201
|
Thompson JW, Griffin ME, Hsieh-Wilson LC. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation. Methods Enzymol 2017; 598:101-135. [PMID: 29306432 PMCID: PMC5886303 DOI: 10.1016/bs.mie.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine/threonine residues of proteins is a ubiquitous posttranslational modification found in all multicellular organisms. Like phosphorylation, O-GlcNAc glycosylation (O-GlcNAcylation) is inducible and regulates a myriad of physiological and pathological processes. However, understanding the diverse functions of O-GlcNAcylation is often challenging due to the difficulty of detecting and quantifying the modification. Thus, robust methods to study O-GlcNAcylation are essential to elucidate its key roles in the regulation of individual proteins, complex cellular processes, and disease. In this chapter, we describe a set of chemoenzymatic labeling methods to (1) detect O-GlcNAcylation on proteins of interest, (2) monitor changes in both the total levels of O-GlcNAcylation and its stoichiometry on proteins of interest, and (3) enable mapping of O-GlcNAc to specific serine/threonine residues within proteins to facilitate functional studies. First, we outline a procedure for the expression and purification of a multiuse mutant galactosyltransferase enzyme (Y289L GalT). We then describe the use of Y289L GalT to modify O-GlcNAc residues with a functional handle, N-azidoacetylgalactosamine (GalNAz). Finally, we discuss several applications of the copper-catalyzed azide-alkyne cycloaddition "click" reaction to attach various alkyne-containing chemical probes to GalNAz and demonstrate how this functionalization of O-GlcNAc-modified proteins can be used to realize (1)-(3) above. Overall, these methods, which utilize commercially available reagents and standard protein analytical tools, will serve to advance our understanding of the diverse and important functions of O-GlcNAcylation.
Collapse
Affiliation(s)
- John W Thompson
- California Institute of Technology, Pasadena, CA, United States
| | | | | |
Collapse
|
202
|
Abstract
Posttranslational protein glycosylation is conserved in all kingdoms of life and implicated in the regulation of protein structure, function, and localization. The visualization of glycosylation states of designated proteins within living cells is of great importance for unraveling the biological roles of intracellular protein glycosylation. Our generally applicable approach is based on the incorporation of a glucosamine analog, Ac4GlcNCyoc, into the cellular glycome via metabolic engineering. Ac4GlcNCyoc can be labeled in a second step via inverse-electron-demand Diels-Alder chemistry with fluorophores inside living cells. Additionally, target proteins can be expressed as enhanced green fluorescent protein (EGFP)-fusion proteins. To assess the proximity of the donor EGFP and the glycan-anchored acceptor fluorophore, Förster resonance energy transfer (FRET) is employed and read out with high contrast by fluorescence lifetime imaging (FLIM) microscopy. In this chapter, we present a detailed description of methods required to perform protein-specific imaging of glycosylation inside living cells. These include the complete synthesis of Ac4GlcNCyoc, immunoprecipitation of EGFP-fusion proteins to examine the Ac4GlcNCyoc modification state, and a complete section on basics, performance, as well as data analysis for FLIM-FRET microscopy. We also provide useful notes necessary for reproducibility and point out strengths and limitations of the approach.
Collapse
|
203
|
Xing L, Niu Q, Li C. Practical Glucosylations and Mannosylations Using Anomeric Benzoyloxy as a Leaving Group Activated by Sulfonium Ion. ACS OMEGA 2017; 2:3698-3709. [PMID: 30023701 PMCID: PMC6044952 DOI: 10.1021/acsomega.7b00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/06/2017] [Indexed: 06/08/2023]
Abstract
One obstacle for practical glycosylations is the high cost of promoters and low-temperature equipment. This problem has been at least partially solved by using MeSCH2Cl/KI as a low-cost promoter system. MeSCH2Cl has an estimated cost of <$1/mol compared with $1741/mol for AgOTf and $633/mol for TMSOTf. This new promoter system is capable of activating various leaving groups including anomeric Cl, F, trichloroacetimidate, and acyloxy groups. Stable and easy-to-prepare anomeric benzoloxy carbohydrate donors were investigated in the glycosylations of carbohydrates, aliphatic alcohols, amino acids, steroids, and nucleoside acceptors. Most of these glycosylations were operationally simple with fast reaction rates and moderate yields of 35-79%. In addition, direct glycosylations of nucleosides using less than 2 equiv of anomeric benzoloxy donors and high stereoselective mannosylation have been achieved. From an economic point of view, this glycosylation method should be highly applicable to industrial processes.
Collapse
Affiliation(s)
- Linlin Xing
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| | - Qun Niu
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| | - Chunbao Li
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| |
Collapse
|
204
|
Kar UK, Simonian M, Whitelegge JP. Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 2017; 14:715-723. [PMID: 28737967 DOI: 10.1080/14789450.2017.1359545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Integral membrane proteins and lipids constitute the bilayer membranes that surround cells and sub-cellular compartments, and modulate movements of molecules and information between them. Since membrane protein drug targets represent a disproportionately large segment of the proteome, technical developments need timely review. Areas covered: Publically available resources such as Pubmed were surveyed. Bottom-up proteomics analyses now allow efficient extraction and digestion such that membrane protein coverage is essentially complete, making up around one third of the proteome. However, this coverage relies upon hydrophilic loop regions while transmembrane domains are generally poorly covered in peptide-based strategies. Top-down mass spectrometry where the intact membrane protein is fragmented in the gas phase gives good coverage in transmembrane regions, and membrane fractions are yielding to high-throughput top-down proteomics. Exciting progress in native mass spectrometry of membrane protein complexes is providing insights into subunit stoichiometry and lipid binding, and cross-linking strategies are contributing critical in-vivo information. Expert commentary: It is clear from the literature that integral membrane proteins have yielded to advanced techniques in protein chemistry and mass spectrometry, with applications limited only by the imagination of investigators. Key advances toward translation to the clinic are emphasized.
Collapse
Affiliation(s)
- Upendra K Kar
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Margaret Simonian
- b NPI-Semel Institute , University of California Los Angeles , Los Angeles , CA , USA
| | - Julian P Whitelegge
- b NPI-Semel Institute , University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
205
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David R. Spiciarich
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Rosalie Nolley
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sophia L. Maund
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sean C. Purcell
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Jason Herschel
- Department of Mathematics; California State University; East Bay Hayward CA 94542 USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility; UC Berkeley; Berkeley CA 94720 USA
| | - Donna M. Peehl
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Carolyn R. Bertozzi
- Department of Chemistry; Stanford University; Stanford CA 94305-4401 USA
- Howard Hughes Medical Institute; USA
| |
Collapse
|
206
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [PMID: 28649697 DOI: 10.1002/anie.201701424] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell-surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide-functionalized sialic acid biosynthetic precursor Ac4 ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.
Collapse
Affiliation(s)
- David R Spiciarich
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sophia L Maund
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean C Purcell
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jason Herschel
- Department of Mathematics, California State University, East Bay Hayward, CA, 94542, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, UC Berkeley, Berkeley, CA, 94720, USA
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4401, USA.,Howard Hughes Medical Institute, USA
| |
Collapse
|
207
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
208
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017; 56:8139-8143. [PMID: 28557363 DOI: 10.1002/anie.201703406] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/07/2022]
Abstract
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.
Collapse
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
209
|
Karlsson NG, Jin C, Rojas-Macias MA, Adamczyk B. Next Generation O-Linked Glycomics. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1602.1e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Miguel A. Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
| |
Collapse
|
210
|
Wang S, Corcilius L, Sharp PP, Rajkovic A, Ibba M, Parker BL, Payne RJ. Synthesis of rhamnosylated arginine glycopeptides and determination of the glycosidic linkage in bacterial elongation factor P. Chem Sci 2016; 8:2296-2302. [PMID: 28451332 PMCID: PMC5363394 DOI: 10.1039/c6sc03847f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022] Open
Abstract
We describe the synthesis and incorporation of α- and β-configured rhamnosyl arginine cassettes into Pseudomonas aeruginosa elongation factor P-derived glycopeptides. These were used to unequivocally determine the native anomeric configuration of the rhamnose moiety in EF-P.
A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies.
Collapse
Affiliation(s)
- Siyao Wang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| | - Leo Corcilius
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| | - Phillip P Sharp
- ACRF Chemical Biology Division , Walter and Eliza Hall Institute of Medical Research , 1G Royal Parade , VIC3052 , Australia
| | - Andrei Rajkovic
- Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Benjamin L Parker
- Charles Perkins Centre , The University of Sydney , NSW 2006 , Australia
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| |
Collapse
|