201
|
Ishida M, Tomomari T, Kanzaki T, Abe T, Oka T, Yohda M. Biochemical characterization and cooperation with co-chaperones of heat shock protein 90 from Schizosaccharomyces pombe. J Biosci Bioeng 2013; 116:444-8. [PMID: 23664927 DOI: 10.1016/j.jbiosc.2013.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The characterization of Hsp90 from the fission yeast Schizosaccharomyces pombe was performed. Hsp90 of S. pombe existed as a dimer and exhibited ATP-dependent conformational changes. It captured unfolded proteins in the ATP-free open conformation and protected them from thermal aggregation. Hsp90 of S. pombe was also able to refold thermally denatured firefly luciferase. The co-chaperones Sti1 and Aha1 bound Hsp90 and modulated its activity. Because the affinity of Sti1 was higher than that of Aha1, the effect of Sti1 appeared to dominate when both co-chaperones existed simultaneously.
Collapse
Affiliation(s)
- Mari Ishida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
202
|
Liu S, Wang X, Sun F, Zhang J, Feng J, Liu H, Rajendran KV, Sun L, Zhang Y, Jiang Y, Peatman E, Kaltenboeck L, Kucuktas H, Liu Z. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol Genomics 2013; 45:462-76. [PMID: 23632418 DOI: 10.1152/physiolgenomics.00026.2013] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Temperature is one of the most prominent abiotic factors affecting ectotherms. Most fish species, as ectotherms, have extraordinary ability to deal with a wide range of temperature changes. While the molecular mechanism underlying temperature adaptation has long been of interest, it is still largely unexplored with fish. Understanding of the fundamental mechanisms conferring tolerance to temperature fluctuations is a topic of increasing interest as temperature may continue to rise as a result of global climate change. Catfish have a wide natural habitat and possess great plasticity in dealing with environmental variations in temperature. However, no studies have been conducted at the transcriptomic level to determine heat stress-induced gene expression. In the present study, we conducted an RNA-Seq analysis to identify heat stress-induced genes in catfish at the transcriptome level. Expression analysis identified a total of 2,260 differentially expressed genes with a cutoff of twofold change. qRT-PCR validation suggested the high reliability of the RNA-Seq results. Gene ontology, enrichment, and pathway analyses were conducted to gain insight into physiological and gene pathways. Specifically, genes involved in oxygen transport, protein folding and degradation, and metabolic process were highly induced, while general protein synthesis was dramatically repressed in response to the lethal temperature stress. This is the first RNA-Seq-based expression study in catfish in response to heat stress. The candidate genes identified should be valuable for further targeted studies on heat tolerance, thereby assisting the development of heat-tolerant catfish lines for aquaculture.
Collapse
Affiliation(s)
- Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Barrott JJ, Haystead TAJ. Hsp90, an unlikely ally in the war on cancer. FEBS J 2013; 280:1381-96. [PMID: 23356585 PMCID: PMC3815692 DOI: 10.1111/febs.12147] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 01/22/2013] [Indexed: 12/25/2022]
Abstract
On the surface heat shock protein 90 (Hsp90) is an unlikely drug target for the treatment of any disease, let alone cancer. Hsp90 is highly conserved and ubiquitously expressed in all cells. There are two major isoforms α and β encoded by distinct genes and together they may constitute 1%-3% of the cellular protein. Deletion of the protein is embryonic lethal and there are no recognized polymorphisms suggesting an association or causal relationship with any human disease. With respect to cancer, the proteins absence from two recent high profile articles, 'Hallmarks of cancer: the next generation' [Hanahan & Weinberg (2011) Cell 144, 646-674] and 'Comprehensive molecular portraits of human breast tumours' [Koboldt et al. (2012) Nature] underlines the perception that it is an unlikely bona fide target to treat this disease. Yet, to date, there are 17 distinct Hsp90 inhibitors in clinical trials for multiple indications in cancer. The protein has been championed for over 20 years by the National Cancer Institute (Bethesda, MD, USA) as a cancer target since the discovery of the antitumor activity of the natural product geldanamycin. This review aims to look at the conundrum of why Hsp90 can even be considered a druggable target for the treatment of cancer. We propose that in contrast to the majority of chemotherapeutics our growing armamentarium of investigational Hsp90 drugs represents an elegant choice that offers real hope in the long-term treatment of certain cancers.
Collapse
Affiliation(s)
- Jared J Barrott
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
204
|
Li J, Richter K, Reinstein J, Buchner J. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 2013; 20:326-31. [PMID: 23396352 DOI: 10.1038/nsmb.2502] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/27/2012] [Indexed: 02/07/2023]
Abstract
Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that associates dynamically with various co-chaperones during its chaperone cycle. Here we analyzed the role of the activating co-chaperone Aha1 in the progression of the yeast Hsp90 chaperone cycle and identified a critical ternary Hsp90 complex containing the co-chaperones Aha1 and Cpr6. Aha1 accelerates the intrinsically slow conformational transitions of Hsp90 to an N-terminally associated state but does not fully close the nucleotide-binding pocket yet. Cpr6 increases the affinity between Aha1 and Hsp90 and further stimulates the Hsp90 ATPase activity. Synergistically, Aha1 and Cpr6 displace the inhibitory co-chaperone Sti1 from Hsp90. To complete the cycle, Aha1 is released by the co-chaperone p23. Thus, at distinct steps during the Hsp90 chaperone cycle, co-chaperones selectively trap statistically distributed Hsp90 conformers and thus turn Hsp90 into a deterministic machine.
Collapse
Affiliation(s)
- Jing Li
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, München, Germany
| | | | | | | |
Collapse
|
205
|
Cloutier P, Coulombe B. Regulation of molecular chaperones through post-translational modifications: decrypting the chaperone code. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:443-54. [PMID: 23459247 DOI: 10.1016/j.bbagrm.2013.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/30/2022]
Abstract
Molecular chaperones and their associated cofactors form a group of highly specialized proteins that orchestrate the folding and unfolding of other proteins and the assembly and disassembly of protein complexes. Chaperones are found in all cell types and organisms, and their activity must be tightly regulated to maintain normal cell function. Indeed, deregulation of protein folding and protein complex assembly is the cause of various human diseases. Here, we present the results of an extensive review of the literature revealing that the post-translational modification (PTM) of chaperones has been selected during evolution as an efficient mean to regulate the activity and specificity of these key proteins. Because the addition and reciprocal removal of chemical groups can be triggered very rapidly, this mechanism provides an efficient switch to precisely regulate the activity of chaperones on specific substrates. The large number of PTMs detected in chaperones suggests that a combinatory code is at play to regulate function, activity, localization, and substrate specificity for this group of biologically important proteins. This review surveys the core information currently available as a starting point toward the more ambitious endeavor of deciphering the "chaperone code".
Collapse
|
206
|
Bartolini M, Wainer IW, Bertucci C, Andrisano V. The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90. J Pharm Biomed Anal 2013; 73:77-81. [PMID: 22497853 PMCID: PMC3398240 DOI: 10.1016/j.jpba.2012.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/12/2012] [Indexed: 01/06/2023]
Abstract
Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2mm×6mm i.d.), under a three-solvent gradient elution mode and UV detection at 256nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples.
Collapse
Affiliation(s)
- Manuela Bartolini
- Department of Pharmaceutical Sciences, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
207
|
Morgan RML, Hernández-Ramírez LC, Trivellin G, Zhou L, Roe SM, Korbonits M, Prodromou C. Structure of the TPR domain of AIP: lack of client protein interaction with the C-terminal α-7 helix of the TPR domain of AIP is sufficient for pituitary adenoma predisposition. PLoS One 2012; 7:e53339. [PMID: 23300914 PMCID: PMC3534021 DOI: 10.1371/journal.pone.0053339] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Mutations of the aryl hydrocarbon receptor interacting protein (AIP) have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h) mutations, R304* (nonsense mutation), R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE) of TOMM20.
Collapse
Affiliation(s)
- Rhodri M. L. Morgan
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Laura C. Hernández-Ramírez
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giampaolo Trivellin
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Lihong Zhou
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - S. Mark Roe
- Biochemistry and Molecular Biology, Chichester 2, University of Sussex, Brighton, United Kingdom
| | - Márta Korbonits
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
208
|
Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL, Agard DA, Masison DC, Wickner S. Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Mol Cell 2012; 49:464-73. [PMID: 23260660 DOI: 10.1016/j.molcel.2012.11.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/28/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
The heat shock protein 90 (Hsp90) family of heat shock proteins is an abundantly expressed and highly conserved family of ATP-dependent molecular chaperones. Hsp90 facilitates remodeling and activation of hundreds of proteins. In this study, we developed a screen to identify Hsp90-defective mutants in E. coli. The mutations obtained define a region incorporating residues from the middle and C-terminal domains of E. coli Hsp90. The mutant proteins are defective in chaperone activity and client binding in vitro. We constructed homologous mutations in S. cerevisiae Hsp82 and identified several that caused defects in chaperone activity in vivo and in vitro. However, the Hsp82 mutant proteins were less severely defective in client binding to a model substrate than the corresponding E. coli mutant proteins. Our results identify a region in Hsp90 important for client binding in E. coli Hsp90 and suggest an evolutionary divergence in the mechanism of client interaction by bacterial and yeast Hsp90.
Collapse
Affiliation(s)
- Olivier Genest
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Redgrove KA, Anderson AL, McLaughlin EA, O'Bryan MK, Aitken RJ, Nixon B. Investigation of the mechanisms by which the molecular chaperone HSPA2 regulates the expression of sperm surface receptors involved in human sperm-oocyte recognition. Mol Hum Reprod 2012; 19:120-35. [PMID: 23247813 DOI: 10.1093/molehr/gas064] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A unique characteristic of mammalian spermatozoa is that, upon ejaculation, they are unable to recognize and bind to an ovulated oocyte. These functional attributes are only realized following the cells' ascent of the female reproductive tract whereupon they undergo a myriad of biochemical and biophysical changes collectively referred to as 'capacitation'. We have previously shown that this functional transformation is, in part, engineered by the modification of the sperm surface architecture leading to the assembly and/or presentation of multimeric sperm-oocyte receptor complexes. In this study, we have extended our findings through the characterization of one such complex containing arylsulfatase A (ARSA), sperm adhesion molecule 1 (SPAM1) and the molecular chaperone, heat shock 70kDa protein 2 (HSPA2). Through the application of flow cytometry we revealed that this complex undergoes a capacitation-associated translocation to facilitate the repositioning of ARSA to the apical region of the human sperm head, a location compatible with a role in the mediation of sperm-zona pellucida (ZP) interactions. Conversely, SPAM1 appears to reorient away from the sperm surface, possibly reflecting its primary role in cumulus matrix dispersal preceding sperm-ZP recognition. The dramatic relocation of the complex was completely abolished by incubation of capacitating spermatozoa in exogenous cholesterol or broad spectrum protein kinase A (PKA) and tyrosine kinase inhibitors suggesting that it may be driven by alterations in membrane fluidity characteristics and concurrently by the activation of a capacitation-associated signal transduction pathway. Collectively these data afford novel insights into the sub-cellular localization and potential functions of multimeric protein complexes in human spermatozoa.
Collapse
Affiliation(s)
- Kate A Redgrove
- Reproductive Science Group, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
210
|
Leach MD, Klipp E, Cowen LE, Brown AJP. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol 2012; 10:693-704. [PMID: 22976491 DOI: 10.1038/nrmicro2875] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heat shock protein 90 (HSP90) is an essential, abundant and ubiquitous eukaryotic chaperone that has crucial roles in protein folding and modulates the activities of key regulators. The fungal Hsp90 interactome, which includes numerous client proteins such as receptors, protein kinases and transcription factors, displays a surprisingly high degree of plasticity that depends on environmental conditions. Furthermore, although fungal Hsp90 levels increase following environmental challenges, Hsp90 activity is tightly controlled via post-translational regulation and an autoregulatory loop involving heat shock transcription factor 1 (Hsf1). In this Review, we discuss the roles and regulation of fungal Hsp90. We propose that Hsp90 acts as a biological transistor that modulates the activity of fungal signalling networks in response to environmental cues via this Hsf1-Hsp90 autoregulatory loop.
Collapse
Affiliation(s)
- Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
211
|
Armstrong H, Wolmarans A, Mercier R, Mai B, LaPointe P. The co-chaperone Hch1 regulates Hsp90 function differently than its homologue Aha1 and confers sensitivity to yeast to the Hsp90 inhibitor NVP-AUY922. PLoS One 2012; 7:e49322. [PMID: 23166640 PMCID: PMC3498168 DOI: 10.1371/journal.pone.0049322] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/10/2012] [Indexed: 12/23/2022] Open
Abstract
Hsp90 is a dimeric ATPase responsible for the activation or maturation of a specific set of substrate proteins termed 'clients'. This molecular chaperone acts in the context of a structurally dynamic and highly regulated cycle involving ATP, co-chaperone proteins and clients. Co-chaperone proteins regulate conformational transitions that may be impaired in mutant forms of Hsp90. We report here that the in vivo impairment of commonly studied Hsp90 variants harbouring the G313S or A587T mutation are exacerbated by the co-chaperone Hch1p. Deletion of HCH1, but not AHA1, mitigates the temperature sensitive phenotype and high sensitivity to Hsp90 inhibitor drugs observed in Saccharomyces cerevisiae that express either of these two Hsp90 variants. Moreover, the deletion of HCH1 results in high resistance to Hsp90 inhibitors in yeast that express wildtype Hsp90. Conversely, the overexpression of Hch1p greatly increases sensitivity to Hsp90 inhibition in yeast expressing wildtype Hsp90. We conclude that despite the similarity between these two co-chaperones, Hch1p and Aha1p regulate Hsp90 function in distinct ways and likely independent of their roles as ATPase stimulators. We further conclude that Hch1p plays a critical role in regulating Hsp90 inhibitor drug sensitivity in yeast.
Collapse
Affiliation(s)
- Heather Armstrong
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - BaoChan Mai
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
212
|
Lancaster DL, Dobson CM, Rachubinski RA. Chaperone proteins select and maintain [PIN+] prion conformations in Saccharomyces cerevisiae. J Biol Chem 2012; 288:1266-76. [PMID: 23148221 DOI: 10.1074/jbc.m112.377564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prions are proteins that can adopt different infectious conformations known as "strains" or "variants," each with a distinct, epigenetically inheritable phenotype. Mechanisms by which prion variants are determined remain unclear. Here we use the Saccharomyces cerevisiae prion Rnq1p/[PIN(+)] as a model to investigate the effects of chaperone proteins upon prion variant determination. We show that deletion of specific chaperone genes alters [PIN(+)] variant phenotypes, including [PSI(+)] induction efficiency, Rnq1p aggregate morphology/size and variant dominance. Mating assays demonstrate that gene deletion-induced phenotypic changes are stably inherited in a non-Mendelian manner even after restoration of the deleted gene, confirming that they are due to a bona fide change in the [PIN(+)] variant. Together, our results demonstrate a role for chaperones in regulating the prion variant complement of a cell.
Collapse
Affiliation(s)
- David L Lancaster
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
213
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
214
|
Sarker D, Pacey S, Workman P. Use of pharmacokinetic/pharmacodynamic biomarkers to support rational cancer drug development. Biomark Med 2012; 1:399-417. [PMID: 20477383 DOI: 10.2217/17520363.1.3.399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of drug development in oncology has struggled to alter at a pace in keeping with the rapid discovery and testing of agents that act on a wide variety of molecular targets. The rational development of such agents requires an understanding of drug effect(s) on their purported target. It is likely that testing these drugs in a framework designed to examine cytotoxic agents will fail to establish their full potential. We discuss how data gained from biomarker investigation might impact on drug development and provide examples that highlight the development, validation and use of pharmacokinetic, and especially pharmacodynamic biomarkers as drug development moves from the laboratory into clinical testing. The challenges of performing assays to satisfy regulatory requirements have been the subject of much debate. We recommend the implementation of appropriate, fit-for-purpose biomarkers in clinical trials of all new cancer drugs.
Collapse
Affiliation(s)
- Debashis Sarker
- Signal Transduction & Molecular Pharmacology Team, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, SM2 5NG, UK
| | | | | |
Collapse
|
215
|
Co-crystalization and in vitro biological characterization of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors. PLoS One 2012; 7:e44642. [PMID: 22984537 PMCID: PMC3439374 DOI: 10.1371/journal.pone.0044642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/06/2012] [Indexed: 11/21/2022] Open
Abstract
A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90α N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp90.
Collapse
|
216
|
Xu W, Mollapour M, Prodromou C, Wang S, Scroggins BT, Palchick Z, Beebe K, Siderius M, Lee MJ, Couvillon A, Trepel JB, Miyata Y, Matts R, Neckers L. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Mol Cell 2012; 47:434-43. [PMID: 22727666 PMCID: PMC3418412 DOI: 10.1016/j.molcel.2012.05.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/13/2012] [Accepted: 05/10/2012] [Indexed: 01/24/2023]
Abstract
Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.
Collapse
Affiliation(s)
- Wanping Xu
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892
| | - Mehdi Mollapour
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892
| | | | - Suiquan Wang
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892
| | | | - Zach Palchick
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892
| | - Kristin Beebe
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892
| | - Marco Siderius
- Medicinal Chemistry, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Min-Jung Lee
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Anthony Couvillon
- Cell Biology, Growth and Viability Section, Cell Signaling Technology, Danvers, MA 01923
| | - Jane B Trepel
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892
| |
Collapse
|
217
|
Desjardins F, Delisle C, Gratton JP. Modulation of the cochaperone AHA1 regulates heat-shock protein 90 and endothelial NO synthase activation by vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2012; 32:2484-92. [PMID: 22859491 DOI: 10.1161/atvbaha.112.256008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) signaling to endothelial NO synthase (eNOS) plays a central role in angiogenesis. In endothelial cells (ECs), heat-shock protein 90 (Hsp90) is also a regulator of eNOS activity. Our study is designed to determine whether modulation of the activator of Hsp90 ATPase 1 (AHA1) regulates the function of Hsp90 in ECs. METHODS AND RESULTS We show that eNOS phosphorylation on Ser-1179 after VEGF stimulation is significantly reduced in ECs transfected with a small interfering RNA against AHA1. Accordingly, VEGF-stimulated NO production, endothelial permeability, cell migration, and EC invasion in Matrigel implants in mice are reduced in small interfering RNA against AHA1-treated conditions. Furthermore, the induction of eNOS association with Hsp90 after VEGF stimulation is decreased in AHA1-downregulated cells. We also demonstrate that modulation of Hsp90 activity by AHA1 regulates phosphorylation of Hsp90 on Tyr-300. Interestingly, the association of AHA1 with Hsp90 is increased after c-Src-mediated phosphorylation of Hsp90 on Tyr-300. Finally, we show that overexpression of AHA1 in ECs promotes association of eNOS and Hsp90, phosphorylation of Ser-1179 of eNOS, increases NO production, and cell migration. CONCLUSIONS These results reveal that modulation of Hsp90 activity by AHA1 regulates VEGF signaling to eNOS and angiogenesis.
Collapse
|
218
|
Park YK, Jung SM, Lim HK, Son YJ, Park YC, Seo JH. Effects of Trx2p and Sec23p expression on stable production of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae. J Biotechnol 2012; 160:151-60. [DOI: 10.1016/j.jbiotec.2012.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
219
|
Ho N, Li A, Li S, Zhang H. Heat shock protein 90 and role of its chemical inhibitors in treatment of hematologic malignancies. Pharmaceuticals (Basel) 2012; 5:779-801. [PMID: 24280675 PMCID: PMC3763672 DOI: 10.3390/ph5080779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a conserved and constitutively expressed molecular chaperone and it has been shown to stabilize oncoproteins and facilitate cancer development. Hsp90 has been considered as a therapeutic target for cancers and three classes of Hsp90 inhibitors have been developed: (1) benzoquinone ansamycin and its derivatives, (2) radicicol and its derivates, and (3) small synthetic inhibitors. The roles of these inhibitors in cancer treatment have been studied in laboratories and clinical trials, and some encouraging results have been obtained. Interestingly, targeting of Hsp90 has been shown to be effective in inhibition of cancer stem cells responsible for leukemia initiation and progression, providing a strategy for finding a cure. Because cancer stem cells are well defined in some human leukemias, we will focus on hematologic malignancies in this review.
Collapse
Affiliation(s)
- Ngoc Ho
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
220
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
221
|
Zuehlke AD, Johnson JL. Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Genetics 2012; 191:805-14. [PMID: 22505624 PMCID: PMC3389976 DOI: 10.1534/genetics.112.140319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/05/2012] [Indexed: 01/11/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) of Saccharomyces cerevisiae is an abundant essential eukaryotic molecular chaperone involved in the activation and stabilization of client proteins, including several transcription factors and oncogenic kinases. Hsp90 undergoes a complex series of conformational changes and interacts with partner co-chaperones such as Sba1, Cpr6, Cpr7, and Cns1 as it binds and hydrolyzes ATP. In the absence of nucleotide, Hsp90 is dimerized only at the carboxy-terminus. In the presence of ATP, Hsp90 also dimerizes at the amino-terminus, creating a binding site for Sba1. Truncation of a charged linker region of yeast Hsp90 (Hsp82Δlinker) was known to disrupt the ability of Hsp82 to undergo amino-terminal dimerization and bind Sba1. We found that yeast expressing Hsp82Δlinker constructs exhibited a specific synthetic lethal phenotype in cells lacking CPR7. The isolated tetratricopeptide repeat domain of Cpr7 was both necessary and sufficient for growth in those strains. Cpr6 and Cpr7 stably bound the carboxy-terminus of wild-type Hsp82 only in the presence of nonhydrolyzable ATP and formed an Hsp82-Cpr6-Cpr7 ternary complex. However, in cells expressing Hsp82Δlinker or lacking CPR7, Cpr6 was able to bind Hsp82 in the presence or absence of nucleotide. Overexpression of CNS1, but not of other co-chaperones, in cpr7 cells restored nucleotide-dependent Hsp82-Cpr6 interaction. Together, our results suggest that the in vivo functions of Cpr7 include modulating Hsp90 conformational changes, mediating proper signaling of the nucleotide-bound state to the carboxy-terminus of Hsp82, or regulating Hsp82-Cpr6 interaction.
Collapse
Affiliation(s)
- Abbey D. Zuehlke
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844-3051
| | - Jill L. Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844-3051
| |
Collapse
|
222
|
Abstract
Access of therapeutic biomolecules to cytoplasmic and nuclear targets is hampered by the inability of these molecules to cross biological membranes. Approaches to overcome this hurdle involve CPPs (cell-penetrating peptides) or protein transduction domains. Most of these require rather high concentrations to elicit cell-penetrating functionality, are non-human, pathogen-derived or synthetic entities, and may therefore not be tolerated or even immunogenic. We identified novel human-protein-derived CPPs by a combination of in silico and experimental analyses: polycationic CPP candidates were identified in an in silico library of all 30-mer peptides of the human proteome. Of these peptides, 60 derived from extracellular proteins were evaluated experimentally. Cell viability and siRNA (small interfering RNA) transfection assays revealed that 20 out of the 60 peptides were functional. Three of these showed CPP functionality without interfering with cell viability. A peptide derived from human NRTN (neurturin), which contains an α-helix, performed the best in our screen and was uniformly taken up by cultured cells. Examples for payloads that can be delivered to the cytosol by the NRTN peptide include complexed siRNAs and both N- and C-terminally fused pro-apoptotic peptides.
Collapse
|
223
|
Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1092-101. [DOI: 10.1016/j.bbamcr.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
|
224
|
Solubility-promoting function of Hsp90 contributes to client maturation and robust cell growth. EUKARYOTIC CELL 2012; 11:1033-41. [PMID: 22660624 DOI: 10.1128/ec.00099-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hsp90 chaperone is required for the maturation of signal transduction clients, including many kinases and nuclear steroid hormone receptors. The binding and hydrolysis of ATP by Hsp90 drive conformational rearrangements in three structure domains. Two intrinsically disordered regions of Hsp90 located between these domains and at the C terminus have traditionally been considered to impart flexibility. We discovered that the charged nature of these acid-rich disordered regions imparts a solubility-promoting function to Hsp90 that is important for its cellular activity in yeast. Both the solubility-promoting function and ATPase activity must occur in the same Hsp90 molecule in order to support robust growth, suggesting that the solubility-promoting function is required during the ATP-driven client maturation process. Expression of model clients together with Hsp90 variants indicated interdependent solubilities mediated by the aggregation propensities of both the client and Hsp90. We propose a model whereby the charge-rich disordered regions of Hsp90 serve a solubility-promoting function important for complexes with aggregation-prone clients. These findings demonstrate a novel biological function of the intrinsically disordered regions in Hsp90 and provide a compelling rationale for why their charged properties are conserved throughout eukaryotic evolution.
Collapse
|
225
|
Mollapour M, Neckers L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:648-55. [PMID: 21856339 PMCID: PMC3226900 DOI: 10.1016/j.bbamcr.2011.07.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022]
Abstract
Molecular chaperones, as the name suggests, are involved in folding, maintenance, intracellular transport, and degradation of proteins as well as in facilitating cell signaling. Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone that carries out these processes in normal and cancer cells. Hsp90 function in vivo is coupled to its ability to hydrolyze ATP and this can be regulated by co-chaperones and post-translational modifications. In this review, we explore the varied roles of known post-translational modifications of cytosolic and nuclear Hsp90 (phosphorylation, acetylation, S-nitrosylation, oxidation and ubiquitination) in fine-tuning chaperone function in eukaryotes. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Mehdi Mollapour
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
226
|
Prodromou C. The 'active life' of Hsp90 complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:614-23. [PMID: 21840346 PMCID: PMC3793855 DOI: 10.1016/j.bbamcr.2011.07.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 12/02/2022]
Abstract
Hsp90 forms a variety of complexes differing both in clientele and co-chaperones. Central to the role of co-chaperones in the formation of Hsp90 complexes is the delivery of client proteins and the regulation of the ATPase activity of Hsp90. Determining the mechanisms by which co-chaperones regulate Hsp90 is essential in understanding the assembly of these complexes and the activation and maturation of Hsp90's clientele. Mechanistically, co-chaperones alter the kinetics of the ATP-coupled conformational changes of Hsp90. The structural changes leading to the formation of a catalytically active unit involve all regions of the Hsp90 dimer. Their complexity has allowed different orthologues of Hsp90 to evolve kinetically in slightly different ways. The interaction of the cytosolic Hsp90 with a variety of co-chaperones lends itself to a complex set of different regulatory mechanisms that modulate Hsp90's conformation and ATPase activity. It also appears that the conformational switches of Hsp90 are not necessarily coupled under all circumstances. Here, I described different co-chaperone complexes and then discuss in detail the mechanisms and role that specific co-chaperones play in this. I will also discuss emerging evidence that post-translational modifications also affect the ATPase activity of Hsp90, and thus complex formation. Finally, I will present evidence showing how Hsp90's active site, although being highly conserved, can be altered to show resistance to drug binding, but still maintain ATP binding and ATPase activity. Such changes are therefore unlikely to significantly alter Hsp90's interactions with client proteins and co-chaperones. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
227
|
Piaz FD, Malafronte N, Romano A, Gallotta D, Belisario MA, Bifulco G, Gualtieri MJ, Sanogo R, Tommasi ND, Pisano C. Structural characterization of tetranortriterpenes from Pseudrocedrela kotschyi and Trichilia emetica and study of their activity towards the chaperone Hsp90. PHYTOCHEMISTRY 2012; 75:78-89. [PMID: 22226245 DOI: 10.1016/j.phytochem.2011.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Investigation of roots extracts Pseudrocedrela kotschyi and Trichilia emetica led to identification of 5 limonoid derivatives, Kotschyins D-H, and 11 known compounds. Their structures were elucidated by extensive 1D and 2D NMR experiments in conjunction with mass spectrometry. A surface plasmon resonance (SPR) approach was adopted to screen their Hsp90 binding capability and kotschyin D showed a significant affinity for the chaperone. Therefore, the characterization of the biological activity of kotschyin D by means of a panel of chemical and biological approaches, including limited proteolysis, molecular docking and biochemical and cellular assays, was performed. Our result indicated this compound as a type of client selective Hsp90 inhibitor, directly binding to the middle domain of the protein and possibly preventing its interaction with the activator of Hsp90 ATPase 1 (Aha1).
Collapse
Affiliation(s)
- Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano, SA, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proc Natl Acad Sci U S A 2012; 109:2937-42. [PMID: 22315411 DOI: 10.1073/pnas.1114414109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hsp90 is an essential and highly conserved modular molecular chaperone whose N and middle domains are separated by a disordered region termed the charged linker. Although its importance has been previously disregarded, because a minimal linker length is sufficient for Hsp90 activity, the evolutionary persistence of extensive charged linkers of divergent sequence in Hsp90 proteins of most eukaryotes remains unexplained. To examine this question further, we introduced human and plasmodium native and length-matched artificial linkers into yeast Hsp90. After evaluating ATPase activity and biophysical characteristics in vitro, and chaperone function in vivo, we conclude that linker sequence affects Hsp90 function, cochaperone interaction, and conformation. We propose that the charged linker, in addition to providing the flexibility necessary for Hsp90 domain rearrangements--likely its original purpose--has evolved in eukaryotes to serve as a rheostat for the Hsp90 chaperone machine.
Collapse
|
229
|
Yao F, Coquery J, Lê Cao KA. Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics 2012; 13:24. [PMID: 22305354 PMCID: PMC3298499 DOI: 10.1186/1471-2105-13-24] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/03/2012] [Indexed: 11/13/2022] Open
Abstract
Background A key question when analyzing high throughput data is whether the information provided by the measured biological entities (gene, metabolite expression for example) is related to the experimental conditions, or, rather, to some interfering signals, such as experimental bias or artefacts. Visualization tools are therefore useful to better understand the underlying structure of the data in a 'blind' (unsupervised) way. A well-established technique to do so is Principal Component Analysis (PCA). PCA is particularly powerful if the biological question is related to the highest variance. Independent Component Analysis (ICA) has been proposed as an alternative to PCA as it optimizes an independence condition to give more meaningful components. However, neither PCA nor ICA can overcome both the high dimensionality and noisy characteristics of biological data. Results We propose Independent Principal Component Analysis (IPCA) that combines the advantages of both PCA and ICA. It uses ICA as a denoising process of the loading vectors produced by PCA to better highlight the important biological entities and reveal insightful patterns in the data. The result is a better clustering of the biological samples on graphical representations. In addition, a sparse version is proposed that performs an internal variable selection to identify biologically relevant features (sIPCA). Conclusions On simulation studies and real data sets, we showed that IPCA offers a better visualization of the data than ICA and with a smaller number of components than PCA. Furthermore, a preliminary investigation of the list of genes selected with sIPCA demonstrate that the approach is well able to highlight relevant genes in the data with respect to the biological experiment. IPCA and sIPCA are both implemented in the R package mixomics dedicated to the analysis and exploration of high dimensional biological data sets, and on mixomics' web-interface.
Collapse
Affiliation(s)
- Fangzhou Yao
- Queensland Facility for Advanced Bioinformatics, University of Queensland, St Lucia, Australia
| | | | | |
Collapse
|
230
|
da Silva VCH, Ramos CHI. The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: A target for cancer therapeutics. J Proteomics 2012; 75:2790-802. [PMID: 22236519 DOI: 10.1016/j.jprot.2011.12.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP. P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | |
Collapse
|
231
|
Suda A, Koyano H, Hayase T, Hada K, Kawasaki KI, Komiyama S, Hasegawa K, Fukami TA, Sato S, Miura T, Ono N, Yamazaki T, Saitoh R, Shimma N, Shiratori Y, Tsukuda T. Design and synthesis of novel macrocyclic 2-amino-6-arylpyrimidine Hsp90 inhibitors. Bioorg Med Chem Lett 2012; 22:1136-41. [DOI: 10.1016/j.bmcl.2011.11.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/17/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
232
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
233
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
234
|
Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Med Chem 2011; 3:1523-37. [PMID: 21882945 DOI: 10.4155/fmc.11.88] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tau is a microtubule-associated protein that accumulates in at least 15 different neurodegenerative disorders, which are collectively referred to as tauopathies. In these diseases, tau is often hyperphosphorylated and found in aggregates, including paired helical filaments, neurofibrillary tangles and other abnormal oligomers. Tau aggregates are associated with neuron loss and cognitive decline, which suggests that this protein can somehow evade normal quality control allowing it to aberrantly accumulate and become proteotoxic. Consistent with this idea, recent studies have shown that molecular chaperones, such as heat shock protein 70 and heat shock protein 90, counteract tau accumulation and neurodegeneration in disease models. These molecular chaperones are major components of the protein quality control systems and they are specifically involved in the decision to retain or degrade many proteins, including tau and its modified variants. Thus, one potential way to treat tauopathies might be to either accelerate interactions of abnormal tau with these quality control factors or tip the balance of triage towards tau degradation. In this review, we summarize recent findings and suggest models for therapeutic intervention.
Collapse
|
235
|
Hsp90 structure and function studied by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:636-47. [PMID: 22155720 DOI: 10.1016/j.bbamcr.2011.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022]
Abstract
The molecular chaperone Hsp90 plays a crucial role in folding and maturation of regulatory proteins. Key aspects of Hsp90's molecular mechanism and its adenosine-5'-triphosphate (ATP)-controlled active cycle remain elusive. In particular the role of conformational changes during the ATPase cycle and the molecular basis of the interactions with substrate proteins are poorly understood. The dynamic nature of the Hsp90 machine designates nuclear magnetic resonance (NMR) spectroscopy as an attractive method to unravel both the chaperoning mechanism and interaction with partner proteins. NMR is particularly suitable to provide a dynamic picture of protein-protein interactions at atomic resolution. Hsp90 is rather a challenging protein for NMR studies, due to its high molecular weight and its structural flexibility. The recent technologic advances allowed overcoming many of the traditional obstacles. Here, we describe the different approaches that allowed the investigation of Hsp90 using state-of-the-art NMR methods and the results that were obtained. NMR spectroscopy contributed to understanding Hsp90's interaction with the co-chaperones p23, Aha1 and Cdc37. A particular exciting prospect of NMR, however, is the analysis of Hsp90 interaction with substrate proteins. Here, the ability of this method to contribute to the structural characterization of not fully folded proteins becomes crucial. Especially the interaction of Hsp90 with one of its natural clients, the tumour suppressor p53, has been intensively studied by NMR spectroscopy. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
236
|
Franzosa EA, Albanèse V, Frydman J, Xia Y, McClellan AJ. Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 2011; 6:e28211. [PMID: 22140548 PMCID: PMC3227642 DOI: 10.1371/journal.pone.0028211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/03/2011] [Indexed: 02/01/2023] Open
Abstract
Hsp90 is an essential eukaryotic chaperone with a role in folding specific “client” proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30°C) and hyperthermic stress (37°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15°C heterozygous deletion pool screen with previously conducted 30°C and 37°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions.
Collapse
Affiliation(s)
- Eric A. Franzosa
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Véronique Albanèse
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yu Xia
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Amie J. McClellan
- Division of Natural Sciences and Mathematics, Bennington College, Bennington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
237
|
Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci U S A 2011; 108:19587-92. [PMID: 22114188 DOI: 10.1073/pnas.1105057108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although numerous carbohydrates play significant roles in mammalian cells, carbohydrate-based drug discovery has not been explored due to the technical difficulty of chemically synthesizing complex carbohydrate structures. Previously, we identified a series of carbohydrate mimetic peptides and found that a 7-mer peptide, designated I-peptide, inhibits hematogenous carbohydrate-dependent cancer cell colonization. During analysis of the endothelial surface receptor for I-peptide, we found that I-peptide bound to annexin 1 (Anxa1). Because Anxa1 is a highly specific tumor vasculature surface marker, we hypothesized that an I-peptide-like peptide could target anticancer drugs to the tumor vasculature. This study identifies IFLLWQR peptide, designated IF7, as homing to tumors. When synthetic IF7 peptide was conjugated to fluorescent Alexa 488 (A488) and injected intravenously into tumor-bearing mice, IF7-A488 targeted tumors within minutes. IF7 conjugated to the potent anticancer drug SN-38 and injected intravenously into nude mice carrying human colon HCT116 tumors efficiently suppressed tumor growth at low dosages with no apparent side effects. These results suggest that IF7 serves as an efficient drug delivery vehicle by targeting Anxa1 expressed on the surface of tumor vasculature. Given its extremely specific tumor-targeting activity, IF7 may represent a clinically relevant vehicle for anticancer drugs.
Collapse
|
238
|
Chua CS, Low H, Lehming N, Sim TS. Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite. Int J Biochem Cell Biol 2011; 44:233-45. [PMID: 22100910 DOI: 10.1016/j.biocel.2011.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 11/24/2022]
Abstract
The recent recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a promising anti-malaria drug target has sparked interest in identifying factors that regulate its function and drug-interaction. Co-chaperones are well-known regulators of Hsp90's chaperone function, and certain members have been implicated in conferring protection against lethal cellular effects of Hsp90-specific inhibitors. In this context, studies on PfHsp90's co-chaperones are imperative to gain insight into the regulation of the chaperone in the malaria parasite. In this study, a putative co-chaperone P. falciparum Aha1 (PfAha1) was identified and investigated for its interaction and regulation of PfHsp90. A previous genome-wide yeast two-hybrid study failed to identify PfAha1's association with PfHsp90, which prompted us to use a directed assay to investigate their interaction. PfAha1 was shown to interact with PfHsp90 via the in vivo split-ubiquitin assay and the association was confirmed in vitro by GST pull-down experiments. The GST pull-down assay further revealed PfAha1's interaction with PfHsp90 to be dependent on MgCl(2) and ATP, and was competed by co-chaperone Pfp23 that binds PfHsp90 under the same condition. In addition, the PfHsp90-PfAha1 complex was found to be sensitive to disruption by high salt, indicating a polar interaction between them. Using bio-computational modelling coupled with site-directed mutagenesis, the polar residue N108 in PfAha1 was found to be strategically located and essential for PfHsp90 interaction. The functional significance of PfAha1's interaction was clearly that of exerting a stimulatory effect on the ATPase activity of PfHsp90, likely to be essential for promoting the activation of PfHsp90's client proteins.
Collapse
Affiliation(s)
- Chun Song Chua
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
239
|
The size and phospholipid composition of lipid droplets can influence their proteome. Biochem Biophys Res Commun 2011; 415:455-62. [DOI: 10.1016/j.bbrc.2011.10.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 02/04/2023]
|
240
|
Kadota Y, Shirasu K. The HSP90 complex of plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:689-97. [PMID: 22001401 DOI: 10.1016/j.bbamcr.2011.09.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 01/07/2023]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved and essential molecular chaperone involved in maturation and activation of signaling proteins in eukaryotes. HSP90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis. HSP90 often functions together with co-chaperones that regulate the conformational cycle and/or load a substrate "client" protein onto HSP90. In plants, immune sensing NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins are among the few known client proteins of HSP90. In the process of chaperoning NLR proteins, co-chaperones, RAR1 and SGT1 function together with HSP90. Recent structural and functional analyses indicate that RAR1 dynamically controls conformational changes of the HSP90 dimer, allowing SGT1 to bridge the interaction between NLR proteins and HSP90. Here, we discuss the regulation of NLR proteins by HSP90 upon interaction with RAR1 and SGT1, emphasizing the recent progress in our understanding of the structure and function of the complex. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
241
|
Mollapour M, Tsutsumi S, Kim YS, Trepel J, Neckers L. Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2011; 2:407-17. [PMID: 21576760 PMCID: PMC3248188 DOI: 10.18632/oncotarget.272] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential for the function of various oncoproteins that are vital components of multiple signaling networks regulating cancer cell proliferation, survival, and metastasis. Hsp90 chaperone function is coupled to its ATPase activity, which can be inhibited by natural products such as the ansamycin geldanamycin (GA) and the resorcinol radicicol (RD). These compounds have served as templates for development of numerous natural product Hsp90 inhibitors. More recently, second generation, fully synthetic Hsp90 inhibitors, based on a variety of chemical scaffolds, have also been synthesized. Together, 18 natural product and synthetic Hsp90 inhibitors have entered clinical trial in cancer patients. To successfully develop Hsp90 inhibitors for oncology indications it is important to understand the factors that influence the susceptibility of Hsp90 to these drugs in vivo. We recently reported that Casein Kinase 2 phosphorylates a conserved threonine residue (T22) in helix-1 of the yeast Hsp90 N-domain both in vitro and in vivo. Phosphorylation of this residue reduces ATPase activity and affects Hsp90 chaperone function. Here, we present additional data demonstrating that ATP binding but not N-domain dimerization is a prerequisite for T22 phosphorylation. We also provide evidence that T22 is an important determinant of Hsp90 inhibitor sensitivity in yeast and we show that T22 phosphorylation status contributes to drug sensitivity in vivo.
Collapse
Affiliation(s)
- Mehdi Mollapour
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
242
|
Gaiser AM, Kaiser CJO, Haslbeck V, Richter K. Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One 2011; 6:e25485. [PMID: 21980476 PMCID: PMC3182237 DOI: 10.1371/journal.pone.0025485] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor.
Collapse
Affiliation(s)
- Andreas M. Gaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Christoph J. O. Kaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Veronika Haslbeck
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Klaus Richter
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
- * E-mail:
| |
Collapse
|
243
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
244
|
Makhnevych T, Houry WA. The role of Hsp90 in protein complex assembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:674-82. [PMID: 21945180 DOI: 10.1016/j.bbamcr.2011.09.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 12/16/2022]
Abstract
Hsp90 is a ubiquitous and essential molecular chaperone that plays central roles in many signaling and other cellular pathways. The in vivo and in vitro activity of Hsp90 depends on its association with a wide variety of cochaperones and cofactors, which form large multi-protein complexes involved in folding client proteins. Based on our proteomic work mapping the molecular chaperone interaction networks in yeast, especially that of Hsp90, as well as, on experiments and results presented in the published literature, one major role of Hsp90 appears to be the promotion and maintenance of proper assembly of protein complexes. To highlight this role of Hsp90, the effect of the chaperone on the assembly of the following seven complexes is discussed in this review: snoRNP, RNA polymerase II, phosphatidylinositol-3 kinase-related protein kinase (PIKK), telomere complex, kinetochore, RNA induced silencing complexes (RISC), and 26S proteasome. For some complexes, it is observed that Hsp90 mediates complex assembly by stabilizing an unstable protein subunit and facilitating its incorporation into the complex; for other complexes, Hsp90 promotes change in the composition of that complex. In all cases, Hsp90 does not appear to be part of the final assembled complex. This article is part of a Special Issue entitled:Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Taras Makhnevych
- Department of Biochemsitry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
245
|
Christofk HR, Wu N, Cantley LC, Asara JM. Proteomic screening method for phosphopeptide motif binding proteins using peptide libraries. J Proteome Res 2011; 10:4158-64. [PMID: 21774532 DOI: 10.1021/pr200578n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphopeptide binding domains mediate the directed and localized assembly of protein complexes essential to intracellular kinase signaling. To identify phosphopeptide binding proteins, we developed a proteomic screening method using immobilized partially degenerate phosphopeptide mixtures combined with SILAC and microcapillary LC-MS/MS. The method was used to identify proteins that specifically bound to phosphorylated peptide library affinity matrices, including pTyr, and the motifs pSer/pThr-Pro, pSer/pThr-X-X-X-pSer/pThr, pSer/pThr-Glu/Asp, or pSer/pThr-pSer/pThr in degenerate sequence contexts. Heavy and light SILAC lysates were applied to columns containing these phosphorylated and nonphosphorylated (control) peptide libraries respectively, and bound proteins were eluted, combined, digested, and analyzed by LC-MS/MS using a hybrid quadrupole-TOF mass spectrometer. Heavy/light peptide ion ratios were calculated, and peptides that yielded ratios greater than ∼3:1 were considered as being from potential phosphopeptide binding proteins since this ratio represents the lowest ratio from a known positive control. Many of those identified were known phosphopeptide-binding proteins, including the SH2 domain containing p85 subunit of PI3K bound to pTyr, 14-3-3 bound to pSer/pThr-Asp/Glu, polo-box domain containing PLK1 and Pin1 bound to pSer/pThr-Pro, and pyruvate kinase M2 binding to pTyr. Approximately half of the hits identified by the peptide library screens were novel. Protein domain enrichment analysis revealed that most pTyr hits contain SH2 domains, as expected, and to a lesser extent SH3, C1, STAT, Tyr phosphatase, Pkinase, C2, and PH domains; however, pSer/pThr motifs did not reveal enriched domains across hits.
Collapse
Affiliation(s)
- Heather R Christofk
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
246
|
Millson SH, Chua CS, Roe SM, Polier S, Solovieva S, Pearl LH, Sim TS, Prodromou C, Piper PW. Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise with mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB J 2011; 25:3828-37. [PMID: 21778327 DOI: 10.1096/fj.11-188821] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Much attention is focused on the benzoquinone ansamycins as anticancer agents, with several derivatives of the natural product geldanamycin (GdA) now in clinical trials. These drugs are selective inhibitors of Hsp90, a molecular chaperone vital for many of the activities that drive cancer progression. Mutational changes to their interaction site, the extremely conserved ATP binding site of Hsp90, would mostly be predicted to inactivate the chaperone. As a result, drug resistance should not arise readily this way. Nevertheless, Streptomyces hygroscopicus, the actinomycete that produces GdA, has evolved an Hsp90 family protein (HtpG) that lacks GdA binding. It is altered in certain of the highly conserved amino acids making contacts to this antibiotic in crystal structures of GdA bound to eukaryotic forms of Hsp90. Two of these amino acid changes, located on one side of the nucleotide-binding cleft, weakened GdA/Hsp90 binding and conferred partial GdA resistance when inserted into the endogenous Hsp90 of yeast cells. Crystal structures revealed their main effect to be a weakening of interactions with the C-12 methoxy group of the GdA ansamycin ring. This is the first study to demonstrate that partial GdA resistance is possible by mutation within the ATP binding pocket of Hsp90.
Collapse
Affiliation(s)
- Stefan H Millson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Meimaridou E, Gooljar SB, Ramnarace N, Anthonypillai L, Clark AJL, Chapple JP. The cytosolic chaperone Hsc70 promotes traffic to the cell surface of intracellular retained melanocortin-4 receptor mutants. Mol Endocrinol 2011; 25:1650-60. [PMID: 21719532 DOI: 10.1210/me.2011-1020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inherited modifications in protein structure frequently cause a loss-of-function by interfering with protein synthesis, transport, or stability. For the obesity-linked melanocortin-4 receptor (MC4R) and other G protein-coupled receptors, many mutants are intracellular retained. The biogenesis and trafficking of G protein-coupled receptors are regulated by multiple factors, including molecular chaperone networks. Here, we have investigated the ability of the cytosolic cognate 70-kDa heat-shock protein (Hsc70) chaperone system to modulate cell surface expression of MC4R. Clinically occurring MC4R mutants S58C, P78L, and D90N were demonstrated to have reduced trafficking to the plasma membrane and to be retained at the endoplasmic reticulum (ER). Analyses by fluorescence recovery after photobleaching revealed that the mobility of MC4R mutant protein at the ER was reduced, implying protein misfolding. In cells expressing MC4R, overexpression of Hsc70 resulted in increased levels of wild-type and mutant receptors at the cell surface. MC4R and Hsc70 coimmunoprecipitated, and fluorescence recovery after photobleaching analyses showed that increasing cellular levels of Hsc70 promoted the mobility of ER retained MC4R. Moreover, expression of HSJ1b, a cochaperone that enhances degradation of Hsc70 clients, reduced cellular levels of MC4R. Hsp70 and Hsp90 chaperone systems collaborate in the cellular processing of clients. For MC4R, inhibition of endogenous Hsp90 by geldanamycin reduced receptor levels. By contrast, expression of the Hsp90 cochaperone Aha1 (activator of Hsp90 ATPase) increased cellular levels of MC4R. Finally, we demonstrate that signaling of intracellular retained MC4R mutants is increased in cells overexpressing Hsc70. These data indicate that cytosolic chaperone systems can facilitate rescue of intracellular retained MC4R by improving folding. They also support proteostasis networks as a potential target for MC4R-linked obesity.
Collapse
Affiliation(s)
- Eirini Meimaridou
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
248
|
Ritorto MS, Borlak J. Combined serum and tissue proteomic study applied to a c-Myc transgenic mouse model of hepatocellular carcinoma identified novel disease regulated proteins suitable for diagnosis and therapeutic intervention strategies. J Proteome Res 2011; 10:3012-30. [PMID: 21644509 DOI: 10.1021/pr101207t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death in the U.S. Notably, most HCCs display c-Myc hyperactivity but this transcription factor participates in the regulation of as many as 15-20% of genes of the human genome. To better understand its oncogenic activity, a mass spectrometry-based proteomic approach was employed to search for disease-regulated proteins in liver tissue and serum of c-Myc transgenic mice that specifically developed HCC. Overall, a total of 90 differentially expressed proteins were identified with retinol binding protein 4, transthyretin, major urinary protein family, apolipoprotein E, and glutathione peroxidase being regulated in common in tissue and serum of HCC mice. Importantly, this study identified n = 22 novel tumor tissue-regulated proteins to function in cell cycle and proliferation, nucleotide and ribosomal biogenesis, oxidative stress, and GSH metabolism, while bioinformatics revealed the coding sequences of regulated proteins to enharbour c-Myc binding sites. Translation of the findings to human disease was achieved by Western immunoblotting of serum proteins and by immunohistochemistry of human HCC. Taken collectively, our study helps to define a c-Myc proteome suitable for diagnostic and possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Maria Stella Ritorto
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer ITEM, Hanover, Germany
| | | |
Collapse
|
249
|
Cassone BJ, Molloy MJ, Cheng C, Tan JC, Hahn MW, Besansky NJ. Divergent transcriptional response to thermal stress by Anopheles gambiae larvae carrying alternative arrangements of inversion 2La. Mol Ecol 2011; 20:2567-80. [PMID: 21535279 PMCID: PMC3686099 DOI: 10.1111/j.1365-294x.2011.05114.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The African malaria mosquito Anopheles gambiae is polymorphic for chromosomal inversion 2La, whose frequency strongly correlates with degree of aridity across environmental gradients. Recent physiological studies have associated 2La with resistance to desiccation in adults and thermal stress in larvae, consistent with its proposed role in aridity tolerance. However, the genetic basis of these traits remains unknown. To identify genes that could be involved in the differential response to thermal stress, we compared global gene expression profiles of heat-hardened 2La or 2L+(a) larvae at three time points, for up to eight hours following exposure to the heat stress. Treatment and control time series, replicated four times, revealed a common and massive induction of a core set of heat-shock genes regardless of 2La orientation. However, clear differences between the 2La and 2L+(a) arrangements emerged at the earliest (0.25 h) time point, in the intensity and nature of the stress response. Overall, 2La was associated with the more aggressive response: larger numbers of genes were heat responsive and up-regulated. Transcriptionally induced genes were enriched for functions related to ubiquitin-proteasomal degradation, chaperoning and energy metabolism. The more muted transcriptional response of 2L+(a) was largely repressive, including genes involved in proteolysis and energy metabolism. These results may help explain the maintenance of the 2La inversion polymorphism in An. gambiae, as the survival benefits offered by high thermal sensitivity in harsh climates could be offset by the metabolic costs of such a drastic response in more equable climates.
Collapse
Affiliation(s)
- Bryan J. Cassone
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew J. Molloy
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Changde Cheng
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John C. Tan
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Nora J. Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
250
|
Abstract
The ubiquitous molecular chaperone Hsp90 makes up 1-2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo-ATP-ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, Förster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.
Collapse
Affiliation(s)
- Kristin A Krukenberg
- Department of Biochemistry and Biophysics, The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|