201
|
Illes P, Wirkner K, Nörenberg W, Masino SA, Dunwiddie TV. Interaction between the transmitters ATP and glutamate in the central nervous system. Drug Dev Res 2001. [DOI: 10.1002/ddr.1100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
202
|
Liao GY, Wagner DA, Hsu MH, Leonard JP. Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol 2001; 59:960-4. [PMID: 11306676 DOI: 10.1124/mol.59.5.960] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase-C (PKC) activation differentially affects currents from N-methyl-D-aspartate (NMDA) type glutamate receptors depending upon their subunit composition. Experiments using chimeras initially indicated that the cytoplasmic C-terminal tails of NR2B (responsive to PKC) and NR2C (unresponsive to PKC) subunits contain the amino acid residues responsible for the observed disparity of PKC effects. However, truncation and point mutation experiments have suggested that PKC action on NMDA receptors may be entirely indirect, working via the phosphorylation of associated proteins. Here we suggest that PKC does, in fact, affect NR2B/NR1-011 NMDA currents by direct phosphorylation of the NR2B tail at residues S1303 and S1323. Replacement of either of these residues with Ala severely reduces PKC potentiation. To verify that S1303 and S1323 are sites of direct phosphorylation by PKC, synthetic peptides from the regions surrounding these sites were used as substrates for in vitro assays with purified rat brain PKC. These results indicate that PKC can directly phosphorylate S1303 and S1323 in the NR2B C terminus, leading to enhanced currents through NMDA receptor channels. The direct action of PKC on certain NMDA receptor subtypes may be important in any physiological or pathological process where PKC and NR2B/NR1 receptors interact.
Collapse
Affiliation(s)
- G Y Liao
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
203
|
Carroll RC, Beattie EC, von Zastrow M, Malenka RC. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2001; 2:315-24. [PMID: 11331915 DOI: 10.1038/35072500] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activity-mediated changes in the strength of synaptic communication are important for the establishment of proper neuronal connections during development and for the experience-dependent modification of neural circuitry that is believed to underlie all forms of behavioural plasticity. Owing to the wide-ranging significance of synaptic plasticity, considerable efforts have been made to identify the mechanisms by which synaptic changes are triggered and expressed. New evidence indicates that one important expression mechanism of several long-lasting forms of synaptic plasticity might involve the physical transport of AMPA-type glutamate receptors in and out of the synaptic membrane. Here, we focus on the rapidly accumulating evidence that AMPA receptors undergo regulated endocytosis, which is important for long-term depression.
Collapse
Affiliation(s)
- R C Carroll
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
204
|
Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI. On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:115-45. [PMID: 11336779 DOI: 10.1016/s0926-6410(00)00074-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Down syndrome (DS, trisomy 21, Ts21) is the most common known cause of mental retardation. In vivo structural brain imaging in young DS adults, and post-mortem studies, indicate a normal brain size after correction for height, and the absence of neuropathology. Functional imaging with positron emission tomography (PET) shows normal brain glucose metabolism, but fewer significant correlations between metabolic rates in different brain regions than in controls, suggesting reduced functional connections between brain circuit elements. Cultured neurons from Ts21 fetuses and from fetuses of an animal model for DS, the trisomy 16 (Ts16) mouse, do not differ from controls with regard to passive electrical membrane properties, including resting potential and membrane resistance. On the other hand, the trisomic neurons demonstrate abnormal active electrical and biochemical properties (duration of action potential and its rates of depolarization and repolarization, altered kinetics of active Na(+), Ca(2+) and K(+) currents, altered membrane densities of Na(+) and Ca(2+) channels). Another animal model, the adult segmental trisomy 16 mouse (Ts65Dn), demonstrates reduced long-term potentiation and increased long-term depression (models for learning and memory related to synaptic plasticity) in the CA1 region of the hippocampus. Evidence suggests that the abnormalities in the trisomy mouse models are related to defective signal transduction pathways involving the phosphoinositide cycle, protein kinase A and protein kinase C. The phenotypes of DS and its mouse models do not involve abnormal gene products due to mutations or deletions, but result from altered expression of genes on human chromosome 21 or mouse chromosome 16, respectively. To the extent that the defects in signal transduction and in active electrical properties, including synaptic plasticity, that are found in the Ts16 and Ts65Dn mouse models, are found in the brain of DS subjects, we postulate that mental retardation in DS results from such abnormalities. Changes in timing and synaptic interaction between neurons during development can lead to less than optimal functioning of neural circuitry and signaling then and in later life.
Collapse
Affiliation(s)
- Z Galdzicki
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
205
|
Bandrowski AE, Ashe JH, Crawford CA. Tetanic stimulation and metabotropic glutamate receptor agonists modify synaptic responses and protein kinase activity in rat auditory cortex. Brain Res 2001; 894:218-32. [PMID: 11251195 DOI: 10.1016/s0006-8993(01)02052-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether tetanic-stimulation and activation of metabotropic glutamate receptors (mGluRs) can modify field-synaptic-potentials and protein kinase activity in rat auditory cortex, specifically protein kinase A (PKA) and protein kinase C (PKC). Tetanic stimulation (50 Hz, 1 s) increases PKA and PKC activity only if the CNQX-sensitive field-EPSP (f-EPSP) is also potentiated. If the f-EPSP is unchanged, then PKA and PKC activity remains unchanged. Tetanic stimulation decreases a bicuculline-sensitive field-IPSP (f-IPSP), and this occurs whether the f-EPSP is potentiated or not. Potentiation of the f-EPSP is blocked by antagonists of mGluRs (MCPG) and PKC (calphostin-C, tamoxifen), suggesting that the potentiation of the f-EPSP is dependent on mGluRs and PKC. PKC antagonists block the rise in PKC and PKA activity, which suggests that these may be coupled. In contrast, ACPD (agonist at mGluRs) decreases both the f-EPSP and the f-IPSP, but increases PKC and PKA activity. Quisqualate (group I mGluR agonist), decreases the f-IPSP, and increases PKA activity, suggesting that the increase in PKA activity is a result of activation of group I mGluRs. Additionally, the increase in PKC and PKA activity appears to be independent of the decrease of the f-EPSP and f-IPSP, because PKC antagonists block the increase in PKC and PKA activity levels but do not block ACPD's effect on the f-EPSP or f-IPSP. These data suggest that group I mGluRs are involved in potentiating the f-EPSP by a PKC and possibly PKA dependent mechanism which is separate from the mechanism that decreases the f-EPSP and f-IPSP.
Collapse
Affiliation(s)
- A E Bandrowski
- Department of Psychology, University of California-Riverside, 92521, USA
| | | | | |
Collapse
|
206
|
Kobayashi S, Millhorn DE. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells. Neuroscience 2001; 101:1153-62. [PMID: 11113364 DOI: 10.1016/s0306-4522(00)00435-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0576, USA
| | | |
Collapse
|
207
|
Gerber G, Youn DH, Hsu CH, Isaev D, Randić M. Spinal dorsal horn synaptic plasticity: involvement of group I metabotropic glutamate receptors. PROGRESS IN BRAIN RESEARCH 2001; 129:115-34. [PMID: 11098685 DOI: 10.1016/s0079-6123(00)29009-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- G Gerber
- Department of Biomedical Sciences, Iowa State University, Ames 50011-1250, USA
| | | | | | | | | |
Collapse
|
208
|
Abstract
Spinal motoneurons are more susceptible to AMPA receptor-mediated injury than are other spinal neurons, a property that has been implicated in their selective degeneration in amyotrophic lateral sclerosis (ALS). The aim of this study was to determine whether this difference in vulnerability between motoneurons and other spinal neurons can be attributed to a difference in AMPA receptor desensitization and/or to a difference in density of functional AMPA receptors. Spinal motoneurons and dorsal horn neurons were isolated from embryonic rats and cultured on spinal astrocytes. Single-cell RT-PCR quantification of the relative abundance of the flip and flop isoforms of the AMPA receptor subunits, which are known to affect receptor desensitization, did not reveal any difference between the two cell populations. Examination of AMPA receptor desensitization by patch-clamp electrophysiological measurements on nucleated and outside-out patches and in the whole-cell mode also yielded similar results for the two cell groups. However, AMPA receptor current density was two- to threefold higher in motoneurons than in dorsal horn neurons, suggesting a higher density of functional AMPA receptors in motoneuron membranes. Pharmacological reduction of AMPA receptor current density in motoneurons to the level found in dorsal horn neurons eliminated selective motoneuron vulnerability to AMPA receptor activation. These results suggest that the greater AMPA receptor current density of spinal motoneurons may be sufficient to account for their selective vulnerability to AMPA receptor agonists in vitro.
Collapse
|
209
|
Ryan SE, Blanton MP, Baenziger JE. A conformational intermediate between the resting and desensitized states of the nicotinic acetylcholine receptor. J Biol Chem 2001; 276:4796-803. [PMID: 11083863 DOI: 10.1074/jbc.m007063200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural changes induced in the nicotinic acetylcholine receptor by two noncompetitive channel blockers, proadifen and phencyclidine, have been studied by infrared difference spectroscopy and using the conformationally sensitive photoreactive noncompetitive antagonist 3-(trifluoromethyl)-3-m-([(125)I]iodophenyl)diazirine. Simultaneous binding of proadifen to both the ion channel pore and neurotransmitter sites leads to the loss of positive markers near 1663, 1655, 1547, 1430, and 1059 cm(-)(1) in carbamylcholine difference spectra, suggesting the stabilization of a desensitized conformation. In contrast, only the positive markers near 1663 and 1059 cm(-)(1) are maximally affected by the binding of either blocker to the ion channel pore suggesting that the conformationally sensitive residues vibrating at these two frequencies are stabilized in a desensitized-like conformation, whereas those vibrating near 1655 and 1430 cm(-)(1) remain in a resting-like state. The vibrations at 1547 cm(-)(1) are coupled to those at both 1663 and 1655 cm(-)(1) and thus exhibit an intermediate pattern of band intensity change. The formation of a structural intermediate between the resting and desensitized states in the presence of phencyclidine is further supported by the pattern of 3-(trifluoromethyl)-3-m-([(125)I]iodophenyl)diazirine photoincorporation. In the presence of phencyclidine, the subunit labeling pattern is distinct from that observed in either the resting or desensitized conformations; specifically, there is a concentration-dependent increase in the extent of photoincorporation into the delta-subunit. Our data show that domains of the nicotinic acetylcholine receptor interconvert between the resting and desensitized states independently of each other and suggest a revised model of channel blocker action that involves both low and high affinity agonist binding conformational intermediates.
Collapse
Affiliation(s)
- S E Ryan
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | | | |
Collapse
|
210
|
Wecker L, Guo X, Rycerz AM, Edwards SC. Cyclic AMP-dependent protein kinase (PKA) and protein kinase C phosphorylate sites in the amino acid sequence corresponding to the M3/M4 cytoplasmic domain of alpha4 neuronal nicotinic receptor subunits. J Neurochem 2001; 76:711-20. [PMID: 11158241 DOI: 10.1046/j.1471-4159.2001.00041.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.
Collapse
Affiliation(s)
- L Wecker
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | | | |
Collapse
|
211
|
Hassel B, Taubøll E, Gjerstad L. Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels. Epilepsy Res 2001; 43:153-63. [PMID: 11164704 DOI: 10.1016/s0920-1211(00)00196-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanism of action of the antiepileptic drug lamotrigine has previously been investigated only in acute experiments and is thought to involve inhibition of voltage-dependent sodium channels. However, lamotrigine is effective against more forms of epilepsies than other antiepileptic drugs that also inhibit sodium channels. We investigated whether chronic lamotrigine treatment may affect cerebral amino acid levels. Rats received lamotrigine, 10 mg/kg/day, for 90 days. The hippocampal level of GABA increased 25%, and the activities of glutamate decarboxylase and succinic semialdehyde/GABA transaminase increased 12 and 21% (p< 0.05), respectively, indicating increased GABA turnover. The uptake of GABA and glutamate into proteoliposomes remained unaltered. The level of taurine increased 27% in the hippocampus and 16% in the frontal and parietal cortices. The activities of hexokinase and alpha-ketoglutarate dehydrogenase, remained at control values. Serum lamotrigine was 41.7+/-1.5 microM (mean+/-S.E.M.), which is within the range seen in epileptic patients. Acute experiments with 5, 20 or 100 mg lamotrigine/kg, caused no changes in brain amino acid levels. The results suggest that chronic lamotrigine treatment increases GABAergic activity in the hippocampus. The cerebral increase in taurine, which has neuromodulatory properties, may contribute to the antiepileptic effect of lamotrigine.
Collapse
Affiliation(s)
- B Hassel
- Division for Environmental Toxicology, Norwegian Defence Research Establishment, P.O.Box 25, N-2007, Kjeller, Norway.
| | | | | |
Collapse
|
212
|
Abstract
Evidence from the last several decades indicates that the excitatory amino acid glutamate plays a significant role in nociceptive processing. Glutamate and glutamate receptors are located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Glutamate acts at several types of receptors, including ionotropic (directly coupled to ion channels) and metabotropic (directly coupled to intracellular second messengers). Ionotropic receptors include those selectively activated by N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate. Metabotropic glutamate receptors are classified into 3 groups based on sequence homology, signal transduction mechanisms and receptor pharmacology. Glutamate also interacts with the opioid system, and intrathecal or systemic coadministration of glutamate receptor antagonists with opioids may enhance analgesia while reducing the development of opioid tolerance and dependence. The actions of glutamate in the brain seem to be more complex. Activation of glutamate receptors in some brain areas seems to be pronociceptive (e.g. thalamus, trigeminal nucleus), although activation of glutamate receptors in other brain areas seems to be antinociceptive (e.g. periaqueductal grey, ventrolateral medulla). Application of glutamate, or agonists selective for one of the several types of glutamate receptor, to the spinal cord or periphery induces nociceptive behaviours. Inhibition of glutamate release, or of glutamate receptors, in the spinal cord or periphery attenuates both acute and chronic pain in animal models. Similar benefits have been seen in studies involving humans (both patients and volunteers); however, results have been inconsistent. More research is needed to clearly define the role of existing treatment options and explore the possibilities for future drug development.
Collapse
Affiliation(s)
- M E Fundytus
- Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
213
|
Abstract
The pharmacological effects of ethanol are complex and widespread without a well-defined target. Since glutamatergic and GABAergic innervation are both dense and diffuse and account for more than 80% of the neuronal circuitry in the human brain, alterations in glutamatergic and GABAergic function could affect the function of all neurotransmitter systems. Here, we review recent progress in glutamatergic and GABAergic systems with a special focus on their roles in alcohol dependence and alcohol withdrawal-induced seizures. In particular, NMDA-receptors appear to play a central role in alcohol dependence and alcohol-induced neurological disorders. Hence, NMDA receptor antagonists may have multiple functions in treating alcoholism and other addictions and they may become important therapeutics for numerous disorders including epilepsy, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's chorea, anxiety, neurotoxicity, ischemic stroke, and chronic pain. One of the new family of NMDA receptor antagonists, such as DETC-MESO, which regulate the redox site of NMDA receptors, may prove to be the drug of choice for treating alcoholism as well as many neurological diseases.
Collapse
Affiliation(s)
- K M Davis
- Department of Medical Chemistry, 1043 Haworth Hall, University of Kansas, Lawrence, KS 66045-2106, USA
| | | |
Collapse
|
214
|
Fundytus ME, Yashpal K, Chabot JG, Osborne MG, Lefebvre CD, Dray A, Henry JL, Coderre TJ. Knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) alleviates pain and restores opioid efficacy after nerve injury in rats. Br J Pharmacol 2001; 132:354-67. [PMID: 11156596 PMCID: PMC1572554 DOI: 10.1038/sj.bjp.0703810] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2000] [Revised: 10/16/2000] [Accepted: 10/26/2000] [Indexed: 11/08/2022] Open
Abstract
1. Nerve injury often produces long-lasting spontaneous pain, hyperalgesia and allodynia that are refractory to treatment, being only partially relieved by clinical analgesics, and often insensitive to morphine. With the aim of assessing its therapeutic potential, we examined the effect of antisense oligonucleotide knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) in neuropathic rats. 2. We chronically infused rats intrathecally with either vehicle, or 50 microg day(-1) antisense or missense oligonucleotides beginning either 3 days prior to or 5 days after nerve injury. Cold, heat and mechanical sensitivity was assessed prior to any treatment and again every few days after nerve injury. 3. Here we show that knockdown of mGluR(1) significantly reduces cold hyperalgesia, heat hyperalgesia and mechanical allodynia in the ipsilateral (injured) hindpaw of neuropathic rats. 4. Moreover, we show that morphine analgesia is reduced in neuropathic rats, but not in sham-operated rats, and that knockdown of mGluR(1) restores the analgesic efficacy of morphine. 5. We also show that neuropathic rats are more sensitive to the excitatory effects of intrathecally injected N-methyl-D-aspartate (NMDA), and have elevated protein kinase C (PKC) activity in the spinal cord dorsal horn, two effects that are reversed by knockdown of mGluR(1). 6. These results suggest that activity at mGluR(1) contributes to neuropathic pain through interactions with spinal NMDA receptors and PKC, and that knockdown of mGluR(1) may be a useful therapy for neuropathic pain in humans, both to alleviate pain directly, and as an adjunct to opioid analgesic treatment.
Collapse
Affiliation(s)
- M E Fundytus
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Katz PS, Clemens S. Biochemical networks in nervous systems: expanding neuronal information capacity beyond voltage signals. Trends Neurosci 2001; 24:18-25. [PMID: 11163883 DOI: 10.1016/s0166-2236(00)01686-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In addition to synaptically mediated signals that are based on changes in membrane potential, neurons also generate and receive many types of signals that involve biochemical pathways, some of which are independent of voltage. Although networks of biochemical pathways have often been thought of as being only neuromodulatory, recent computational and experimental studies have highlighted how these pathways can also integrate and transfer information themselves. Interactions between biochemical pathways involving positive and negative feedback loops allow biochemical signals to exhibit emergent properties, most notably bistability and oscillations. New and evolving techniques, including real-time imaging of second messengers, hold the promise of illuminating information processing that cannot be detected using microelectrodes, and revealing how 'biochemical integration' might contribute to the computational abilities of the nervous system.
Collapse
Affiliation(s)
- P S Katz
- Center for Neural Communication and Computation, Dept of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | |
Collapse
|
216
|
Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 2000; 103:945-56. [PMID: 11136979 DOI: 10.1016/s0092-8674(00)00197-5] [Citation(s) in RCA: 536] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity of EphB. The kinase activity of EphB may be important for subsequent steps in synapse formation, as perturbation of EphB tyrosine kinase activity affects the number of synaptic specializations that form in cultured neurons. These findings indicate that EphrinB activation of EphB promotes an association of EphB with NMDA receptors that may be critical for synapse development or function.
Collapse
Affiliation(s)
- M B Dalva
- Division of Neuroscience, Children's Hospital, and the Department of Neurobiology Harvard Medical School 02115, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
All cells in a multicellular organism are constantly exposed to a variety of extracellular signals that they need to interpret and translate into an appropriate response to their environment. These signals can be soluble factors generated locally (for example, synaptic transmission) or distantly (for example, hormones and growth factors), ligands on the surface of other cells, or the extracellular matrix itself. To achieve this, cells maintain a diversity of receptors on their surface that respond specifically to individual stimuli. These receptors fall into families, based primarily on the way in which they generate the intracellular signals that give rise to the particular functional responses. Moreover, the activity of a given receptor can be modulated by other signalling pathways in a variety of ways, generating the flexibility required of such a complex system. This review aims to describe the function of the major classes of receptor, including G protein coupled receptors, receptor tyrosine kinases, ligand gated ion channels, integrins, and cytokine receptors, and to demonstrate the "crosstalk" that exists between these systems.
Collapse
Affiliation(s)
- I J Uings
- Cell Biology Department, Glaxo Wellcome Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | |
Collapse
|
218
|
Fucile S, De Saint Jan D, de Carvalho LP, Bregestovski P. Fast potentiation of glycine receptor channels of intracellular calcium in neurons and transfected cells. Neuron 2000; 28:571-83. [PMID: 11144365 DOI: 10.1016/s0896-6273(00)00134-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inhibitory glycine receptors (GlyRs) are mainly expressed in the spinal cord and in the midbrain, where they control motor and sensory pathways. We describe here a fast potentiation of GlyR by intracellular Ca2+. This phenomenon was observed in rat spinal cord neurons and in transfected human cell lines. Potentiation develops in <100 ms, is proportional to Ca2+ influx, and is characterized by an increase in GlyR apparent affinity for glycine. Phosphorylation and G protein pathways appear not to be involved in the potentiation mechanism. Single-channel recordings in cell-attached and excised patches, as well as whole-cell data suggest the presence of a diffusible cytoplasmic factor that modulates the GlyR channel gating properties. Ca2+-induced potentiation may be important for rapid modulation of glycinergic synapses.
Collapse
Affiliation(s)
- S Fucile
- Laboratoire de Biologie Cellulaire et Moléculaire du Neurone, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
219
|
Liu LO, Li G, McCall MA, Cooper NG. Photoreceptor regulated expression of Ca(2+)/calmodulin-dependent protein kinase II in the mouse retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:150-66. [PMID: 11042368 DOI: 10.1016/s0169-328x(00)00203-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this investigation is to determine mechanisms for regulation of retinal calmodulin kinase II (CaMKII). To this end, the expression and activity of CaMKII are examined in the retina of the rdta mouse, in which rod photoreceptors have been genetically ablated [47]. CaMKII levels are compared between rdta mice and the normal, littermate control mice. It is demonstrated that retinal CaMKII protein, enzyme activity and mRNA are significantly increased in response to the genetic ablation of rod photoreceptors. The data indicate that CaMKII expression/activity in amacrine and ganglion cells is negatively regulated by the rod photoreceptor-mediated visual input. The regulation appears to occur primarily at the transcriptional level. It is shown that the cytoplasmic polyadenylation element binding protein (CPEB), a regulatory factor for translation that is known to promote CaMKIIalpha translation in dendrites [83], is also present in the mouse retina. However, the polyadenylation-mediated translational control mechanism is not activated in this experimental paradigm.
Collapse
Affiliation(s)
- L O Liu
- Department of Ophthalmology and Visual Sciences, School of Medicine University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
220
|
Abstract
Calcineurin is a eukaryotic Ca(2+)- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an active site dinuclear metal center, and a tightly associated, myristoylated, Ca(2+)-binding subunit, calcineurin B. The primary sequence of both subunits and heterodimeric quaternary structure is highly conserved from yeast to mammals. As a serine/threonine protein phosphatase, calcineurin participates in a number of cellular processes and Ca(2+)-dependent signal transduction pathways. Calcineurin is potently inhibited by immunosuppressant drugs, cyclosporin A and FK506, in the presence of their respective cytoplasmic immunophilin proteins, cyclophilin and FK506-binding protein. Many studies have used these immunosuppressant drugs and/or modern genetic techniques to disrupt calcineurin in model organisms such as yeast, filamentous fungi, plants, vertebrates, and mammals to explore its biological function. Recent advances regarding calcineurin structure include the determination of its three-dimensional structure. In addition, biochemical and spectroscopic studies are beginning to unravel aspects of the mechanism of phosphate ester hydrolysis including the importance of the dinuclear metal ion cofactor and metal ion redox chemistry, studies which may lead to new calcineurin inhibitors. This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Collapse
Affiliation(s)
- F Rusnak
- Section of Hematology Research and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
221
|
Huang RQ, Dillon GH. Direct inhibition of glycine receptors by genistein, a tyrosine kinase inhibitor. Neuropharmacology 2000; 39:2195-204. [PMID: 10963763 DOI: 10.1016/s0028-3908(00)00046-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genistein, a tyrosine kinase inhibitor, has been widely used to examine potential effects of protein tyrosine kinase (PTK)-mediated regulation of receptor/channel function. Alteration of ion channel function in the presence of genistein has typically led to the conclusion that PTK regulates the activity of the channel under investigation. In the present report, we have assessed the possibility that genistein directly inhibits the glycine receptor, independent of effects on protein tyrosine kinase. Coapplication of genistein with glycine reversibly inhibited the strychnine-sensitive, glycine-activated current recorded from hypothalamic neurons. The time course of genistein action was rapid (within ms). Equilibration of genistein in the intracellular solution did not affect the ability of extracellularly applied genistein to inhibit the glycine response. Glycine concentration-response profiles generated in the absence and presence of genistein indicated the block was due to non-competitive antagonism. The genistein effect also displayed voltage-dependence. Daidzein, an analog of genistein that does not block protein kinases, also inhibited glycine-activated current. Coapplication of lavendustin A, a specific inhibitor of PTK, had no effect on the glycine response. Our results demonstrate that the tyrosine kinase inhibitor genistein has a direct inhibitory effect on glycine receptors that is not mediated via inhibition of PTK.
Collapse
Affiliation(s)
- R Q Huang
- Department of Pharmacology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | |
Collapse
|
222
|
Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 2000; 27:107-19. [PMID: 10939335 DOI: 10.1016/s0896-6273(00)00013-1] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Compartmentalization of glutamate receptors with the signaling enzymes that regulate their activity supports synaptic transmission. Two classes of binding proteins organize these complexes: the MAGUK proteins that cluster glutamate receptors and AKAPs that anchor kinases and phosphatases. In this report, we demonstrate that glutamate receptors and PKA are recruited into a macromolecular signaling complex through direct interaction between the MAGUK proteins, PSD-95 and SAP97, and AKAP79/150. The SH3 and GK regions of the MAGUKs mediate binding to the AKAP. Cell-based studies indicate that phosphorylation of AMPA receptors is enhanced by a SAP97-AKAP79 complex that directs PKA to GluR1 via a PDZ domain interaction. As AMPA receptor phosphorylation is implicated in regulating synaptic plasticity, these data suggest that a MAGUK-AKAP complex may be centrally involved.
Collapse
Affiliation(s)
- M Colledge
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | |
Collapse
|
223
|
In CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors. J Neurosci 2000. [PMID: 10844014 DOI: 10.1523/jneurosci.20-12-04452.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The NMDA subtype of the glutamate-gated channel exhibits a high permeability to Ca(2+). The influx of Ca(2+) through NMDA channels is limited by a rapid and Ca(2+)/calmodulin (CaM)-dependent inactivation that results from a competitive displacement of cytoskeleton-binding proteins from the NR1 subunit of the receptor by Ca(2+)/CaM (Zhang et al., 1998; Krupp et al., 1999). The C terminal of this subunit can be phosphorylated by protein kinase C (PKC) (Tingley et al., 1993). The present study sought to investigate whether PKC regulates Ca(2+)-dependent inactivation of the NMDA channel in hippocampal neurons. Activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate enhanced peak (I(p)) and depressed steady-state (I(ss)) NMDA-evoked currents, resulting in a reduction in the ratio of these currents (I(ss)/I(p)). We demonstrated previously that PKC activity enhances I(P) via a sequential activation of the focal adhesion kinase cell adhesion kinase beta/proline-rich tyrosine kinase 2 (CAKbeta/Pyk2) and the nonreceptor tyrosine kinase Src (Huang et al., 1999; Lu et al., 1999). Here, we report that the PKC-induced depression of I(ss) is unrelated to the PKC/CAKbeta/Src-signaling pathway but depends on the concentration of extracellular Ca(2+). Intracellular applications of CaM reduced I(ss)/I(p) and occluded the Ca(2+)-dependent effect of phorbol esters on I(ss.) Moreover, increasing the concentration of intracellular Ca(2+) buffer or intracellular application of the inhibitory CaM-binding peptide (KY9) greatly reduced the phorbol ester-induced depression of I(ss). Taken together, these results suggest that PKC enhances Ca(2+)/CaM-dependent inactivation of the NMDA channel, most likely because of a phosphorylation-dependent regulation of interactions between receptor subunits, CaM, and other postsynaptic density proteins.
Collapse
|
224
|
Abstract
Hypoxia-induced suppression of NMDA receptors (NMDARs) in western painted turtle (Chrysemys picta) cortical neurons may be critical for surviving months of anoxic dormancy. We report that NMDARs are silenced by at least three different mechanisms operating at different times during anoxia. In pyramidal neurons from cerebrocortex, 1-8 min anoxia suppressed NMDAR activity (Ca(2+) influx and open probability) by 50-60%. This rapid decrease in receptor activity was controlled by activation of phosphatase 1 or 2A but was not associated with an increase in [Ca(2+)](i). However, during 2 hr of anoxia, [Ca(2+)](i) in cerebrocortical neurons increased by 35%, and suppression of NMDARs was predicted by the increase of [Ca(2+)](i) and controlled by calmodulin. An additional mechanism of NMDAR silencing, reversible removal of receptors from the cell membrane, was found in cerebrocortex of turtles remaining anoxic at 3 degrees C for 3-21 d. When suppression of NMDARs was prevented with phosphatase inhibitors, tolerance of anoxia was lost. Silencing of NMDARs is thus critical to the remarkable ability of C. picta to tolerate life without oxygen.
Collapse
|
225
|
Grosman C, Auerbach A. Kinetic, mechanistic, and structural aspects of unliganded gating of acetylcholine receptor channels: a single-channel study of second transmembrane segment 12' mutants. J Gen Physiol 2000; 115:621-35. [PMID: 10779319 PMCID: PMC2217228 DOI: 10.1085/jgp.115.5.621] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The spontaneous activity of adult mouse muscle acetylcholine receptor channels, transiently expressed in HEK-293 cells, was studied with the patch-clamp technique. To increase the frequency of unliganded openings, mutations at the 12' position of the second transmembrane segment were engineered. Our results indicate that: (a) in both wild type and mutants, a C <--> O kinetic scheme provides a good description of spontaneous gating. In the case of some mutant constructs, however, additional states were needed to improve the fit to the data. Similar additional states were also needed in one of six patches containing wild-type acetylcholine receptor channels; (b) the delta12' residue makes a more pronounced contribution to unliganded gating than the homologous residues of the alpha, beta, and straightepsilon subunits; (c) combinations of second transmembrane segment 12' mutations in the four different subunits appear to have cumulative effects; (d) the volume of the side chain at delta12' is relevant because residues larger than the wild-type Ser increase spontaneous gating; (e) the voltage dependence of the unliganded gating equilibrium constant is the same as that of diliganded gating, but the voltage dependences of the opening and closing rate constants are opposite (this indicates that the reaction pathway connecting the closed and open states of the receptor changes upon ligation); (f) engineering binding-site mutations that decrease diliganded gating (alphaY93F, alphaY190W, and alphaD200N) reduces spontaneous activity as well (this suggests that even in the absence of ligand the opening of the channel is accompanied by a conformational change at the binding sites); and (g) the diliganded gating equilibrium constant is also increased by the 12' mutations. Such increase is independent of the particular ligand used as the agonist, which suggests that these mutations affect mostly the isomerization step, having little, if any, effect on the ligand-affinity ratio.
Collapse
Affiliation(s)
- C Grosman
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | |
Collapse
|
226
|
Stinehelfer S, Vruwink M, Burette A. Immunolocalization of mGluR1alpha in specific populations of local circuit neurons in the cerebral cortex. Brain Res 2000; 861:37-44. [PMID: 10751563 DOI: 10.1016/s0006-8993(00)01952-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By coupling glutamate to the IP(3) signaling pathway, group I metabotropic receptors can increase intracellular Ca(2+) concentration, and might thus contribute to excitotoxicity. To identify neurons that might be vulnerable to such injury, we performed immunofluorescence histochemistry for metabotropic glutamate receptor 1alpha (mGluR1alpha) in the cerebral cortex of adult rat. mGluR1alpha was in somata and dendrites of a subset of non-pyramidal neurons scattered throughout the cerebral cortex. To further characterize mGluR1alpha-positive neurons, we investigated its colocalization with several neurochemical markers. Nearly all mGluR1alpha-positive cells were interneurons immunopositive for gamma-aminobutyric acid. The majority (70-80%) of mGluR1alpha-immunopositive neurons were double-labeled for somatostatin. Approximately half of calretinin-positive neurons and 30% of calbindin-positive neurons expressed mGluR1alpha. In contrast, parvalbumin-expressing neurons were rarely positive for mGluR1alpha. Neurons staining strongly for mGluR1alpha were also positive for GluR1. These results indicated that mGluR1alpha is expressed by specific classes of GABAergic neurons in the neocortex, and suggests a mechanism by which these neurons may be especially vulnerable to excitotoxic injury.
Collapse
Affiliation(s)
- S Stinehelfer
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
227
|
Dwyer MA, Lu W, Dwyer JJ, Kossiakoff AA. Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity. CHEMISTRY & BIOLOGY 2000; 7:263-74. [PMID: 10780926 DOI: 10.1016/s1074-5521(00)00102-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Molecular diversity in nature is developed through a combination of genetic and chemical elements. We have developed a method that permits selective manipulation of both these elements in one protein engineering tool. It combines the ability to introduce non-natural amino acids into a protein using native chemical ligation with exhaustive targeted mutagenesis of the protein via phage-display mutagenesis. RESULTS A fully functional biosynthetic version of the protease inhibitor eglin c was constructed. The amino-terminal fragment (residues 8-40) was chemically synthesized with a non-natural amino acid at position 25. The remaining carboxy-terminal fragment was expressed as a 30-residue peptide extension of gIIIp or gVIIIp on filamentous phage in a phage-display mutagenesis format. Native chemical ligation was used to couple the two fragments and produced a protein that refolded to its active form. To facilitate the packing of the introduced non-natural amino acid, residues 52 and 54 in the carboxy-terminal fragment were fully randomized by phage-display mutagenesis. Although the majority of the observed solutions for residues 52 and 54 were hydrophobic - complementing the stereochemistry of the introduced non-natural amino acid - a significant number of residues (unexpected because of stereochemical and charge criteria) were observed in these positions. CONCLUSIONS Peptide synthesis and phage-display mutagenesis can be combined to produce a very powerful protein engineering tool. The physical properties of the environment surrounding the introduced non-natural residue can be selected for by evaluating all possible combinations of amino acid types at a targeted set of sites using phage-display mutagenesis.
Collapse
Affiliation(s)
- M A Dwyer
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
228
|
Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 2000; 403:274-80. [PMID: 10659839 DOI: 10.1038/35002014] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
GABA(A) (gamma-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain single-polypeptide receptor superfamily that exerts its biological effects, including the modulation of GABA(A) receptor function, through the activation of second-messenger signalling cascades by G proteins. Here we show that GABA(A)-ligand-gated channels complex selectively with D5 receptors through the direct binding of the D5 carboxy-terminal domain with the second intracellular loop of the GABA(A) gamma2(short) receptor subunit. This physical association enables mutually inhibitory functional interactions between these receptor systems. The data highlight a previously unknown signal transduction mechanism whereby subtype-selective G-protein-coupled receptors dynamically regulate synaptic strength independently of classically defined second-messenger systems, and provide a heuristic framework in which to view these receptor systems in the maintenance of psychomotor disease states.
Collapse
Affiliation(s)
- F Liu
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
229
|
Actin filaments and the opposing actions of CaM kinase II and calcineurin in regulating alpha7-containing nicotinic receptors on chick ciliary ganglion neurons. J Neurosci 1999. [PMID: 10575025 DOI: 10.1523/jneurosci.19-23-10280.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors containing alpha7 subunits have a high relative permeability to calcium and influence numerous calcium-dependent cellular events. On chick ciliary ganglion neurons the receptors are concentrated on somatic spines containing actin filaments. Using conventional whole-cell patch-clamp recording from dissociated ciliary ganglion neurons, we show that responses from alpha7-containing receptors undergo substantial rundown when the receptors are repeatedly challenged with nicotine. Stabilization of actin filaments with phalloidin partially prevents the rundown, whereas collapse of actin filaments with latrunculin A exacerbates it. The rundown depends on calcium influx through the receptors because it requires receptor activation and can be prevented by replacing extracellular calcium with barium or by intracellular dialysis with BAPTA. Thapsigargin and ryanodine each inhibit the rundown, demonstrating further a requirement for calcium release from internal stores. Blockade of calmodulin by calmidazolium or blockade of CaM kinase II with either KN93 or autocamtide-2-related inhibitory peptide each prevents the rundown; blockade of the phosphatase calcineurin with either cyclosporin A or deltamethrin increases the rundown. The results indicate a balance of calcium-dependent kinase and phosphatase activities in regulating the function of alpha7-containing receptors. Manifestation of the rundown depends in part on the loss of intracellular components via dialysis because little rundown is seen if perforated patch-clamp recording is used to monitor receptor responses even in latrunculin A-treated cells. A membrane-permeable calcineurin inhibitor, however, still decreases the nicotinic response in a calcium-dependent manner, confirming that calcium-dependent phosphoregulation of alpha7-containing receptors occurs in the intact cell.
Collapse
|
230
|
Abstract
Over the last several years, a number of optical imaging, physiological, and molecular studies have clarified the mechanisms underlying differential calcium signaling in the postsynaptic neuron. These studies have revealed the existence of membrane-associated calcium microdomains, which are often specifically coupled to distinct protein signaling pathways. In this review, we discuss how these signaling microdomains are organized and regulated, emphasizing the structural and molecular features of synaptic protein complexes containing the metabotropic and N-methyl-D-aspartate (NMDA) glutamate receptors and the L-type voltage-dependent calcium channels (VDCCs). We conclude with a discussion of how these different signaling complexes may interact with one another, relationships which may be important in orchestrating the complex calcium signaling underlying developmental and activity-dependent changes in synaptic function.
Collapse
Affiliation(s)
- C Blackstone
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
231
|
Affiliation(s)
- I D Fraser
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|