201
|
Baglai A, Gargano AF, Jordens J, Mengerink Y, Honing M, van der Wal S, Schoenmakers PJ. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography–mass spectrometry vs. liquid chromatography–trapped-ion-mobility–mass spectrometry. J Chromatogr A 2017; 1530:90-103. [DOI: 10.1016/j.chroma.2017.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/04/2023]
|
202
|
Liu J, Deng Z, Zhu Z, Wang Y, Wang G, Sun YA, Zhu Y. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system. J Chromatogr A 2017; 1528:35-40. [DOI: 10.1016/j.chroma.2017.10.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
203
|
Pirok BWJ, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci 2017; 41:68-98. [PMID: 29027363 PMCID: PMC5814945 DOI: 10.1002/jssc.201700863] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022]
Abstract
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations.
Collapse
Affiliation(s)
- Bob W J Pirok
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,TI-COAST, Science Park, Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,Vrije Universiteit Amsterdam, Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
204
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
205
|
Sandra K, Steenbeke M, Vandenheede I, Vanhoenacker G, Sandra P. The versatility of heart-cutting and comprehensive two-dimensional liquid chromatography in monoclonal antibody clone selection. J Chromatogr A 2017; 1523:283-292. [DOI: 10.1016/j.chroma.2017.06.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022]
|
206
|
Simulation of elution profiles in liquid chromatography − II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography. J Chromatogr A 2017; 1523:162-172. [DOI: 10.1016/j.chroma.2017.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/17/2022]
|
207
|
Patel BA, Pinto ND, Gospodarek A, Kilgore B, Goswami K, Napoli WN, Desai J, Heo JH, Panzera D, Pollard D, Richardson D, Brower M, Richardson DD. On-Line Ion Exchange Liquid Chromatography as a Process Analytical Technology for Monoclonal Antibody Characterization in Continuous Bioprocessing. Anal Chem 2017; 89:11357-11365. [DOI: 10.1021/acs.analchem.7b02228] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bhumit A. Patel
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Nuno D.S. Pinto
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Adrian Gospodarek
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Bruce Kilgore
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Kudrat Goswami
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - William N. Napoli
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Jayesh Desai
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Jun H. Heo
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Dominick Panzera
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - David Pollard
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Daisy Richardson
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Mark Brower
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Douglas D. Richardson
- Biologics & Vaccines, Bioprocess Research and Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
208
|
Graesbøll R, Janssen HG, Christensen JH, Nielsen NJ. Optimizing gradient conditions in online comprehensive two-dimensional reversed-phase liquid chromatography by use of the linear solvent strength model. J Sep Sci 2017; 40:3612-3620. [DOI: 10.1002/jssc.201700239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Rune Graesbøll
- Department of Plant and Environmental Sciences, Faculty of Science; University of Copenhagen; Frederiksberg Denmark
| | - Hans-Gerd Janssen
- Department of Analytical Chemistry, Faculty of Science; University of Amsterdam; Amsterdam The Netherlands
| | - Jan H. Christensen
- Department of Plant and Environmental Sciences, Faculty of Science; University of Copenhagen; Frederiksberg Denmark
| | - Nikoline J. Nielsen
- Department of Plant and Environmental Sciences, Faculty of Science; University of Copenhagen; Frederiksberg Denmark
| |
Collapse
|
209
|
Sheng N, Zheng H, Xiao Y, Wang Z, Li M, Zhang J. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2017; 1517:97-107. [DOI: 10.1016/j.chroma.2017.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
210
|
Stoll DR, Shoykhet K, Petersson P, Buckenmaier S. Active Solvent Modulation: A Valve-Based Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography. Anal Chem 2017; 89:9260-9267. [DOI: 10.1021/acs.analchem.7b02046] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, Minnesota 56082, United States
| | - Konstantin Shoykhet
- R&D and Marketing GmbH & Co KG, Agilent Technologies, Hewlett-Packard-Str. 8, 76337 Waldbronn, Germany
| | - Patrik Petersson
- Global
Research, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Stephan Buckenmaier
- R&D and Marketing GmbH & Co KG, Agilent Technologies, Hewlett-Packard-Str. 8, 76337 Waldbronn, Germany
| |
Collapse
|
211
|
Pirok BWJ, Abdulhussain N, Aalbers T, Wouters B, Peters RAH, Schoenmakers PJ. Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation. Anal Chem 2017; 89:9167-9174. [PMID: 28745485 PMCID: PMC5588091 DOI: 10.1021/acs.analchem.7b01906] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Polymeric
nanoparticles have become indispensable in modern society
with a wide array of applications ranging from waterborne coatings
to drug-carrier-delivery systems. While a large range of techniques
exist to determine a multitude of properties of these particles, relating
physicochemical properties of the particle to the chemical structure
of the intrinsic polymers is still challenging. A novel, highly orthogonal
separation system based on comprehensive two-dimensional liquid chromatography
(LC × LC) has been developed. The system combines hydrodynamic
chromatography (HDC) in the first-dimension to separate the particles
based on their size, with ultrahigh-performance size-exclusion chromatography
(SEC) in the second dimension to separate the constituting polymer
molecules according to their hydrodynamic radius for each of 80 to
100 separated fractions. A chip-based mixer is incorporated to transform
the sample by dissolving the separated nanoparticles from the first-dimension
online in tetrahydrofuran. The polymer bands are then focused using
stationary-phase-assisted modulation to enhance sensitivity, and the
water from the first-dimension eluent is largely eliminated to allow
interaction-free SEC. Using the developed system, the combined two-dimensional
distribution of the particle-size and the molecular-size of a mixture
of various polystyrene (PS) and polyacrylate (PACR) nanoparticles
has been obtained within 60 min.
Collapse
Affiliation(s)
- Bob W J Pirok
- Analytical-Chemistry Group, University of Amsterdam, van't Hoff Institute for Molecular Sciences , Science Park 904, 1098 XH Amsterdam, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Noor Abdulhussain
- Analytical-Chemistry Group, University of Amsterdam, van't Hoff Institute for Molecular Sciences , Science Park 904, 1098 XH Amsterdam, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tom Aalbers
- Analytical-Chemistry Group, University of Amsterdam, van't Hoff Institute for Molecular Sciences , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bert Wouters
- Analytical-Chemistry Group, University of Amsterdam, van't Hoff Institute for Molecular Sciences , Science Park 904, 1098 XH Amsterdam, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ron A H Peters
- Analytical-Chemistry Group, University of Amsterdam, van't Hoff Institute for Molecular Sciences , Science Park 904, 1098 XH Amsterdam, The Netherlands.,DSM Coating Resins , Sluisweg 12, 5145 PE Waalwijk, The Netherlands
| | - Peter J Schoenmakers
- Analytical-Chemistry Group, University of Amsterdam, van't Hoff Institute for Molecular Sciences , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
212
|
Navarro-Reig M, Jaumot J, Baglai A, Vivó-Truyols G, Schoenmakers PJ, Tauler R. Untargeted Comprehensive Two-Dimensional Liquid Chromatography Coupled with High-Resolution Mass Spectrometry Analysis of Rice Metabolome Using Multivariate Curve Resolution. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01648] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meritxell Navarro-Reig
- Department
of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Van't Hoff Institute
for Molecular Science, University of Amsterdam, 1090 XH Amsterdam, The Netherlands
| | - Joaquim Jaumot
- Department
of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Anna Baglai
- Van't Hoff Institute
for Molecular Science, University of Amsterdam, 1090 XH Amsterdam, The Netherlands
| | - Gabriel Vivó-Truyols
- Van't Hoff Institute
for Molecular Science, University of Amsterdam, 1090 XH Amsterdam, The Netherlands
| | - Peter J. Schoenmakers
- Van't Hoff Institute
for Molecular Science, University of Amsterdam, 1090 XH Amsterdam, The Netherlands
| | - Romà Tauler
- Department
of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
213
|
Nagy G, Peng T, Pohl NLB. Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:3579-3593. [PMID: 28824713 PMCID: PMC5558844 DOI: 10.1039/c7ay01094j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbohydate purification remains a bottleneck in securing analytical standards from natural sources or by chemical or enzymatic synthesis. This review highlights the scope and remaining limitations of recent approaches and methods development in liquid chromatography for robust and higher-throughput carbohydrate separation and isolation.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
214
|
Yan Y, Song Q, Chen X, Li J, Li P, Wang Y, Liu T, Song Y, Tu P. Simultaneous determination of components with wide polarity and content ranges in Cistanche tubulosa using serially coupled reverse phase-hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 2017; 1501:39-50. [DOI: 10.1016/j.chroma.2017.04.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022]
|
215
|
Comparison of multivariate curve resolution strategies in quantitative LCxLC: Application to the quantification of furanocoumarins in apiaceous vegetables. Anal Chim Acta 2017; 961:49-58. [PMID: 28224908 DOI: 10.1016/j.aca.2017.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 11/23/2022]
Abstract
Comprehensive two-dimensional liquid chromatography (LC × LC) has been gaining popularity for the analysis of complex samples in a wide range of fields including metabolomics, environmental analysis, and food analysis. While LC × LC can provide greater chromatographic resolution than one-dimensional LC (1D-LC), overlapping peaks are often still present in separations of complex samples, a problem that can be alleviated by chemometric curve resolution techniques such as multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS has also been previously shown to assist in the quantitative analysis of LC x LC data by isolating pure analyte signals from background signals which are often present at higher levels in LC x LC compared to 1D-LC. In this work we present the analysis of a dataset from the LC × LC analyses of parsley, parsnip and celery samples for the presence and concentrations of 14 furanocoumarins. Several MCR-ALS implementations are compared for the analysis of LC × LC data. These implementations include analyzing the LC x LC chromatogram alone, analyzing the one-dimensional chromatogram alone, as well as two hybrid approaches that make use of both the first and second dimension chromatograms. Furthermore, we compared manual integration of resolved chromatograms versus a simple summation approach, using the resolved chromatographic peaks in both cases. It is found that manual integration of the resolved LC × LC chromatograms provides the best quantification as measured by the consistency between replicate injections. If the summation approach is desired for automation, the choice of MCR-ALS implementation has a large effect on the precision of the analysis. Based on these results, the concentrations of the 14 furanocoumarins are determined in the three apiaceous vegetable types by analyzing the LC × LC chromatograms with MCR-ALS and manual integration for peak area determination. The concentrations of the analytes are found to vary greatly between samples, even within a single vegetable type.
Collapse
|
216
|
Barhate CL, Regalado EL, Contrella ND, Lee J, Jo J, Makarov AA, Armstrong DW, Welch CJ. Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments. Anal Chem 2017; 89:3545-3553. [PMID: 28192943 DOI: 10.1021/acs.analchem.6b04834] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatographic separation and analysis of complex mixtures of closely related species is one of the most challenging tasks in modern pharmaceutical analysis. In recent years, two-dimensional liquid chromatography (2D-LC) has become a valuable tool for improving peak capacity and selectivity. However, the relatively slow speed of chiral separations has limited the use of chiral stationary phases (CSPs) as the second dimension in 2D-LC, especially in the comprehensive mode. Realizing that the recent revolution in the field of ultrafast enantioselective chromatography could now provide significantly faster separations, we herein report an investigation into the use of ultrafast chiral chromatography as a second dimension for 2D chromatographic separations. In this study, excellent selectivity, peak shape, and repeatability were achieved by combining achiral and chiral narrow-bore columns (2.1 mm × 100 mm and 2.1 mm × 150 mm, sub-2 and 3 μm) in the first dimension with 4.6 mm × 30 mm and 4.6 mm × 50 mm columns packed with highly efficient chiral selectors (sub-2 μm fully porous and 2.7 μm fused-core particles) in the second dimension, together with the use of 0.1% phosphoric acid/acetonitrile eluents in both dimensions. Multiple achiral × chiral and chiral × chiral 2D-LC examples (single and multiple heart-cutting, high-resolution sampling, and comprehensive) using ultrafast chiral chromatography in the second dimension are successfully applied to the separation and analysis of complex mixtures of closely related pharmaceuticals and synthetic intermediates, including chiral and achiral drugs and metabolites, constitutional isomers, stereoisomers, and organohalogenated species.
Collapse
Affiliation(s)
- Chandan L Barhate
- Department of Chemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | | | - Joon Lee
- Agilent Technologies, Incorporated , Wilmington, Delaware 19808, United States
| | | | | | - Daniel W Armstrong
- Department of Chemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | | |
Collapse
|
217
|
Stoll D, Danforth J, Zhang K, Beck A. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:51-60. [PMID: 27267072 DOI: 10.1016/j.jchromb.2016.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023]
Abstract
The development of analytical tools for the characterization of large biomolecules is an emerging and rapidly evolving area. This development activity is motivated largely by the current trend involving the increase in development and use of large biomolecules for therapeutic uses. Given the inherent complexity of these biomolecules, which arises from their sheer size and possibilities for chemical modification as well as changes over time (e.g., through modification in solution, aggregation), two-dimensional liquid chromatography (2D-LC) has attracted considerable interest as an analytical tool to address the challenges faced in characterizing these materials. The immediate potential benefits of 2D-LC over conventional one-dimensional liquid chromatography in this context include: (1) higher overall resolving power; (2) complementary information gained from two dimensions of separation in a single analysis; and (3) enabling indirect coupling of separation modes that are inherently incompatible with mass spectrometric (MS) detection (e.g., ion-exchange, because of high-salt eluents) to MS through a more compatible second dimension separation such as reversed-phase LC. In this review we summarize the work in this area, most of which has occurred in the past five years. Although the future is bright for further development in this area, some challenges have already been addressed through new 2D-LC methods. These include: (1) deep characterization of monoclonal antibodies to understand charge heterogeneity, glycosylation patterns, and other modifications; (2) characterization of antibody-drug conjugates to understand the extent and localization of small molecule conjugation; (3) detailed study of excipients in protein drug formulations; and (4) detection of host-cell proteins on biotherapeutic molecule preparations. We fully expect that in the near future we will see this list expanded, and that continued development will lead to methods with further improved performance metrics.
Collapse
Affiliation(s)
- Dwight Stoll
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA.
| | - John Danforth
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA
| | - Kelly Zhang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|