nucleoids were isolated from the wild-type, mukB, seqA and mukBseqA strains and their sedimentation rates were compared under identical conditions. Whereas the mukB mutation caused unfolding of the nucleoid, the seqA mutation led to a more compact packaging of the chromosome. The mukBseqA double mutant regained the wild-type nucleoid organization as revealed from its rate of sedimentation. Microscopic appearances of the nucleoids were consistent with the sedimentation profiles. The mukB mutant was oversensitive to novobiocin and this susceptibility was suppressed in the mukBseqA strain, suggesting possible roles of MukB and SeqA in maintaining chromosome topology. The mutual phenotypic suppression of mukB and seqA alleles thus suggests that these genes have opposing influences on the organization of the bacterial nucleoid.
Collapse
Affiliation(s)
- T Weitao
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
243
|
Temporal and spatial coordination of cells with their plastid component. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:125-64. [PMID: 10494622 DOI: 10.1016/s0074-7696(08)61780-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Careful coordination of cell multiplication with plastid multiplication and partition at cytokinesis is required to maintain the universal presence of plastids in the major photosynthetic lines of evolution. However, no cell cycle control points are known that might underlie this coordination. We review common properties, and their variants, of plastids and plastid DNA in germline, multiplying, and mature cells of phyla capable of photosynthesis. These suggest a basic level of control dictated perhaps by the same mechanisms that coordinate cell size with the nuclear ploidy level. No protein synthesis within the plastid appears to be necessary for this system to operate successfully at the level that maintains the presence of plastids in cells. A second, and superimposed, level of controls dictates expansion of the plastid in both size and number in response to signals associated with differentiation and with the environment. We also compare the germane properties of plastids with those of mitochondria. With the advent of genomics and new cell and molecular techniques, the players in these control mechanisms should now be identifiable.
Collapse
|
244
|
Jensen RB, Shapiro L. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc Natl Acad Sci U S A 1999; 96:10661-6. [PMID: 10485882 PMCID: PMC17939 DOI: 10.1073/pnas.96.19.10661] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly conserved SMC (Structural Maintenance of Chromosomes) proteins function in chromosome condensation, segregation, and other aspects of chromosome dynamics in both eukaryotes and prokaryotes. A null mutation in the Caulobacter crescentus smc gene is conditionally lethal and causes a cell cycle arrest at the predivisional cell stage. Chromosome segregation in wild-type and smc null mutant cells was examined by monitoring the intracellular localization of the replication origin and terminus by using fluorescence in situ hybridization. In wild-type cells, the origin is located at the flagellated pole of swarmer cells and, immediately after the initiation of DNA replication in stalked cells, one of the origins moves to the opposite pole, giving a bipolar localization of the origins. The terminus moves from the end of the swarmer cell opposite the origin to midcell. A subpopulation of the smc null mutant cells had mislocalized origins or termini, showing that the smc null mutation gives DNA segregation defects. Nucleoid morphology was also abnormal. Thus, we propose that the Caulobacter chromosomal origins have specific cellular addresses and that the SMC protein plays important roles in maintaining chromosome structure and in partitioning. The specific cell cycle arrest in the smc null mutant indicates the presence of a cell cycle checkpoint that senses perturbations in chromosome organization or segregation.
Collapse
Affiliation(s)
- R B Jensen
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, Stanford, CA 94305-5329, USA
| | | |
Collapse
|
245
|
Abstract
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.
Collapse
Affiliation(s)
- P G Huls
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | | | | |
Collapse
|
246
|
Roos M, van Geel AB, Aarsman ME, Veuskens JT, Woldringh CL, Nanninga N. Cellular localization of oriC during the cell cycle of Escherichia coli as analyzed by fluorescent in situ hybridization. Biochimie 1999; 81:797-802. [PMID: 10572291 DOI: 10.1016/s0300-9084(99)00218-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The origin of replication of Escherichia coli, oriC, has been labeled by fluorescent in situ hybridization (FISH). The E. coli K12 strain was grown under steady state conditions with a doubling time of 79 min at 28 degrees C. Under these growth conditions DNA replication starts in the previous cell cycle at -33 min. At birth cells possess two origins which are visible as two separated foci in fully labeled cells. The number of foci increased with cell length. The distance of foci from the nearest cell pole has been measured in various length classes. The data suggest: i) that the two most outwardly located foci keep a constant distance to the cell pole and they therefore move apart gradually in line with cell elongation; and ii) that at the initiation of DNA replication the labeled origins occur near the center of prospective daughter cells.
Collapse
Affiliation(s)
- M Roos
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam the Netherlands
| | | | | | | | | | | |
Collapse
|
247
|
Koppes LJ, Woldringh CL, Nanninga N. Escherichia coli contains a DNA replication compartment in the cell center. Biochimie 1999; 81:803-10. [PMID: 10572292 DOI: 10.1016/s0300-9084(99)00217-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The active replication forks of E. coli B/r K cells growing with a doubling time of 210 min have been pulse-labeled with [(3)H] thymidine for 10 min. By electron-microscopic autoradiography the silver grains have been localized in the various length classes. From the known pattern of the DNA replication period in the cell cycle at slow growth and from the average position of grains per length class it was deduced that DNA replication starts in the cell center and that it remains there for a substantial part of the DNA replication period. This suggests the occurrence of a centrally located DNA replication compartment.
Collapse
Affiliation(s)
- L J Koppes
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, the Netherlands
| | | | | |
Collapse
|
248
|
Losick R, Shapiro L. Changing views on the nature of the bacterial cell: from biochemistry to cytology. J Bacteriol 1999; 181:4143-5. [PMID: 10400568 PMCID: PMC93912 DOI: 10.1128/jb.181.14.4143-4145.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
249
|
Harry EJ, Rodwell J, Wake RG. Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol Microbiol 1999; 33:33-40. [PMID: 10411721 DOI: 10.1046/j.1365-2958.1999.01439.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spores of a thymine-requiring strain of Bacillus subtilis 168, which is also temperature sensitive for the initiation of chromosome replication, were germinated and allowed to grow out at the permissive temperature in a minimal medium containing no added thymine. Under these conditions, there was no or very limited progression into the elongation phase of the first round of replication. In a significant proportion of the outgrown cells, a Z ring formed precisely at mid-cell and over the centrally positioned nucleoid, leading eventually to the formation of a mature division septum. When initiation of the first round of replication was blocked through a temperature shift and with thymine present, the Z ring was positioned acentrally. The central Z ring that formed in the absence of thymine was blocked by the presence of a DNA polymerase III inhibitor. It is concluded that the very early stages of a round of replication (initiation plus possibly limited progression into the elongation phase) play a key role in the precise positioning of the Z ring at mid-cell and between replicating daughter chromosomes.
Collapse
Affiliation(s)
- E J Harry
- Department of Biochemistry, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
250
|
Abstract
Models for replication and transcription often display polymerases that track like locomotives along their DNA templates. However, recent evidence supports an alternative model in which DNA and RNA polymerases are immobilized by attachment to larger structures, where they reel in their templates and extrude newly made nucleic acids. These polymerases do not act independently; they are concentrated in discrete "factories," where they work together on many different templates. Evidence for models involving tracking and immobile polymerases is reviewed.
Collapse
Affiliation(s)
- P R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|