201
|
Gabel HW, Ruvkun G. The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat Struct Mol Biol 2008; 15:531-3. [PMID: 18438419 PMCID: PMC2910399 DOI: 10.1038/nsmb.1411] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 02/29/2008] [Indexed: 11/08/2022]
Abstract
The exonuclease ERI-1 negatively regulates RNA interference in Caenorhabditis elegans and Schizosaccharomyces pombe, and is required for production of some C. elegans endogenous small interfering RNAs. We show that ERI-1 performs 3' end processing of the 5.8S ribosomal RNA in both C. elegans and S. pombe. In C. elegans, two protein isoforms of ERI-1 are localized to the cytoplasm, and each has distinct functions in ribosomal RNA processing and negative regulation of RNA interference.
Collapse
Affiliation(s)
- Harrison W Gabel
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, CPZN7250, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
202
|
Ayub MJ, Smulski CR, Ma KW, Levin MJ, Shaw PC, Wong KB. The C-terminal end of P proteins mediates ribosome inactivation by trichosanthin but does not affect the pokeweed antiviral protein activity. Biochem Biophys Res Commun 2008; 369:314-9. [DOI: 10.1016/j.bbrc.2008.01.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
203
|
Abstract
The ribosome is a dynamic machine that undergoes many conformational rearrangements during the initiation of protein synthesis. Significant differences exist between the process of protein synthesis initiation in eubacteria and eukaryotes. In particular, the initiation of eukaryotic protein synthesis requires roughly an order of magnitude more initiation factors to promote efficient mRNA recruitment and ribosomal recognition of the start codon than are needed for eubacterial initiation. The mechanisms by which these initiation factors promote ribosome conformational changes during stages of initiation have been studied using cross-linking, footprinting, site-directed probing, cryo-electron microscopy, X-ray crystallography, fluorescence spectroscopy and single-molecule techniques. Here, we review how the results of these different approaches have begun to converge to yield a detailed molecular understanding of the dynamic motions that the eukaryotic ribosome cycles through during the initiation of protein synthesis.
Collapse
|
204
|
Chandramouli P, Topf M, Ménétret JF, Eswar N, Gutell RR, Sali A, Akey CW. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure 2008; 16:535-48. [PMID: 18400176 PMCID: PMC2775484 DOI: 10.1016/j.str.2008.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/03/2008] [Accepted: 01/26/2008] [Indexed: 01/12/2023]
Abstract
In this paper, we present a structure of the mammalian ribosome determined at approximately 8.7 A resolution by electron cryomicroscopy and single-particle methods. A model of the ribosome was created by docking homology models of subunit rRNAs and conserved proteins into the density map. We then modeled expansion segments in the subunit rRNAs and found unclaimed density for approximately 20 proteins. In general, many conserved proteins and novel proteins interact with expansion segments to form an integrated framework that may stabilize the mature ribosome. Our structure provides a snapshot of the mammalian ribosome at the beginning of translation and lends support to current models in which large movements of the small subunit and L1 stalk occur during tRNA translocation. Finally, details are presented for intersubunit bridges that are specific to the eukaryotic ribosome. We suggest that these bridges may help reset the conformation of the ribosome to prepare for the next cycle of chain elongation.
Collapse
Affiliation(s)
- Preethi Chandramouli
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| | - Maya Topf
- School of Crystallography, Birkbeck, University of London, Malet Street, London WC1E 7HX
| | - Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| | - Narayanan Eswar
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, QB3 at Mission Bay, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Robin R. Gutell
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - Andrej Sali
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, QB3 at Mission Bay, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Christopher W. Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| |
Collapse
|
205
|
Liao PY, Gupta P, Petrov AN, Dinman JD, Lee KH. A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting. Nucleic Acids Res 2008; 36:2619-29. [PMID: 18344525 PMCID: PMC2377451 DOI: 10.1093/nar/gkn100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is a process by which ribosomes produce two different polypeptides from the same mRNA. In this study, we propose three different kinetic models of +1 PRF, incorporating the effects of the ribosomal E-, P- and A-sites toward promoting efficient +1 frameshifting in Escherichia coli. Specifically, the timing of E-site tRNA dissociation is discussed within the context of the kinetic proofreading mechanism of aminoacylated tRNA (aa-tRNA) selection. Mathematical modeling using previously determined kinetic rate constants reveals that destabilization of deacylated tRNA in the E-site, rearrangement of peptidyl-tRNA in the P-site, and availability of cognate aa-tRNA corresponding to the A-site act synergistically to promote efficient +1 PRF. The effect of E-site codon:anticodon interactions on +1 PRF was also experimentally examined with a dual fluorescence reporter construct. The combination of predictive modeling and empirical testing allowed the rate constant for P-site tRNA slippage (k(s)) to be estimated as k(s) approximately 1.9 s(-1) for the release factor 2 (RF2) frameshifting sequence. These analyses suggest that P-site tRNA slippage is the driving force for +1 ribosomal frameshifting while the presence of a 'hungry codon' in the A-site and destabilization in the E-site further enhance +1 PRF in E. coli.
Collapse
Affiliation(s)
- Pei-Yu Liao
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
206
|
Crystal Structure of Human Ribosomal Protein L10 Core Domain Reveals Eukaryote-Specific Motifs in Addition to the Conserved Fold. J Mol Biol 2008; 377:421-30. [DOI: 10.1016/j.jmb.2008.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/25/2007] [Accepted: 01/02/2008] [Indexed: 02/05/2023]
|
207
|
Wu B, Yee A, Huang YJ, Ramelot TA, Cort JR, Semesi A, Jung JW, Lee W, Montelione GT, Kennedy MA, Arrowsmith CH. The solution structure of ribosomal protein S17E from Methanobacterium thermoautotrophicum: a structural homolog of the FF domain. Protein Sci 2008; 17:583-8. [PMID: 18218711 PMCID: PMC2248302 DOI: 10.1110/ps.073272208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family.
Collapse
Affiliation(s)
- Bin Wu
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Taylor AB, Meyer B, Leal BZ, Kötter P, Schirf V, Demeler B, Hart PJ, Entian KD, Wöhnert J. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res 2008; 36:1542-54. [PMID: 18208838 PMCID: PMC2275143 DOI: 10.1093/nar/gkm1172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/13/2022] Open
Abstract
Ribosome biogenesis in eukaryotes requires the participation of a large number of ribosome assembly factors. The highly conserved eukaryotic nucleolar protein Nep1 has an essential but unknown function in 18S rRNA processing and ribosome biogenesis. In Saccharomyces cerevisiae the malfunction of a temperature-sensitive Nep1 protein (nep1-1(ts)) was suppressed by the addition of S-adenosylmethionine (SAM). This suggests the participation of Nep1 in a methyltransferase reaction during ribosome biogenesis. In addition, yeast Nep1 binds to a 6-nt RNA-binding motif also found in 18S rRNA and facilitates the incorporation of ribosomal protein Rps19 during the formation of pre-ribosomes. Here, we present the X-ray structure of the Nep1 homolog from the archaebacterium Methanocaldococcus jannaschii in its free form (2.2 A resolution) and bound to the S-adenosylmethionine analog S-adenosylhomocysteine (SAH, 2.15 A resolution) and the antibiotic and general methyltransferase inhibitor sinefungin (2.25 A resolution). The structure reveals a fold which is very similar to the conserved core fold of the SPOUT-class methyltransferases but contains a novel extension of this common core fold. SAH and sinefungin bind to Nep1 at a preformed binding site that is topologically equivalent to the cofactor-binding site in other SPOUT-class methyltransferases. Therefore, our structures together with previous genetic data suggest that Nep1 is a genuine rRNA methyltransferase.
Collapse
Affiliation(s)
- Alexander B. Taylor
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Britta Meyer
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Belinda Z. Leal
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Peter Kötter
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Virgil Schirf
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Borries Demeler
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - P. John Hart
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Karl-Dieter Entian
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Jens Wöhnert
- Department of Biochemistry, X-ray Crystallography Core Laboratory, The University of Texas Health Science Center San Antonio, San Antonio, TX-78229, USA, Excellence Center: Macromolecular Complexes and Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität, 60438 Frankfurt/M., Germany, Center for Analytical Ultracentrifugation of Macromolecular Assemblies, The University of Texas Health Science Center San Antonio and Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| |
Collapse
|
209
|
Yao Y, Ling Q, Wang H, Huang H. Ribosomal proteins promote leaf adaxial identity. Development 2008; 135:1325-34. [PMID: 18305007 DOI: 10.1242/dev.017913] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishing abaxial-adaxial polarity is central to leaf morphogenesis and function. Groups of genes that encode different components for leaf patterning have been identified in recent years. These include transcriptional factors, small RNAs, 26S proteasome and components required for post-transcriptional gene silencing and chromatin remodeling, showing a complex regulatory network and indicating that the regulation occurs at different levels. In this work, we report the identification and characterization of asymmetric leaves1/2 enhancer5 (ae5) and ae6 mutants. These two mutants had a phenotype of abnormal leaf patterning, with the abaxial mesophyll features appearing in the adaxial mesophyll domain, and double mutants ae5 as1/2 and ae6 as1/2 producing severely abaxialized leaves. AE5 and AE6 encode the ribosomal large subunit proteins RPL28A and RPL5A, respectively, and mutations in two other ribosomal protein genes, RPL5B and RPL24B, resulted in plant phenotypes similar to those of ae5 and ae6. Because these four ribosomal proteins are located in distinct sites in the ribosomal large subunit, we propose that the conserved translational function of the ribosome may be required for regulating key components during leaf patterning. Collectively, our data indicate that specific ribosome subunit-mediated translational control is essential in leaf polarity establishment.
Collapse
Affiliation(s)
- Yao Yao
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, People's Republic of China
| | | | | | | |
Collapse
|
210
|
Meskauskas A, Russ JR, Dinman JD. Structure/function analysis of yeast ribosomal protein L2. Nucleic Acids Res 2008; 36:1826-35. [PMID: 18263608 PMCID: PMC2330241 DOI: 10.1093/nar/gkn034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosomal protein L2 is a core element of the large subunit that is highly conserved among all three kingdoms. L2 contacts almost every domain of the large subunit rRNA and participates in an intersubunit bridge with the small subunit rRNA. It contains a solvent-accessible globular domain that interfaces with the solvent accessible side of the large subunit that is linked through a bridge to an extension domain that approaches the peptidyltransferase center. Here, screening of randomly generated library of yeast RPL2A alleles identified three translationally defective mutants, which could be grouped into two classes. The V48D and L125Q mutants map to the globular domain. They strongly affect ribosomal A-site associated functions, peptidyltransferase activity and subunit joining. H215Y, located at the tip of the extended domain interacts with Helix 93. This mutant specifically affects peptidyl–tRNA binding and peptidyltransferase activity. Both classes affect rRNA structure far away from the protein in the A-site of the peptidyltransferase center. These findings suggest that defective interactions with Helix 55 and with the Helix 65–66 structure may indicate a certain degree of flexibility in L2 in the neck region between the two other domains, and that this might help to coordinate tRNA–ribosome interactions.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Rm. 2135, University of Maryland, College Park, MD, 20742, USA
| | | | | |
Collapse
|
211
|
Ferreira-Cerca S, Pöll G, Kühn H, Neueder A, Jakob S, Tschochner H, Milkereit P. Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell 2008; 28:446-57. [PMID: 17996708 DOI: 10.1016/j.molcel.2007.09.029] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/12/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
In eukaryotes, in vivo formation of the two ribosomal subunits from four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (r-proteins) involves more than 150 nonribosomal proteins and around 100 small noncoding RNAs. It is temporally and spatially organized within different cellular compartments: the nucleolus, the nucleoplasm, and the cytoplasm. Here, we present a way to analyze how eukaryotic r-proteins of the small ribosomal subunit (SSU) assemble in vivo with rRNA. Our results show that key aspects of the assembly of eukaryotic r-proteins into distinct structural parts of the SSU are similar to the in vitro assembly pathway of their prokaryotic counterparts. We observe that the establishment of a stable assembly intermediate of the eukaryotic SSU body, but not of the SSU head, is closely linked to early rRNA processing events. The formation of assembly intermediates of the head controls efficient nuclear export of the SSU and cytoplasmic pre-rRNA maturation steps.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Institut für Biochemie, Genetik und Mikrobiologie, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
212
|
Alber F, Eswar N, Sali A. Structure Determination of Macromolecular Complexes by Experiment and Computation. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-74268-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
213
|
Costantino DA, Pfingsten JS, Rambo RP, Kieft JS. tRNA-mRNA mimicry drives translation initiation from a viral IRES. Nat Struct Mol Biol 2008; 15:57-64. [PMID: 18157151 PMCID: PMC2748805 DOI: 10.1038/nsmb1351] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/16/2007] [Indexed: 01/02/2023]
Abstract
Internal ribosome entry site (IRES) RNAs initiate protein synthesis in eukaryotic cells by a noncanonical cap-independent mechanism. IRESes are critical for many pathogenic viruses, but efforts to understand their function are complicated by the diversity of IRES sequences as well as by limited high-resolution structural information. The intergenic region (IGR) IRESes of the Dicistroviridae viruses are powerful model systems to begin to understand IRES function. Here we present the crystal structure of a Dicistroviridae IGR IRES domain that interacts with the ribosome's decoding groove. We find that this RNA domain precisely mimics the transfer RNA anticodon-messenger RNA codon interaction, and its modeled orientation on the ribosome helps explain translocation without peptide bond formation. When combined with a previous structure, this work completes the first high-resolution description of an IRES RNA and provides insight into how RNAs can manipulate complex biological machines.
Collapse
MESH Headings
- Anticodon/genetics
- Binding Sites
- Hepacivirus/genetics
- Models, Genetic
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosomes/genetics
- Ribosomes/physiology
Collapse
Affiliation(s)
- David A Costantino
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Mail Stop 8101, PO Box 6511, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
214
|
Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S, Mazumder B. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA (NEW YORK, N.Y.) 2007; 13:2224-37. [PMID: 17921318 PMCID: PMC2080596 DOI: 10.1261/rna.694007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.
Collapse
Affiliation(s)
- Sujan Chaudhuri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Galkin O, Bentley AA, Gupta S, Compton BA, Mazumder B, Kinzy TG, Merrick WC, Hatzoglou M, Pestova TV, Hellen CUT, Komar AA. Roles of the negatively charged N-terminal extension of Saccharomyces cerevisiae ribosomal protein S5 revealed by characterization of a yeast strain containing human ribosomal protein S5. RNA (NEW YORK, N.Y.) 2007; 13:2116-28. [PMID: 17901157 PMCID: PMC2080588 DOI: 10.1261/rna.688207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 08/22/2007] [Indexed: 05/17/2023]
Abstract
Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.
Collapse
Affiliation(s)
- Oleksandr Galkin
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Yanshina DD, Malygin AA, Karpova GG. Binding of human ribosomal protein S16 with 18S rRNA fragment 1203–1236/1521–1698. Mol Biol 2007. [DOI: 10.1134/s0026893307060106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
217
|
Abstract
In the elongation cycle of translation, translocation is the process that advances the mRNA-tRNA moiety on the ribosome, to allow the next codon to move into the decoding center. New results obtained by cryoelectron microscopy, interpreted in the light of x-ray structures and kinetic data, allow us to develop a model of the molecular events during translocation.
Collapse
|
218
|
Guarraia C, Norris L, Raman A, Farabaugh PJ. Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon. RNA (NEW YORK, N.Y.) 2007; 13:1940-7. [PMID: 17881742 PMCID: PMC2040094 DOI: 10.1261/rna.735107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Errors during the process of translating mRNA information into protein products occur infrequently. Frameshift errors occur less frequently than other types of errors, suggesting that the translational machinery has more robust mechanisms for precluding that kind of error. Despite these mechanisms, mRNA sequences have evolved that increase the frequency up to 10,000-fold. These sequences, termed programmed frameshift sites, usually consist of a heptameric nucleotide sequence, at which the change in frames occurs along with additional sequences that stimulate the efficiency of frameshifting. One such stimulatory site derived from the Ty3 retrotransposon of the yeast Saccharomyces cerevisiae (the Ty3 stimulator) comprises a 14 nucleotide sequence with partial complementarity to a Helix 18 of the 18S rRNA, a component of the ribosome's accuracy center. A model for the function of the Ty3 stimulator predicts that it base pairs with Helix 18, reducing the efficiency with which the ribosome rejects erroneous out of frame decoding. We have tested this model by making a saturating set of single-base mutations of the Ty3 stimulator. The phenotypes of these mutations are inconsistent with the Helix 18 base-pairing model. We discuss the phenotypes of these mutations in light of structural data on the path of the mRNA on the ribosome, suggesting that the true target of the Ty3 stimulator may be rRNA and ribosomal protein elements of the ribosomal entry tunnel, as well as unknown constituents of the solvent face of the 40S subunit.
Collapse
Affiliation(s)
- Carla Guarraia
- Department of Biological Sciences and Chemistry/Biology Interface Program, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
219
|
Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M, Klaholz BP. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 2007; 130:1019-31. [PMID: 17889647 DOI: 10.1016/j.cell.2007.07.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/18/2007] [Accepted: 07/06/2007] [Indexed: 01/04/2023]
Abstract
Gene expression can be regulated at the level of initiation of protein biosynthesis via structural elements present at the 5' untranslated region of mRNAs. These folded mRNA segments may bind to the ribosome, thus blocking translation until the mRNA unfolds. Here, we report a series of cryo-electron microscopy snapshots of ribosomal complexes directly visualizing either the mRNA structure blocked by repressor protein S15 or the unfolded, active mRNA. In the stalled state, the folded mRNA prevents the start codon from reaching the peptidyl-tRNA (P) site inside the ribosome. Upon repressor release, the mRNA unfolds and moves into the mRNA channel allowing translation initiation. A comparative structure and sequence analysis suggests the existence of a universal stand-by site on the ribosome (the 30S platform) dedicated for binding regulatory 5' mRNA elements. Different types of mRNA structures may be accommodated during translation preinitiation and regulate gene expression by transiently stalling the ribosome.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Protein Binding
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Structural Homology, Protein
- Time Factors
Collapse
Affiliation(s)
- Stefano Marzi
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Structural Biology and Genomics, Illkirch, F-67404 France
| | | | | | | | | | | | | |
Collapse
|
220
|
Pisarev AV, Hellen CUT, Pestova TV. Recycling of eukaryotic posttermination ribosomal complexes. Cell 2007; 131:286-99. [PMID: 17956730 PMCID: PMC2651563 DOI: 10.1016/j.cell.2007.08.041] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/15/2007] [Accepted: 08/28/2007] [Indexed: 11/16/2022]
Abstract
After translational termination, mRNA and P site deacylated tRNA remain associated with ribosomes in posttermination complexes (post-TCs), which must therefore be recycled by releasing mRNA and deacylated tRNA and by dissociating ribosomes into subunits. Recycling of bacterial post-TCs requires elongation factor EF-G and a ribosome recycling factor RRF. Eukaryotes do not encode a RRF homolog, and their mechanism of ribosomal recycling is unknown. We investigated eukaryotic recycling using post-TCs assembled on a model mRNA encoding a tetrapeptide followed by a UAA stop codon and report that initiation factors eIF3, eIF1, eIF1A, and eIF3j, a loosely associated subunit of eIF3, can promote recycling of eukaryotic post-TCs. eIF3 is the principal factor that promotes splitting of posttermination ribosomes into 60S subunits and tRNA- and mRNA-bound 40S subunits. Its activity is enhanced by eIFs 3j, 1, and 1A. eIF1 also mediates release of P site tRNA, whereas eIF3j ensures subsequent dissociation of mRNA.
Collapse
Affiliation(s)
- Andrey V. Pisarev
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, NY
| | | | - Tatyana V. Pestova
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, NY
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
221
|
Piekna-Przybylska D, Decatur WA, Fournier MJ. The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res 2007; 36:D178-83. [PMID: 17947322 PMCID: PMC2238946 DOI: 10.1093/nar/gkm855] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3D rRNA modification maps database is the first general resource of information about the locations of modified nucleotides within the 3D structure of the full ribosome, with mRNA and tRNAs in the A-, P- and E-sites. The database supports analyses for several model organisms, including higher eukaryotes, and enables users to construct 3D maps for other organisms. Data are provided for human and plant (Arabidopsis) ribosomes, and for other representative organisms from eubacteria, archaea and eukarya. Additionally, the database integrates information about positions of modifications within rRNA sequences and secondary structures, as well as links to other databases and resources about modifications and their biosynthesis. Displaying positions of modified nucleotides is fully manageable. Views of each modified nucleotide are controlled by individual buttons and buttons also control the visibility of different ribosomal molecular components. A section called 'Paint Your Own' enables the user to create a 3D modification map for rRNA from any organism where sites of modification are known. This section also provides capabilities for visualizing nucleotides of interest in rRNA or tRNA, as well as particular amino acids in ribosomal proteins. The database can be accessed at http://people.biochem.umass.edu/fournierlab/3dmodmap/
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
222
|
García-Marcos A, Morreale A, Guarinos E, Briones E, Remacha M, Ortiz AR, Ballesta JPG. In vivo assembling of bacterial ribosomal protein L11 into yeast ribosomes makes the particles sensitive to the prokaryotic specific antibiotic thiostrepton. Nucleic Acids Res 2007; 35:7109-17. [PMID: 17940088 PMCID: PMC2175356 DOI: 10.1093/nar/gkm773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic ribosomal stalk protein L12 and its bacterial orthologue L11 play a central role on ribosomal conformational changes during translocation. Deletion of the two genes encoding L12 in Saccharomyces cerevisiae resulted in a very slow-growth phenotype. Gene RPL12B, but not the RPL12A, cloned in centromeric plasmids fully restored control protein level and the growth rate when expressed in a L12-deprived strain. The same strain has been transformed to express Escherichia coli protein EcL11 under the control of yeast RPL12B promoter. The bacterial protein has been found in similar amounts in washed ribosomes from the transformed yeast strain and from control E. coli cells, however, EcL11 was unable to restore the defective acidic protein stalk composition caused by the absence of ScL12 in the yeast ribosome. Protein EcL11 induced a 10% increase in L12-defective cell growth rate, although the in vitro polymerizing capacity of the EcL11-containing ribosomes is restored in a higher proportion, and, moreover, the particles became partially sensitive to the prokaryotic specific antibiotic thiostrepton. Molecular dynamic simulations using modelled complexes support the correct assembly of bacterial L11 into the yeast ribosome and confirm its direct implication of its CTD in the binding of thiostrepton to ribosomes.
Collapse
Affiliation(s)
- Alberto García-Marcos
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de investigaciones Científicas, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
223
|
Zhang J, Harnpicharnchai P, Jakovljevic J, Tang L, Guo Y, Oeffinger M, Rout MP, Hiley SL, Hughes T, Woolford JL. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 2007; 21:2580-92. [PMID: 17938242 PMCID: PMC2000323 DOI: 10.1101/gad.1569307] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/21/2007] [Indexed: 12/31/2022]
Abstract
More than 170 proteins are necessary for assembly of ribosomes in eukaryotes. However, cofactors that function with each of these proteins, substrates on which they act, and the precise functions of assembly factors--e.g., recruiting other molecules into preribosomes or triggering structural rearrangements of pre-rRNPs--remain mostly unknown. Here we investigated the recruitment of two ribosomal proteins and 5S ribosomal RNA (rRNA) into nascent ribosomes. We identified a ribonucleoprotein neighborhood in preribosomes that contains two yeast ribosome assembly factors, Rpf2 and Rrs1, two ribosomal proteins, rpL5 and rpL11, and 5S rRNA. Interactions between each of these four proteins have been confirmed by binding assays in vitro. These molecules assemble into 90S preribosomal particles containing 35S rRNA precursor (pre-rRNA). Rpf2 and Rrs1 are required for recruiting rpL5, rpL11, and 5S rRNA into preribosomes. In the absence of association of these molecules with pre-rRNPs, processing of 27SB pre-rRNA is blocked. Consequently, the abortive 66S pre-rRNPs are prematurely released from the nucleolus to the nucleoplasm, and cannot be exported to the cytoplasm.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- GTP Phosphohydrolases
- Genes, Fungal
- Macromolecular Substances
- Models, Biological
- Models, Molecular
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Protein L10
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Piyanun Harnpicharnchai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yurong Guo
- Division of Pulmonary and Critical Care Medicine, School of Medicine, John Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | - Shawna L. Hiley
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Timothy Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
224
|
Carroll AJ, Heazlewood JL, Ito J, Millar AH. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 2007; 7:347-69. [PMID: 17934214 DOI: 10.1074/mcp.m700052-mcp200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into Arabidopsis cytosolic ribosomal composition and its post-translational modifications. In silico digestion of all 409 ribosomal protein sequences in Arabidopsis defined the proportion of theoretical gene-specific peptides for each gene family and highlighted the need for low m/z cutoffs of MS ion selection for MS/MS to characterize low molecular weight, highly basic ribosomal proteins. We undertook an extensive MS/MS survey of the cytosolic ribosome using trypsin and, when required, chymotrypsin and pepsin. We then used custom software to extract and filter peptide match information from Mascot result files and implement high confidence criteria for calling gene-specific identifications based on the highest quality unambiguous spectra matching exclusively to certain in silico predicted gene- or gene family-specific peptides. This provided an in-depth analysis of the protein composition based on 1446 high quality MS/MS spectra matching to 795 peptide sequences from ribosomal proteins. These identified peptides from five gene families of ribosomal proteins not identified previously, providing experimental data on 79 of the 80 different types of ribosomal subunits. We provide strong evidence for gene-specific identification of 87 different ribosomal proteins from these 79 families. We also provide new information on 30 specific sites of co- and post-translational modification of ribosomal proteins in Arabidopsis by initiator methionine removal, N-terminal acetylation, N-terminal methylation, lysine N-methylation, and phosphorylation. These site-specific modification data provide a wealth of resources for further assessment of the role of ribosome modification in influencing translation in Arabidopsis.
Collapse
Affiliation(s)
- Adam J Carroll
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology and School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M316, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
225
|
Molotkov MV, Graĭfer DM, Popugaeva EA, Bulygin KN, Meshchaninova MI, Ven'iaminova AG, Karpova GG. [Protein S3 in the human 80S ribosome adjoins mRNA from 3'-side of the A-site codon]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:431-41. [PMID: 17886434 DOI: 10.1134/s106816200704005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.
Collapse
|
226
|
Bulygin KN, Popugaeva EA, Repkova MN, Meschaninova MI, Ven’yaminova AG, Graifer DM, Frolova LY, Karpova GG. The C domain of translation termination factor eRF1 is close to the stop codon in the A site of the 80S ribosome. Mol Biol 2007. [DOI: 10.1134/s0026893307050111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
227
|
Hofer A, Bussiere C, Johnson AW. Mutational analysis of the ribosomal protein Rpl10 from yeast. J Biol Chem 2007; 282:32630-9. [PMID: 17761675 DOI: 10.1074/jbc.m705057200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Rpl10 belongs to the L10e family of ribosomal proteins. In the large (60 S) subunit, Rpl10 is positioned in a cleft between the central protuberance and the GTPase-activating center. It is loaded into the 60 S subunit at a late step in maturation. We have shown previously that Rpl10 is required for the release of the Crm1-dependent nuclear export adapter Nmd3, an event that also requires the cytoplasmic GTPase Lsg1. Here we have carried out an extensive mutational analysis of Rpl10 to identify mutations that would allow us to map activities to distinct domains of the protein to begin to understand the molecular interaction between Rpl10 and Nmd3. We found that mutations in a central loop (amino acids 102-112) had a significant impact on the release of Nmd3. This loop is unstructured in the crystal and solution structures of prokaryotic Rpl10 orthologs. Thus, the loop is not necessary for stable interaction of Rpl10 with the ribosome, suggesting that it plays a dynamic role in ribosome function or regulating the association of other factors. We also found that mutant Rpl10 proteins were engineered to be unable to bind to the ribosome accumulated in the nucleus. This was unexpected and may suggest a nuclear role for Rpl10.
Collapse
Affiliation(s)
- Anne Hofer
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| | | | | |
Collapse
|
228
|
Pnueli L, Arava Y. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9. BMC Genomics 2007; 8:285. [PMID: 17711575 PMCID: PMC2020489 DOI: 10.1186/1471-2164-8-285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 08/21/2007] [Indexed: 12/04/2022] Open
Abstract
Background The yeast ribosomal protein S9 (S9) is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4) has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM) along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.
Collapse
Affiliation(s)
- Lilach Pnueli
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Arava
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
229
|
Henderson GP, Gan L, Jensen GJ. 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2007; 2:e749. [PMID: 17710148 PMCID: PMC1939878 DOI: 10.1371/journal.pone.0000749] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/16/2007] [Indexed: 01/11/2023] Open
Abstract
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes.
Collapse
Affiliation(s)
- Gregory P. Henderson
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Lu Gan
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
230
|
Röther S, Sträßer K. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation. Genes Dev 2007; 21:1409-21. [PMID: 17545469 PMCID: PMC1877752 DOI: 10.1101/gad.428407] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Translation is a highly complex process that is regulated by a multitude of factors. Here, we show that the conserved kinase Ctk1 functions in translation by enhancing decoding fidelity. Ctk1 associates with translating ribosomes in vivo and is needed for efficient translation. Ctk1 phosphorylates Rps2, a protein of the small ribosomal subunit, on Ser 238. Importantly, Ctk1-depleted as well as rps2-S238A mutant cells show a defect in translation elongation through an increase in the frequency of miscoding. The role of Ctk1 in translation may be conserved as the mammalian homolog of Ctk1, CDK9, also associates with polysomes. Since Ctk1 interacts with the TREX (transcription and mRNA export) complex, which couples transcription to mRNA export, Ctk1/CDK9 might bind to correctly processed mRNPs during transcription and accompany the mRNP to the ribosomes in the cytoplasm, where Ctk1 enhances efficient and accurate translation of the mRNA.
Collapse
Affiliation(s)
- Susanne Röther
- Gene Center and Laboratory of Molecular Biology, Department of Chemistry and Biochemistry, Ludwig Maximilians University of Munich (LMU), 81377 Munich, Germany
| | - Katja Sträßer
- Gene Center and Laboratory of Molecular Biology, Department of Chemistry and Biochemistry, Ludwig Maximilians University of Munich (LMU), 81377 Munich, Germany
- Corresponding author.E-MAIL ; FAX 49-89-2180-76945
| |
Collapse
|
231
|
Suh MJ, Pourshahian S, Limbach PA. Developing limited proteolysis and mass spectrometry for the characterization of ribosome topography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1304-17. [PMID: 17521915 PMCID: PMC2190778 DOI: 10.1016/j.jasms.2007.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/30/2007] [Accepted: 03/30/2007] [Indexed: 05/15/2023]
Abstract
An approach that combines limited proteolysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been developed to probe protease-accessible sites of ribosomal proteins from intact ribosomes. Escherichia coli and Thermus thermophilus 70S ribosomes were subjected to limited proteolysis using different proteases under strictly controlled conditions. Intact ribosomal proteins and large proteolytic peptides were recovered and directly analyzed by MALDI-MS, which allows for the determination of proteins that are resistant to proteolytic digestion by accurate measurement of molecular weights. Larger proteolytic peptides can be directly identified by the combination of measured mass, enzyme specificity, and protein database searching. Sucrose density gradient centrifugation revealed that the majority of the 70S ribosome dissociates into intact 30S and 50S subunits after 120 min of limited proteolysis. Thus, examination of ribosome populations within the first 30 to 60 min of incubation provides insight into 70S structural features. Results from E. coli and T. thermophilus revealed that a significantly larger fraction of 50S ribosomal proteins have similar limited proteolysis behavior than the 30S ribosomal proteins of these two organisms. The data obtained by this approach correlate with information available from the high-resolution crystal structures of both organisms. This new approach will be applicable to investigations of other large ribonucleoprotein complexes, is readily extendable to ribosomes from other organisms, and can facilitate additional structural studies on ribosome assembly intermediates.
Collapse
Affiliation(s)
- Moo-Jin Suh
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, Cincinnati, Ohio 45221-0172, USA
| | | | | |
Collapse
|
232
|
Catic A, Sun ZYJ, Ratner DM, Misaghi S, Spooner E, Samuelson J, Wagner G, Ploegh HL. Sequence and structure evolved separately in a ribosomal ubiquitin variant. EMBO J 2007; 26:3474-83. [PMID: 17599068 PMCID: PMC1933403 DOI: 10.1038/sj.emboj.7601772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/22/2007] [Indexed: 11/08/2022] Open
Abstract
Encoded by a multigene family, ubiquitin is expressed in the form of three precursor proteins, two of which are fusions to the ribosomal subunits S27a and L40. Ubiquitin assists in ribosome biogenesis and also functions as a post-translational modifier after its release from S27a or L40. However, several species do not conserve the ribosomal ubiquitin domains. We report here the solution structure of a distant variant of ubiquitin, found at the N-terminus of S27a in Giardia lamblia, referred to as GlUb(S27a). Despite the considerable evolutionary distance that separates ubiquitin from GlUb(S27a), the structure of GlUb(S27a) is largely identical to that of ubiquitin. The variant domain remains attached to S27a and is part of the assembled holoribosome. Thus, conservation of tertiary structure suggests a role of this variant as a chaperone, while conservation of the primary structure--necessary for ubiquitin's function as a post-translational modifier--is no longer required. Based on these observations, we propose a model to explain the origin of the widespread ubiquitin superfold in eukaryotes.
Collapse
Affiliation(s)
- André Catic
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhen-Yu J Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel M Ratner
- Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Shahram Misaghi
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Spooner
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Tel.: +1 617 726 6377; Fax: +1 617 724 2662; E-mail:
| | - Hidde L Ploegh
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Tel.: +1 617 324 1878; Fax: +1 617 452 3566; E-mail:
| |
Collapse
|
233
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
234
|
Zappulla DC, Cech TR. RNA as a flexible scaffold for proteins: yeast telomerase and beyond. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:217-24. [PMID: 17381300 DOI: 10.1101/sqb.2006.71.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast telomerase, the enzyme that adds a repeated DNA sequence to the ends of the chromosomes, consists of a 1157- nucleotide RNA (TLC1) plus several protein subunits: the telomerase reverse transcriptase Est2p, the regulatory subunit Est1p, the nonhomologous end-joining heterodimer Ku, and the seven Sm proteins involved in ribonucleoprotein (RNP) maturation. The RNA subunit provides the template for telomeric DNA synthesis. In addition, we have reported evidence that it serves as a flexible scaffold to tether the proteins into the complex. More generally, we consider the possibility that RNPs may be considered in three structural categories: (1) those that have specific structures determined in large part by the RNA, including RNase P, other ribozyme-protein complexes, and the ribosome; (2) those that have specific structures determined in large part by proteins, including many small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs); and (3) flexible scaffolds, with no specific structure of the RNP as a whole, as exemplified by yeast telomerase. Other candidates for flexible scaffold structures are other telomerases, viral IRES (internal ribosome entry site) elements, tmRNA (transfer-messenger RNA), the SRP (signal recognition particle), and Xist and roX1 RNAs that alter chromatin structure to achieve dosage compensation.
Collapse
Affiliation(s)
- D C Zappulla
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
235
|
Unbehaun A, Marintchev A, Lomakin IB, Didenko T, Wagner G, Hellen CUT, Pestova TV. Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J 2007; 26:3109-23. [PMID: 17568775 PMCID: PMC1914099 DOI: 10.1038/sj.emboj.7601751] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/16/2007] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.
Collapse
Affiliation(s)
- Anett Unbehaun
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Assen Marintchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617 8181365; Fax: +1 617 4324383; E-mail:
| | - Ivan B Lomakin
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Tatyana Didenko
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher U T Hellen
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Microbiology and Immunology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box 44, Brooklyn, NY 11203, USA. Tel.: +1 718 221 6121; Fax: +1 718 270 2656; E-mail:
| |
Collapse
|
236
|
O'connor M. Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal DeltaA1916 mutation in the 23S rRNA of Escherichia coli. Mol Genet Genomics 2007; 278:307-15. [PMID: 17564727 DOI: 10.1007/s00438-007-0252-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 05/17/2007] [Indexed: 11/29/2022]
Abstract
A1916 in 23S rRNA is located in one of the major intersubunit bridges of the 70S ribosome. Deletion of A1916 disrupts the intersubunit bridge B2a, promotes misreading of the genetic code and is lethal. In a genetic selection for suppressor mutations, two base substitutions in 16S rRNA were recovered that restored viability and also allowed expression of DeltaA1916-associated capreomycin resistance. These mutations were G1048A in helix 34 and U1471C in helix 44. Restoration of function is incomplete, however, and the double mutants are slow-growing, defective in subunit association and support high levels of translational errors. In contrast, none of these parameters is affected by the single 16S suppressor mutations. U1471C likely affects another intersubunit contact, bridge B6, suggesting that interactions between different bridges and cross-talk between subunits contributes to ribosomal function.
Collapse
MESH Headings
- Capreomycin/pharmacology
- Drug Resistance, Bacterial/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Genes, Bacterial
- Genes, Lethal
- Macromolecular Substances
- Models, Molecular
- Mutation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Ribosomes/chemistry
- Ribosomes/genetics
- Suppression, Genetic
Collapse
Affiliation(s)
- Michael O'connor
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO 64110, USA.
| |
Collapse
|
237
|
Martín-Marcos P, Hinnebusch AG, Tamame M. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol Cell Biol 2007; 27:5968-85. [PMID: 17548477 PMCID: PMC1952170 DOI: 10.1128/mcb.00019-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a mutation in the 60S ribosomal protein L33A (rpl33a-G76R) that elicits derepression of GCN4 translation (Gcd- phenotype) by allowing scanning preinitiation complexes to bypass inhibitory upstream open reading frame 4 (uORF4) independently of prior uORF1 translation and reinitiation. At 37 degrees C, rpl33a-G76R confers defects in 60S biogenesis comparable to those produced by the deletion of RPL33A (DeltaA). At 28 degrees C, however, the 60S biogenesis defect is less severe in rpl33a-G76R than in DeltaA cells, yet rpl33a-G76R confers greater derepression of GCN4 and a larger reduction in general translation. Hence, it appears that rpl33a-G76R has a stronger effect on ribosomal-subunit joining than does a comparable reduction of wild-type 60S levels conferred by DeltaA. We suggest that rpl33a-G76R alters the 60S subunit in a way that impedes ribosomal-subunit joining and thereby allows 48S rRNA complexes to abort initiation at uORF4, resume scanning, and initiate downstream at GCN4. Because overexpressing tRNAiMet suppresses the Gcd- phenotype of rpl33a-G76R cells, dissociation of tRNAiMet from the 40S subunit may be responsible for abortive initiation at uORF4 in this mutant. We further demonstrate that rpl33a-G76R impairs the efficient processing of 35S and 27S pre-rRNAs and reduces the accumulation of all four mature rRNAs, indicating an important role for L33 in the biogenesis of both ribosomal subunits.
Collapse
Affiliation(s)
- Pilar Martín-Marcos
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental de Biología, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
238
|
Nilsson J, Sengupta J, Gursky R, Nissen P, Frank J. Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. J Mol Biol 2007; 369:429-38. [PMID: 17434183 PMCID: PMC1976601 DOI: 10.1016/j.jmb.2007.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/28/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.
Collapse
Affiliation(s)
- Jakob Nilsson
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | - Jayati Sengupta
- Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Richard Gursky
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Poul Nissen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
239
|
Zemp I, Kutay U. Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett 2007; 581:2783-93. [PMID: 17509569 DOI: 10.1016/j.febslet.2007.05.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/06/2007] [Indexed: 01/20/2023]
Abstract
Based on the characterization of ribosome precursor particles and associated trans-acting factors, a biogenesis pathway for the 40S and 60S subunits has emerged. After nuclear synthesis and assembly steps, pre-ribosomal subunits are exported through the nuclear pore complex in a Crm1- and RanGTP-dependent manner. Subsequent cytoplasmic biogenesis steps of pre-60S particles include the facilitated release of several non-ribosomal proteins, yielding fully functional 60S subunits. Cytoplasmic maturation of 40S subunit precursors includes rRNA dimethylation and pre-rRNA cleavage, allowing 40S subunits to achieve translation competence. We review current knowledge of nuclear export and cytoplasmic maturation of ribosomal subunits.
Collapse
Affiliation(s)
- Ivo Zemp
- Institute of Biochemistry, HPM F11.1, Schafmattstr. 18, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
240
|
Abstract
Understanding patterns of rRNA evolution is critical for a number of fields, including structure prediction and phylogeny. The standard model of RNA evolution is that compensatory mutations in stems make up the bulk of the changes between homologous sequences, while unpaired regions are relatively homogeneous. We show that considerable heterogeneity exists in the relative rates of evolution of different secondary structure categories (stems, loops, bulges, etc.) within the rRNA, and that in eukaryotes, loops actually evolve much faster than stems. Both rates of evolution and abundance of different structural categories vary with distance from functionally important parts of the ribosome such as the tRNA path and the peptidyl transferase center. For example, fast-evolving residues are mainly found at the surface; stems are enriched at the subunit interface, and junctions near the peptidyl transferase center. However, different secondary structure categories evolve at different rates even when these effects are accounted for. The results demonstrate that relative rates and patterns of evolution are lineage specific, suggesting that phylogenetically and structurally specific models will improve evolutionary and structural predictions.
Collapse
Affiliation(s)
| | | | - R. Knight
- *To whom correspondence should be addressed. Tel: 303-492-1984; Fax: 303-492-7744;
| |
Collapse
|
241
|
Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 2007; 26:2421-31. [PMID: 17446867 PMCID: PMC1864975 DOI: 10.1038/sj.emboj.7601677] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA-tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase-coupled mechanism of translocation. Using the ADP-ribosyl group as a distinct marker, we observe conformational changes of ADPR-eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA-tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two-step model of translocation that begins with the eEF2/EF-G binding-induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA-tRNA complex from the decoding center so translocation of the mRNA-tRNA moiety may be completed by a head rotation of the small subunit.
Collapse
Affiliation(s)
- Derek J Taylor
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Albany, NY, USA
| | - Jakob Nilsson
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Gregers Rom Andersen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - Poul Nissen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Empire State Plaza, Albany, NY, 12201-0509 USA. Tel.: +1 518 474 7002; Fax: +1 518 486 2191; E-mail:
| |
Collapse
|
242
|
Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 2007; 26:41-50. [PMID: 17434125 DOI: 10.1016/j.molcel.2007.03.018] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 03/13/2007] [Accepted: 03/26/2007] [Indexed: 01/11/2023]
Abstract
Initiation of translation is the process by which initiator tRNA and the start codon of mRNA are positioned in the ribosomal P site. In eukaryotes, one of the first steps involves the binding of two small factors, eIF1 and eIF1A, to the small (40S) ribosomal subunit. This facilitates tRNA binding, allows scanning of mRNA, and maintains fidelity of start codon recognition. Using cryo-EM, we have obtained 3D reconstructions of 40S bound to both eIF1 and eIF1A, and with each factor alone. These structures reveal that together, eIF1 and eIF1A stabilize a conformational change that opens the mRNA binding channel. Biochemical data reveal that both factors accelerate the rate of ternary complex (eIF2*GTP*Met-tRNA(i)(Met)) binding to 40S but only eIF1A stabilizes this interaction. Our results suggest that eIF1 and eIF1A promote an open, scanning-competent preinitiation complex that closes upon start codon recognition and eIF1 release to stabilize ternary complex binding and clamp down on mRNA.
Collapse
Affiliation(s)
- Lori A Passmore
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Gilbert RJC, Gordiyenko Y, von der Haar T, Sonnen AFP, Hofmann G, Nardelli M, Stuart DI, McCarthy JEG. Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complex. Proc Natl Acad Sci U S A 2007; 104:5788-93. [PMID: 17389391 PMCID: PMC1832216 DOI: 10.1073/pnas.0606880104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Indexed: 02/05/2023] Open
Abstract
In the process of protein synthesis, the small (40S) subunit of the eukaryotic ribosome is recruited to the capped 5' end of the mRNA, from which point it scans along the 5' untranslated region in search of a start codon. However, the 40S subunit alone is not capable of functional association with cellular mRNA species; it has to be prepared for the recruitment and scanning steps by interactions with a group of eukaryotic initiation factors (eIFs). In budding yeast, an important subset of these factors (1, 2, 3, and 5) can form a multifactor complex (MFC). Here, we describe cryo-EM reconstructions of the 40S subunit, of the MFC, and of 40S complexes with MFC factors plus eIF1A. These studies reveal the positioning of the core MFC on the 40S subunit, and show how eIF-binding induces mobility in the head and platform and reconfigures the head-platform-body relationship. This is expected to increase the accessibility of the mRNA channel, thus enabling the 40S subunit to convert to a recruitment-competent state.
Collapse
Affiliation(s)
- Robert J. C. Gilbert
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, United Kingdom; and
| | - Yulya Gordiyenko
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Tobias von der Haar
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andreas F.-P. Sonnen
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Gregor Hofmann
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Maria Nardelli
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David I. Stuart
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, United Kingdom; and
| | - John E. G. McCarthy
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
244
|
Taliaferro D, Farabaugh PJ. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting. RNA (NEW YORK, N.Y.) 2007; 13:606-13. [PMID: 17329356 PMCID: PMC1831869 DOI: 10.1261/rna.412707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Programmed translational frameshift sites are sequences in mRNAs that promote frequent stochastic changes in translational reading frame allowing expression of alternative forms of protein products. The EST3 gene of Saccharomyces cerevisiae, encoding a subunit of telomerase, uses a programmed +1 frameshift site in its expression. We show that the site is complex, consisting of a heptameric sequence at which the frameshift occurs and a downstream 27-nucleotide stimulator sequence that increases frameshifting eightfold. The stimulator appears to be modular, composed of at least three separable domains. It increases frameshifting only when ribosomes pause at the frameshift site because of a limiting supply of a cognate aminoacyl-tRNA and not when pausing occurs at a nonsense codon. These data suggest that the EST3 stimulator may modulate access by aminoacyl-tRNAs to the ribosomal A site by interacting with several targets in a ribosome paused during elongation.
Collapse
Affiliation(s)
- Dwayne Taliaferro
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
245
|
Yao W, Roser D, Köhler A, Bradatsch B, Bassler J, Hurt E. Nuclear Export of Ribosomal 60S Subunits by the General mRNA Export Receptor Mex67-Mtr2. Mol Cell 2007; 26:51-62. [PMID: 17434126 DOI: 10.1016/j.molcel.2007.02.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/02/2007] [Accepted: 02/21/2007] [Indexed: 01/13/2023]
Abstract
The yeast Mex67-Mtr2 complex and its homologous metazoan counterpart TAP-p15 operate as nuclear export receptors by binding and translocating mRNA through the nuclear pore complexes. Here, we show how Mex67-Mtr2 can also function in the nuclear export of the ribosomal 60S subunit. Biochemical and genetic studies reveal a previously unrecognized interaction surface on the NTF2-like scaffold of the Mex67-Mtr2 heterodimer, which in vivo binds to pre-60S particles and in vitro can interact with 5S rRNA. Crucial structural requirements for this binding platform are loop insertions in the middle domain of Mex67 and Mtr2, which are absent from human TAP-p15. Notably, when the positively charged amino acids in the Mex67 loop are mutated, interaction of Mex67-Mtr2 with pre-60S particles and 5S rRNA is inhibited, and 60S subunits, but not mRNA, accumulate in the nucleus. Thus, the general mRNA exporter Mex67-Mtr2 contains a distinct electrostatic interaction surface for transporting 60S preribosomal cargo.
Collapse
Affiliation(s)
- Wei Yao
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
246
|
Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M, Heeren G, Oender K, Bauer J, Hintner H, Breitenbach M, Breitenbach-Koller L. Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 2007; 42:275-86. [PMID: 17174052 DOI: 10.1016/j.exger.2006.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/27/2006] [Accepted: 11/07/2006] [Indexed: 11/17/2022]
Abstract
The yeast ribosome is composed of two subunits, the large 60S subunit (LSU) and the small 40S subunit (SSU) and harbors 78 ribosomal proteins (RPs), 59 of which are encoded by duplicate genes. Recently, deletions of the LSU paralogs RPL31A and RPL6B were found to increase significantly yeast replicative life span (RLS). RPs Rpl10 and Rps6 are known translational regulators. Here, we report that heterozygosity for rpl10Delta but not for rpl25Delta, both LSU single copy RP genes, increased RLS by 24%. Deletion of the SSU RPS6B paralog, but not of the RPS6A paralog increased replicative life span robustly by 45%, while deletion of both the SSU RPS18A, and RPS18B paralogs increased RLS moderately, but significantly by 15%. Altering the gene dosage of RPL10 reduced the translating ribosome population, whereas deletion of the RPS6A, RPS6B, RPS18A, and RPS18B paralogs produced a large shift in free ribosomal subunit stoichiometry. We observed a reduction in growth rate in all deletion strains and reduced cell size in the SSU RPS6B, RPS6A, and RPS18B deletion strains. Thus, reduction of gene dosage of RP genes belonging to both the 60S and the 40S subunit affect lifespan, possibly altering the aging process by modulation of translation.
Collapse
Affiliation(s)
- Andreas Chiocchetti
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Piekna-Przybylska D, Decatur WA, Fournier MJ. New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. RNA (NEW YORK, N.Y.) 2007; 13:305-12. [PMID: 17283215 PMCID: PMC1800513 DOI: 10.1261/rna.373107] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This report presents a valuable new bioinformatics package for research on rRNA nucleotide modifications in the ribosome, especially those created by small nucleolar RNA:protein complexes (snoRNPs). The interactive service, which is not available elsewhere, enables a user to visualize the positions of pseudouridines, 2'-O-methylations, and base methylations in three-dimensional space in the ribosome and also in linear and secondary structure formats of ribosomal RNA. Our tools provide additional perspective on where the modifications occur relative to functional regions within the rRNA and relative to other nearby modifications. This package of new tools is presented as a major enhancement of an existing but significantly upgraded yeast snoRNA database available publicly at http://people.biochem.umass.edu/sfournier/fournierlab/snornadb/. The other key features of the enhanced database include details of the base pairing of snoRNAs with target RNAs, genomic organization of the yeast snoRNA genes, and information on corresponding snoRNAs and modifications in other model organisms.
Collapse
MESH Headings
- Base Sequence
- Computational Biology/methods
- Databases, Genetic
- Genome, Fungal/genetics
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Analysis, RNA/methods
- Software
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
248
|
Porras-Yakushi TR, Whitelegge JP, Clarke S. Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs. J Biol Chem 2007; 282:12368-76. [PMID: 17327221 DOI: 10.1074/jbc.m611896200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomal protein L23ab is specifically dimethylated at two distinct sites by the SET domain-containing enzyme Rkm1 in the yeast Saccharomyces cerevisiae. Using liquid column chromatography with electrospray-ionization mass spectrometry, we determined that Rpl23ab purified from the Deltarkm1 deletion strain demonstrated a loss in mass of approximately 56 Da when compared with Rpl23ab purified from the wild type strain. When Rpl23ab was proteolyzed, using proteinase ArgC or CNBr, and the peptides derived were analyzed by tandem mass spectrometry, no sites of methylation were found in Rpl23ab purified from the Deltarkm1 deletion strain, whereas two sites of dimethylation were observed in the wild type strain at lysine residues 105 and 109. We show that both Rpl23a and Rpl23b are expressed and methylated in vivo in yeast. Using polysomal fractionation, we demonstrate that the deletion of RKM1 has no effect on ribosomal complex formation. Comparison of SET domain methyltransferase substrates in yeast reveal sequence similarities around the lysine methylation sites and suggest that an (Asn/Pro)-Pro-Lys consensus sequence may be a target for methylation by subfamily 2 SET domain methyltransferases. Finally, we show the presence of Rkm1 homologs in fungi, plants, and mammals including humans.
Collapse
Affiliation(s)
- Tanya R Porras-Yakushi
- Department of Chemistry and Biochemistry, the Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
249
|
Decatur WA, Liang XH, Piekna-Przybylska D, Fournier MJ. Identifying effects of snoRNA-guided modifications on the synthesis and function of the yeast ribosome. Methods Enzymol 2007; 425:283-316. [PMID: 17673089 DOI: 10.1016/s0076-6879(07)25013-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The small nucleolar RNAs (snoRNAs) are associated with proteins in ribonucleoprotein complexes called snoRNPs ("snorps"). These complexes create modified nucleotides in preribosomal RNA and other RNAs and participate in nucleolytic cleavages of pre-rRNA. The various reactions occur in site-specific fashion, and the mature rRNAs are ultimately incorporated into cytoplasmic ribosomes. Most snoRNAs exist in two structural classes, and most members in each class are involved in nucleotide modification reactions. Guide snoRNAs in the "box C/D" class target methylation of the 2'-hydroxyl moiety, to form 2'-O-methylated nucleotides (Nm), whereas guide snoRNAs in the "box H/ACA" class target specific uridines for conversion to pseudouridine (Psi). The rRNA nucleotides modified in this manner are numerous, totaling approximately 100 in yeast and twice that number in humans. Although the chemistry of the modifications and the factors involved in their formation are largely explained, very little is known about the influence of the copious snoRNA-guided nucleotide modifications on rRNA activity and ribosome function. Among eukaryotic organisms the sites of rRNA modification and the corresponding guide snoRNAs have been best characterized in S. cerevisiae, making this a model organism for analyzing the consequences of modification. This chapter presents approaches to characterizing rRNA modification effects in yeast and includes strategies for evaluating a variety of specific rRNA functions. To aid in planning, a package of bioinformatics tools is described that enables investigators to correlate guide function with targeted ribosomal sites in several contexts. Genetic procedures are presented for depleting modifications at one or more rRNA sites, including ablation of all Nm or Psi modifications made by snoRNPs, and for introducing modifications at novel sites. Methods are also included for characterizing modification effects on cell growth, antibiotic sensitivity, rRNA processing, formation of various rRNP complexes, translation activity, and rRNA structure within the ribosome.
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | | | | | |
Collapse
|
250
|
Abstract
In this perspective, we begin by describing the comparative protein structure modeling technique and the accuracy of the corresponding models. We then discuss the significant role that comparative prediction plays in drug discovery. We focus on virtual ligand screening against comparative models and illustrate the state of the art by a number of specific examples.
Collapse
|