201
|
Chao MY, Hart AC. Sensory biology: how the nose knows. Curr Biol 2003; 13:R226-8. [PMID: 12646147 DOI: 10.1016/s0960-9822(03)00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sensory information is encoded as patterns of synaptic activity. Recent evidence suggests that differential synaptic release and use of postsynaptic glutamate receptors is critical for encoding information from polymodal neurons.
Collapse
Affiliation(s)
- Michael Y Chao
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, 149-7202 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
202
|
Francis MM, Mellem JE, Maricq AV. Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends Neurosci 2003; 26:90-9. [PMID: 12536132 DOI: 10.1016/s0166-2236(02)00041-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nematode Caenorhabditis elegans has long been popular with researchers interested in fundamental issues of neural development, sensory processing and behavior. Recently, advances in applying electrophysiological techniques to C. elegans have made this genetically tractable organism considerably more attractive to neurobiologists studying the molecular mechanisms of synaptic organization and function. The development of techniques that involve voltage-clamp of specific neurons and muscles has allowed the coupling of genetic perturbation techniques with electrophysiological analyses of nervous system function. Recent studies combining these biophysical and genetic techniques have provided novel insights into the mechanisms of presynaptic neurotransmitter release, postsynaptic responses to neurotransmitters and information processing by neural circuits.
Collapse
Affiliation(s)
- Michael M Francis
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
203
|
Hobert O. Behavioral plasticity in C. elegans: paradigms, circuits, genes. JOURNAL OF NEUROBIOLOGY 2003; 54:203-23. [PMID: 12486705 DOI: 10.1002/neu.10168] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Life in the soil is an intellectual and practical challenge that the nematode Caenorhabditis elegans masters by utilizing 302 neurons. The nervous system assembled by these 302 neurons is capable of executing a variety of behaviors, some of respectable complexity. The simplicity of the nervous system, its thoroughly characterized structure, several sets of well-defined behaviors, and its genetic amenability combined with its isogenic background make C. elegans an attractive model organism to study the genetics of behavior. This review describes several behavioral plasticity paradigms in C. elegans and their underlying neuronal circuits and then goes on to review the forward genetic analysis that has been undertaken to identify genes involved in the execution of these behaviors. Lastly, the review outlines how reverse genetics and genomic approaches can guide the analysis of the role of genes in behavior and why and how they will complement the forward genetic analysis of behavior.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
204
|
Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV. Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 2002; 36:933-44. [PMID: 12467596 DOI: 10.1016/s0896-6273(02)01088-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and electrophysiological properties of worms defective for non-NMDA (GLR-1 and GLR-2) and NMDA (NMR-1) receptor subunits, we show that while the osmotic avoidance response requires both NMDA and non-NMDA receptors, the response to mechanical stimuli only requires non-NMDA receptors. Furthermore, analysis of the EGL-3 proprotein convertase provides additional evidence that polymodal signaling in C. elegans occurs via the differential activation of postsynaptic glutamate receptor subtypes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Behavior, Animal/physiology
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Cations/metabolism
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Ion Channel Gating/physiology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Models, Biological
- Molecular Sequence Data
- Mutation
- N-Methylaspartate/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Physical Stimulation
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Stimulation, Chemical
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Jerry E Mellem
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | |
Collapse
|
205
|
Affiliation(s)
- Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
206
|
Baek JH, Cosman P, Feng Z, Silver J, Schafer WR. Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J Neurosci Methods 2002; 118:9-21. [PMID: 12191753 DOI: 10.1016/s0165-0270(02)00117-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutants with abnormal patterns of locomotion, also known as uncoordinated (Unc) mutants, have facilitated the genetic dissection of many important aspects of nervous system function and development in the nematode Caenorhabditis elegans. Although a large number of distinct classes of Unc mutants can be distinguished by an experienced observer, precise quantitative definitions of these classes have not been available. Here we describe a new approach for using automatically-acquired image data to quantify the locomotion patterns of wild-type and mutant worms. We designed an automated tracking and imaging system capable of following an individual animal for long time periods and saving a time-coded series of digital images representing its motion and body posture over the course of the recording. We have also devised methods for measuring specific features from these image data that can be used by the classification and regression tree classification algorithm to reliably identify the behavioral patterns of specific mutant types. Ultimately, these tools should make it possible to evaluate with quantitative precision the behavioral phenotypes of novel mutants, gene knockout lines, or pharmacological treatments.
Collapse
Affiliation(s)
- Joong-Hwan Baek
- School of Electronics, Telecommunication and Computer Engineering, Hankuk Aviation University, Koyang City, South Korea
| | | | | | | | | |
Collapse
|
207
|
Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL, Moulder G, Barstead R, Maricq AV, Bargmann CI. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 2002; 35:307-18. [PMID: 12160748 DOI: 10.1016/s0896-6273(02)00757-2] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C. elegans OSM-9 is a TRPV channel protein involved in sensory transduction and adaptation. Here, we show that distinct sensory functions arise from different combinations of OSM-9 and related OCR TRPV proteins. Both OSM-9 and OCR-2 are essential for several forms of sensory transduction, including olfaction, osmosensation, mechanosensation, and chemosensation. In neurons that express both OSM-9 and OCR-2, tagged OCR-2 and OSM-9 proteins reside in sensory cilia and promote each other's localization to cilia. In neurons that express only OSM-9, tagged OSM-9 protein resides in the cell body and acts in sensory adaptation rather than sensory transduction. Thus, alternative combinations of TRPV proteins may direct different functions in distinct subcellular locations. Animals expressing the mammalian TRPV1 (VR1) channel in ASH nociceptor neurons avoid the TRPV1 ligand capsaicin, allowing selective, drug-inducible activation of a specific behavior.
Collapse
Affiliation(s)
- David M Tobin
- Howard Hughes Medical Institute, Program in Developmental Biology, Program in Genetics, Program in Neuroscience, Department of Anatomy, Department of Biochemistry and Biophysics, The University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Burbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 2002; 35:107-20. [PMID: 12123612 DOI: 10.1016/s0896-6273(02)00749-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Regulated delivery and removal of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) from postsynaptic elements has been proposed as a mechanism for regulating synaptic strength. Here we test the role of ubiquitin in regulating synapses that contain a C. elegans GluR, GLR-1. GLR-1 receptors were ubiquitinated in vivo. Mutations that decreased ubiquitination of GLR-1 increased the abundance of GLR-1 at synapses and altered locomotion behavior in a manner that is consistent with increased synaptic strength. By contrast, overexpression of ubiquitin decreased the abundance of GLR-1 at synapses and decreased the density of GLR-1-containing synapses, and these effects were prevented by mutations in the unc-11 gene, which encodes a clathrin adaptin protein (AP180). These results suggest that ubiquitination of GLR-1 receptors regulates synaptic strength and the formation or stability of GLR-1-containing synapses.
Collapse
Affiliation(s)
- Michelle Burbea
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
209
|
Abstract
Animals employ multiple mechanisms to detect the presence and location of environmental stimuli. Recent work suggests that Caenorhabditis elegans uses chemosensory information provided by spatially distinct sensilla to generate a sensory map of its environment and to avoid noxious compounds.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
210
|
Abstract
As in the case of many ligand-gated ion channels, the biochemical and electrophysiological properties of the ionotropic glutamate receptors have been studied extensively. Nevertheless, we still do not understand the molecular mechanisms that harness the free energy of agonist binding, first to drive channel opening, and then to allow the channel to close (desensitize) even though agonist remains bound. Recent crystallographic analyses of the ligand-binding domains of these receptors have identified conformational changes associated with agonist binding, yielding a working hypothesis of channel function. This opens the way to determining how the domains and subunits are assembled into an oligomeric channel, how the domains are connected, how the channel is formed, and where it is located relative to the ligand-binding domains, all of which govern the processes of channel activation and desensitization.
Collapse
Affiliation(s)
- Dean R Madden
- Ion Channel Structure Research Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
211
|
Hardaker LA, Singer E, Kerr R, Zhou G, Schafer WR. Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. JOURNAL OF NEUROBIOLOGY 2001; 49:303-13. [PMID: 11745666 DOI: 10.1002/neu.10014] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biogenic amines have been implicated in the modulation of neural circuits involved in diverse behaviors in a wide variety of organisms. In the nematode C. elegans, serotonin has been shown to modulate the temporal pattern of egg-laying behavior. Here we show that serotonergic neurotransmission is also required for modulation of the timing of behavioral events associated with locomotion and for coordinating locomotive behavior with egg-laying. Using an automated tracking system to record locomotory behavior over long time periods, we determined that both the direction and velocity of movement fluctuate in a stochastic pattern in wild-type worms. During periods of active egg-laying, the patterns of reversals and velocity were altered: velocity increased transiently before egg-laying events, while reversals increased in frequency following egg-laying events. The temporal coordination between egg-laying and locomotion was dependent on the serotonergic HSN egg-laying motorneurons as well as the decision-making AVF interneurons, which receive synaptic input from the HSNs. Serotonin-deficient mutants also failed to coordinate egg-laying and locomotion and exhibited an abnormally low overall reversal frequency. Thus, serotonin appears to function specifically to facilitate increased locomotion during periods of active egg-laying, and to function generally to modulate decision-making neurons that promote forward movement.
Collapse
Affiliation(s)
- L A Hardaker
- Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0349, USA
| | | | | | | | | |
Collapse
|
212
|
Schwarz MK, Pawlak V, Osten P, Mack V, Seeburg PH, Köhr G. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels. Eur J Neurosci 2001; 14:861-8. [PMID: 11576190 DOI: 10.1046/j.0953-816x.2001.01705.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homomeric glutamate receptor (GluR) channels become spontaneously active when the last alanine residue within the invariant SYTANLAAF-motif in the third membrane segment is substituted by threonine. The same mutation in the orphan GluRdelta2 channel is responsible for neurodegeneration in "Lurcher" (Lc) mice. Since most native GluRs are composed of different subunits, we investigated the effect of an Lc-mutated subunit in heteromeric kainate and AMPA receptors expressed in HEK293 cells. Kainate receptor KA2 subunits, either wild type or carrying the Lc mutation (KA2(Lc)), are retained inside the cell but are surface-expressed when assembled with GluR6 subunits. Importantly, KA2(Lc) dominates the gating of KA2(Lc)/GluR6(WT) channels, as revealed by spontaneous activation and by slowed desensitization and deactivation kinetics of ligand-activated whole-cell currents. Moreover, the AMPA receptor subunit GluR-B(Lc)(Q) which forms spontaneously active homomeric channels with rectifying current-voltage relationships, dominates the gating of heteromeric GluR-B(Lc)(Q)/GluR-A(R) channels. The spontaneous currents of these heteromeric AMPAR channels show linear current-voltage relationships, and the ligand-activated whole-cell currents display slower deactivation and desensitization kinetics than the respective wild-type channels. For heteromeric Lc-mutated kainate and AMPA receptors, the effects on kinetics were reduced relative to the homomeric Lc-mutated forms. Thus, an Lc-mutated subunit can potentially influence heteromeric channel function in vivo, and the severity of the phenotype will critically depend on the levels of homomeric GluR(Lc) and heteromeric GluR(Lc)/GluR(WT) channels.
Collapse
Affiliation(s)
- M K Schwarz
- Max-Planck-Institute for Medical Research, Molecular Neurobiology, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
213
|
Brockie PJ, Mellem JE, Hills T, Madsen DM, Maricq AV. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 2001; 31:617-30. [PMID: 11545720 DOI: 10.1016/s0896-6273(01)00394-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is important for synaptic plasticity and nervous system development and function. We have used genetic and electrophysiological methods to demonstrate that NMR-1, a Caenorhabditis elegans NMDA-type ionotropic glutamate receptor subunit, plays a role in the control of movement and foraging behavior. nmr-1 mutants show a lower probability of switching from forward to backward movement and a reduced ability to navigate a complex environment. Electrical recordings from the interneuron AVA show that NMDA-dependent currents are selectively disrupted in nmr-1 mutants. We also show that a slowly desensitizing variant of a non-NMDA receptor can rescue the nmr-1 mutant phenotype. We propose that NMDA receptors in C. elegans provide long-lived currents that modulate the frequency of movement reversals during foraging behavior.
Collapse
Affiliation(s)
- P J Brockie
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | |
Collapse
|
214
|
Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons. J Neurosci 2001. [PMID: 11245684 DOI: 10.1523/jneurosci.21-06-02001.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motor neuron function depends on neurotransmitter release from synaptic vesicles (SVs). Here we show that the UNC-4 homeoprotein and its transcriptional corepressor protein UNC-37 regulate SV protein levels in specific Caenorhabditis elegans motor neurons. UNC-4 is expressed in four classes (DA, VA, VC, and SAB) of cholinergic motor neurons. Antibody staining reveals that five different vesicular proteins (UNC-17, choline acetyltransferase, Synaptotagmin, Synaptobrevin, and RAB-3) are substantially reduced in unc-4 and unc-37 mutants in these cells; nonvesicular neuronal proteins (Syntaxin, UNC-18, and UNC-11) are not affected, however. Ultrastructural analysis of VA motor neurons in the mutant unc-4(e120) confirms that SV number in the presynaptic zone is reduced ( approximately 40%) whereas axonal diameter and synaptic morphology are not visibly altered. Because the UNC-4-UNC-37 complex has been shown to mediate transcriptional repression, we propose that these effects are performed via an intermediate gene. Our results are consistent with a model in which this unc-4 target gene ("gene-x") functions at a post-transcriptional level as a negative regulator of SV biogenesis or stability. Experiments with a temperature-sensitive unc-4 mutant show that the adult level of SV proteins strictly depends on unc-4 function during a critical period of motor neuron differentiation. unc-4 activity during this sensitive larval stage is also required for the creation of proper synaptic inputs to VA motor neurons. The temporal correlation of these events may mean that a common unc-4-dependent mechanism controls both the specificity of synaptic inputs as well as the strength of synaptic outputs for these motor neurons.
Collapse
|
215
|
Morrison GE, van der Kooy D. A mutation in the AMPA-type glutamate receptor, glr-1, blocks olfactory associative and nonassociative learning in Caenorhabditis elegans. Behav Neurosci 2001; 115:640-9. [PMID: 11439453 DOI: 10.1037/0735-7044.115.3.640] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type ionotropic glutamate receptor mediates fast excitatory neurotransmission in the vertebrate brain and is important for synaptic plasticity and the initial induction of long-term potentiation (LTP). This study found that the putative Caenorhabditis elegans AMPA receptor gene, glr-1, plays a significant role in experience-dependent behavior in C. elegans. glr-1 mutants are deficient in an olfactory associative learning task, in which diacetyl (DA) is paired with acetic acid solution. glr-1 mutant nematodes are also impaired in nonassociative learning (habituation) with the same DA stimulus. The C. elegans learning mutants, lrn-1 and lrn-2, are impaired in chemosensory associative learning yet have no deficits in habituation. The results suggest that although associative and nonassociative learning can be genetically dissociated (lrn-1 and lrn-2), they also share some common molecular processes, including glr-1-mediated neurotransmission.
Collapse
Affiliation(s)
- G E Morrison
- Neurobiology Research Group, Department of Anatomy and Cell Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
216
|
Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 2001. [PMID: 11222641 DOI: 10.1523/jneurosci.21-05-01510.2001] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In almost all nervous systems, rapid excitatory synaptic communication is mediated by a diversity of ionotropic glutamate receptors. In Caenorhabditis elegans, 10 putative ionotropic glutamate receptor subunits have been identified, a surprising number for an organism with only 302 neurons. Sequence analysis of the predicted proteins identified two NMDA and eight non-NMDA receptor subunits. Here we describe the complete distribution of these subunits in the nervous system of C. elegans. Receptor subunits were found almost exclusively in interneurons and motor neurons, but no expression was detected in muscle cells. Interestingly, some neurons expressed only a single subunit, suggesting that these may form functional homomeric channels. Conversely, interneurons of the locomotory control circuit (AVA, AVB, AVD, AVE, and PVC) coexpressed up to six subunits, suggesting that these subunits interact to generate a diversity of heteromeric glutamate receptor channels that regulate various aspects of worm movement. We also show that expression of these subunits in this circuit is differentially regulated by the homeodomain protein UNC-42 and that UNC-42 is also required for axonal pathfinding of neurons in the circuit. In wild-type worms, the axons of AVA, AVD, and AVE lie in the ventral cord, whereas in unc-42 mutants, the axons are anteriorly, laterally, or dorsally displaced, and the mutant worms have sensory and locomotory defects.
Collapse
|
217
|
Affiliation(s)
- K Sharma
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
218
|
Kitamura KI, Amano S, Hosono R. Contribution of neurons to habituation to mechanical stimulation in Caenorhabditis elegans. JOURNAL OF NEUROBIOLOGY 2001; 46:29-40. [PMID: 11108613 DOI: 10.1002/1097-4695(200101)46:1<29::aid-neu3>3.0.co;2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Caenorhabditis elegans, a light touch induces a locomotor response. Repeated touches, however, result in an attenuation of response, that is, habituation. Withdrawal responses elicited by anterior touch are controlled by anterior mechanosensory neurons (AVM and ALMs), and by four pairs of interneurons (AVA, AVB, AVD, and PVC) (Chalfie et al., 1985; White et al., 1986). To identify the neurons that participate in habituation, we ablated these neurons with a laser microbeam and investigated the resulting habituation of the operated animals. The animals lacking both left and right homologues AVDLR were habituated more rapidly than intact animals. We propose that chemical synapses at AVD play a critical role in the habituation of intact animals.
Collapse
Affiliation(s)
- K I Kitamura
- Department of Physical Information, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | | | |
Collapse
|
219
|
Robatzek M, Thomas JH. Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with a G(o)/G(q) signaling network. Genetics 2000; 156:1069-82. [PMID: 11063685 PMCID: PMC1461315 DOI: 10.1093/genetics/156.3.1069] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caenorhabditis elegans locomotion is a complex behavior generated by a defined set of motor neurons and interneurons. Genetic analysis shows that UNC-43, the C. elegans Ca(2+)/calmodulin protein kinase II (CaMKII), controls locomotion rate. Elevated UNC-43 activity, from a gain-of-function mutation, causes severely lethargic locomotion, presumably by inappropriate phosphorylation of targets. In a genetic screen for suppressors of this phenotype, we identified multiple alleles of four genes in a G(o)/G(q) G-protein signaling network, which has been shown to regulate synaptic activity via diacylglycerol. Mutations in goa-1, dgk-1, eat-16, or eat-11 strongly or completely suppressed unc-43(gf) lethargy, but affected other mutants with reduced locomotion only weakly. We conclude that CaMKII and G(o)/G(q) pathways act in concert to regulate synaptic activity, perhaps through a direct interaction between CaMKII and G(o).
Collapse
Affiliation(s)
- M Robatzek
- Department of Genetics, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
220
|
Hughes TE. Looking at Receptors: What Have Fluorescent Receptors and Channels Told Us? Neuroscientist 2000. [DOI: 10.1177/107385840000600511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptors and channels that reside on the surface of a neuron enable it to respond to and integrate a wide variety of signals. Electrophysiology has made it possible to study the behavior of these channels in remarkable detail. For instance, patch-clamp recording has made it possible in many instances to actually resolve the opening and closing of individual channels. Similarly, immuncytochemistry has provided us with static images of where these proteins are in a neuron. Nevertheless, we know remarkably little about how these proteins are actually used by living cells. Fundamental questions concerning how long they are at the surface, how localized they are, how quickly they are internalized in response to activation, or how free they are to move about on the surface remain to be addressed. One way to answer such questions is to fluorescently label these proteins and image them in living cells. The discovery of the jellyfish green fluorescent protein has recently made this feasible, and the new views it is providing are the topic of this review.
Collapse
Affiliation(s)
- Thomas E. Hughes
- Department of Ophthalmology & Visual Science, and Section of Neurobiology, Yale University, New Haven, Connecticut,
| |
Collapse
|
221
|
The Lurcher mutation identifies delta 2 as an AMPA/kainate receptor-like channel that is potentiated by Ca(2+). J Neurosci 2000. [PMID: 10934245 DOI: 10.1523/jneurosci.20-16-05973.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurodegeneration in Lurcher (Lc) mice results from constitutive activation of delta 2, a subunit of ionotropic glutamate receptors (GluRs) with unknown natural ligands and channel properties. Homo-oligomeric channels of GluR-delta2 with the Lurcher mutation (GluR-delta 2(Lc)) expressed in human embryonic kidney 293 cells showed a doubly rectifying current-voltage relation reminiscent of the block by intracellular polyamines in AMPA/kainate channels. Similarly, the fraction of the total current carried by Ca(2+) was approximately 2-3%, comparable with that found in Ca(2+)-permeable AMPA/kainate channels. Currents through GluR-delta 2(Lc) channels were also potentiated by extracellular Ca(2+) in a biphasic manner, with maximal potentiation occurring at physiological concentrations of Ca(2+). We examined the functional role of the Q/R site in GluR-delta 2(Lc) by replacing glutamine with arginine. Analogous to AMPA/kainate receptors, GluR-delta 2(Lc)(R) channels showed no voltage-dependent block by intracellular polyamines and were nominally impermeable to Ca(2+). The potentiation by Ca(2+), however, remained intact. Hence, GluR-delta 2(Lc) channels are functionally similar to the AMPA/kainate receptor channels, consistent with the high-sequence identity shared by these subunits within the channel-lining M2 and M3 segments. Furthermore, potentiation by Ca(2+) and a permeability to Ca(2+) comparable with that of AMPA/kainate receptors provide a possible cause for cell death in Lurcher mice and may contribute to cerebellar long-term depression under physiological conditions.
Collapse
|