201
|
Chao P, Chen H, Zhu Y, Lai H, Mo D, Zheng N, Chang X, Meng H, He F. A Benzo[1,2-b:4,5-c']Dithiophene-4,8-Dione-Based Polymer Donor Achieving an Efficiency Over 16. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907059. [PMID: 31995263 DOI: 10.1002/adma.201907059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
It is of great significance to develop efficient donor polymers during the rapid development of acceptor materials for nonfullerene bulk-heterojunction (BHJ) polymer solar cells. Herein, a new donor polymer, named PBTT-F, based on a strongly electron-deficient core (5,7-dibromo-2,3-bis(2-ethylhexyl)benzo[1,2-b:4,5-c']dithiophene-4,8-dione, TTDO), is developed through the design of cyclohexane-1,4-dione embedded into a thieno[3,4-b]thiophene (TT) unit. When blended with the acceptor Y6, the PBTT-F-based photovoltaic device exhibits an outstanding power conversion efficiency (PCE) of 16.1% with a very high fill factor (FF) of 77.1%. This polymer also shows high efficiency for a thick-film device, with a PCE of ≈14.2% being realized for an active layer thickness of 190 nm. In addition, the PBTT-F-based polymer solar cells also show good stability after storage for ≈700 h in a glove box, with a high PCE of ≈14.8%, which obviously shows that this kind of polymer is very promising for future commercial applications. This work provides a unique strategy for the molecular synthesis of donor polymers, and these results demonstrate that PBTT-F is a very promising donor polymer for use in polymer solar cells, providing an alternative choice for a variety of fullerene-free acceptor materials for the research community.
Collapse
Affiliation(s)
- Pengjie Chao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daize Mo
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoyong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
202
|
Pavilek B, Kožíšek J, Zalibera M, Lušpai K, Cibulková Z, Kožíšková J, Végh D. Ortho-substituent-controlled regioselective cyclisation of 1,4-phenylenediacrylic acid to a linear benzo[1,2-b:4,5-b′]dithiophene derivative as a building block for semiconducting materials. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
203
|
Liu F, Li C, Li J, Wang C, Xiao C, Wu Y, Li W. Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
204
|
Kini GP, Jeon SJ, Moon DK. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906175. [PMID: 32020712 DOI: 10.1002/adma.201906175] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Indexed: 05/20/2023]
Abstract
The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
205
|
Gao W, Liu T, Sun R, Zhang G, Xiao Y, Ma R, Zhong C, Lu X, Min J, Yan H, Yang C. Dithieno[3,2- b:2',3'- d]pyrrol-Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogen-Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902657. [PMID: 32154073 PMCID: PMC7055560 DOI: 10.1002/advs.201902657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Indexed: 05/20/2023]
Abstract
Energy loss (E loss) consisting of radiative recombination loss (ΔE 1 and ΔE 2) and nonradiative recombination loss (ΔE 3) is considered as an important factor for organic solar cells (OSCs). Herein, two N-functionalized asymmetrical small molecule acceptors (SMAs), namely N7IT and N8IT are designed and synthesized, to explore the effect of N on reducing E loss with sulfur (S) as a comparison. N7IT-based OSCs achieve not only a higher PCE (13.8%), but also a much lower E loss (0.57 eV) than those of the analogue (a-IT)-based OSCs (PCE of 11.5% and E loss of 0.72 eV), which are mainly attributed to N7IT's significantly enhanced charge carrier density (promoting J SC) and largely suppressed nonradiative E loss by over 0.1 eV (enhancing V OC). In comparison, N8IT, with an extended π-conjugated length, shows relatively lower photovoltaic performance than N7IT (but higher than a-IT) due to the less favorable morphology caused by the excessively large dipole moment of the asymmetrical molecule. Finally, this work sheds light on the structure-property relationship of the N-functionalization, particularly on its effects on reducing the E loss, which could inspire the community to design and synthesize more N-functionalized SMAs.
Collapse
Affiliation(s)
- Wei Gao
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- Department of ChemistryHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072P. R. China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionHong Kong University of Science and TechnologyClear Water BayKowloon999077Hong Kong
| | - Rui Sun
- The Institute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | | | - Yiqun Xiao
- Department of PhysicsChinese University of Hong KongNew Territories999077Hong Kong
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionHong Kong University of Science and TechnologyClear Water BayKowloon999077Hong Kong
| | - Cheng Zhong
- Department of ChemistryHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072P. R. China
| | - Xinhui Lu
- Department of PhysicsChinese University of Hong KongNew Territories999077Hong Kong
| | - Jie Min
- The Institute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionHong Kong University of Science and TechnologyClear Water BayKowloon999077Hong Kong
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- Department of ChemistryHubei Key Lab on Organic and Polymeric Optoelectronic MaterialsWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
206
|
Cao Z, Chen J, Liu S, Jiao X, Ma S, Zhao J, Li Q, Cai YP, Huang F. Synergistic Effects of Polymer Donor Backbone Fluorination and Nitrogenation Translate into Efficient Non-Fullerene Bulk-Heterojunction Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9545-9554. [PMID: 32013390 DOI: 10.1021/acsami.9b22987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
State-of-the-art non-fullerene bulk-heterojunction (BHJ) polymer solar cells outperform the more extensively studied polymer-fullerene BHJ solar cells in terms of efficiency, thermal-, and photostability. Considering the strong light absorption in the near-infrared region (600-1000 nm) for most of the efficient acceptors, the exploration of high-performing large band gap (LBG) polymer donors with complementary optical absorption ranging from 400 to 700 nm remains critical. In this work, the strategy of concurrently incorporating fluorine (-F) and unsaturated nitrogen (-N) substituents along the polymer backbones is used to develop the LBG polymer donor PB[N][F]. Results show that the F- and N-substituted polymer donor PB[N][F] realizes up to 14.4% efficiency in BHJ photovoltaic devices when paired with a benchmark molecule acceptor Y6, which largely outperforms the analogues PB with an efficiency of only 3.6% and PB[N] with an efficiency of 11.8%. Systematic examinations show that synergistic effects of polymer backbone fluorination and nitrogenation can significantly increase ionization potential values, improve charge transport, and reduce bimolecular recombination and trap-assisted recombination in the PB[N][F]:Y6 BHJ system. Importantly, our study shows that the F- and N-substituted conjugated polymers are promising electron-donor materials for solution-processed non-fullerene BHJ solar cells.
Collapse
Affiliation(s)
- Zhixiong Cao
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage , South China Normal University (SCNU) , Guangzhou 510006 , People's Republic of China
| | - Jiale Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage , South China Normal University (SCNU) , Guangzhou 510006 , People's Republic of China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage , South China Normal University (SCNU) , Guangzhou 510006 , People's Republic of China
| | - Xuechen Jiao
- Department of Materials Science and Engineering , Monash University , Victoria 3800 , Australia
| | - Shanshan Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Jiaji Zhao
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage , South China Normal University (SCNU) , Guangzhou 510006 , People's Republic of China
| | - Qingduan Li
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage , South China Normal University (SCNU) , Guangzhou 510006 , People's Republic of China
| | - Yue-Peng Cai
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage , South China Normal University (SCNU) , Guangzhou 510006 , People's Republic of China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
207
|
Wang K, Xia P, Wang K, You X, Wu M, Huang H, Wu D, Xia J. π-Extension, Selenium Incorporation, and Trimerization: "Three in One" for Efficient Perylene Diimide Oligomer-Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9528-9536. [PMID: 32009378 DOI: 10.1021/acsami.9b21929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perylene diimide (PDI) and the vinylene-bridged helical PDI oligomers are versatile building blocks for constructing nonfullerene acceptors (NFAs). In this contribution, a benzene-cored star-shaped NFA, namely, TPDI2-Se, was designed and synthesized for organic solar cells (OSCs). The NFA with smaller π-conjugated blades, namely, TPDI-Se, was synthesized for comparison. Using the commercially available PTB7-Th as the electron donor, the best power conversion efficiency (PCE) of 3.62% was obtained for TPDI-Se-based OSCs. However, a much higher PCE of 8.59% was achieved for TPDI2-Se-based devices owing to the π-extension in the peripheral panels. Moreover, the photovoltaic performance of TPDI2-Se-based OSCs is also superior to those of the parent NFA TPDI2 (PCE of 7.84%)- and the blade moiety PDI2-Se (PCE of 6.61%)- based ones. Additionally, a remarkable short-circuit current (Jsc) value of 17.21 mA/cm2 was obtained for TPDI2-Se-based OSCs, which is among the highest Jsc values reported in PDI-based OSCs. These results argue that the so-called "three in one" molecule design strategy of π-extension, selenium incorporation, and trimerization offers a robust approach to constructing high-performance PDI-based NFAs.
Collapse
Affiliation(s)
- Keke Wang
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Ping Xia
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Kangwei Wang
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Mingliang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices , Wuhan University of Technology , No. 122 Luoshi Road , Wuhan 430070 , China
| |
Collapse
|
208
|
An L, Huang Y, Wang X, Liang Z, Li J, Tong J. Fluorination Effect for Highly Conjugated Alternating Copolymers Involving Thienylenevinylene-Thiophene-Flanked Benzodithiophene and Benzothiadiazole Subunits in Photovoltaic Application. Polymers (Basel) 2020; 12:E504. [PMID: 32106540 PMCID: PMC7254375 DOI: 10.3390/polym12030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/28/2023] Open
Abstract
Two two-dimensional (2D) donor-acceptor (D-A) type conjugated polymers (CPs), namely, PBDT-TVT-BT and PBDT-TVT-FBT, in which two ((E)-(4,5-didecylthien-2-yl)vinyl)- 5-thien-2-yl (TVT) side chains were introduced into 4,8-position of benzo[1,2-b:4,5-b']dithiophene (BDT) to synthesize the highly conjugated electron-donating building block BDT-TVT, and benzothiadiazole (BT) and/or 5,6-difluoro-BT as electron-accepting unit, were designed to systematically ascertain the impact of fluorination on thermal stability, optoelectronic property, and photovoltaic performance. Both resultant copolymers exhibited the lower bandgap (1.60 ~ 1.69 eV) and deeper highest occupied molecular orbital energy level (EHOMO, -5.17 ~ -5.37 eV). It was found that the narrowed absorption, deepened EHOMO and weakened aggregation in solid film but had insignificant influence on thermal stability after fluorination in PBDT-TVT-FBT. Accordingly, a PBDT-TVT-FBT-based device yielded 16% increased power conversion efficiency (PCE) from 4.50% to 5.22%, benefited from synergistically elevated VOC, JSC, and FF, which was mainly originated from deepened EHOMO, increased μh, μe, and more balanced μh/μe ratio, higher exciton dissociation probability and improved microstructural morphology of the photoactive layer as a result of incorporating fluorine into the polymer backbone.
Collapse
Affiliation(s)
- Lili An
- Key Laboratory for Utility of Environment- Friendly Composite Materials and Biomass in University of Gansu Province, School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yubo Huang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| | - Xu Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| | - Zezhou Liang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| | - Junfeng Tong
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (Y.H.); (X.W.); (Z.L.); (J.L.); (J.T.)
| |
Collapse
|
209
|
Garai R, Adil Afroz M, Gupta RK, Choudhury A, Iyer PK. High-Performance Ambient-Condition-Processed Polymer Solar Cells and Organic Thin-Film Transistors. ACS OMEGA 2020; 5:2747-2754. [PMID: 32095698 PMCID: PMC7033982 DOI: 10.1021/acsomega.9b03347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Large-scale commercial synthesis of bulk-heterojunction (BHJ) solar cell materials is very challenging and both time and energy consuming. Synthesis of π-conjugated polymers (CPs) with uniform batch-to-batch molecular weight and low dispersity is a key requirement for better reproducibility of high-efficiency polymer solar cells. Herein, a conjugated polymer (CP) PTB7-Th, well known for its high performance, has been synthesized with high molecular weight and low dispersity in a closed microwave reactor. The microwave reaction procedure is known to be more controlled and consumes less energy. The precursors were strategically reacted for different reaction time durations to obtain the optimum molecular weight. All different CPs were well characterized using 1H NMR, gel permeation chromatography (GPC), UV-vis, photoluminescence (PL), electron spin resonance (ESR), and Raman spectroscopy, whereas the film morphology was extensively studied via atomic force microscopy (AFM) and grazing incidence X-ray diffraction (GIXRD) techniques. The effect of molecular weight on a conventional BHJ solar cell with PC71BM acceptor was investigated to derive systematic structure-property relationships. The CP obtained after 35 min of reaction time and integrated into BHJ devices under ambient conditions provided the best performance with a power conversion efficiency (PCE) of 8.09%, which was quite similar to the results of CPs synthesized via a thermal route. An enhanced PCE of 8.47% was obtained for the optimized polymer (35 min microwave reaction product) when device fabrication was carried out inside a glovebox. The organic thin-film transistor (OTFT) device with the microwave-synthesized CP displayed better hole mobility (0.137 cm2 V-1 s-1) as compared to that with the thermally synthesized CP. This study also proved that the device stability and reproducibility of the microwave-synthesized CP were much better and more consistent than those of the thermally developed CP.
Collapse
Affiliation(s)
- Rabindranath Garai
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Mohammad Adil Afroz
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Ritesh Kant Gupta
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Anwesha Choudhury
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
210
|
Gao H, Connors DM, Goroff NS. Synthesis of Phenanthro[9,10-c]thiophenes by 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-Promoted Cyclo-Oxidation. Chempluschem 2020; 84:630-633. [PMID: 31944022 DOI: 10.1002/cplu.201900099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Indexed: 11/11/2022]
Abstract
A new method to prepare phenanthro[9,10-c]thiophenes has been developed. In the presence of triflic acid, 3,4-diaryl thiophenes undergo 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-promoted cyclo-oxidation. NMR and computational studies indicate that protonation of the thiophene plays a key role in this reaction. The reaction can be used to prepare phenanthro[9,10-c]thiophene, as well as derivatives with alkyl, bromo, and methoxy substituents. However, the yields and selectivity of the reaction depend on both the nature and location of the substituents. Bis(3-methoxyphenyl)thiophene reacts under these conditions to give the desired product in 57 % yield, while bis(4-methoxyphenyl)thiophene gives no product. Bis(3-bromophenyl)thiophene did not react, but cyclo-oxidation of bis(4-bromophenyl)thiophene provides the desired product in 34 % yield.
Collapse
Affiliation(s)
- Han Gao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - David M Connors
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.,Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Nancy S Goroff
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
211
|
Sun J, Liu Z, Yan C, Sun X, Xie Z, Zhang G, Shao X, Zhang D, Zhou S. Efficient Construction of Near-Infrared Absorption Donor-Acceptor Copolymers with and without Pt(II)-Incorporation toward Broadband Nonlinear Optical Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2944-2951. [PMID: 31842544 DOI: 10.1021/acsami.9b17784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic nonlinear optical (NLO) materials have attracted immense scientific interest in various fields. Broadband NLO response extending to near-infrared (NIR) region is extremely important and remains challenging. Herein, two diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A)-type π-conjugated copolymers with and without Pt(II) incorporation are rationally designed and synthesized toward broadband NLO response materials. The broad intramolecular charge transfer (ICT) absorption reaching 1000 nm due to the strong D-A interaction is well demonstrated by photophysical characterizations. The NLO properties of copolymers are studied using Z-scan technology. Owing to their extended π-conjugated D-A systems and near-infrared ICT absorption properties, both copolymers exhibit laser-induced NLO response to nanosecond as well as picosecond laser pulses upon the wavelengths of 532 and 1064 nm. Interestingly, introducing Pt(II) into the copolymer backbone can evidently improve the NLO property or unexpectedly switch the NLO response from saturable absorption to reverse saturable absorption. Meanwhile, both copolymers are successfully employed as optical limiting materials and exhibit broadband optical limiting abilities. Therefore, we present an efficient strategy toward broadband NLO materials, which may significantly facilitate the understanding of organic molecular structure-property relationship and promote their practical application.
Collapse
Affiliation(s)
- Jibin Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zitong Liu
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Xingming Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Guanxin Zhang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Deqing Zhang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
212
|
Zhang L, Deng W, Wu B, Ye L, Sun X, Wang Z, Gao K, Wu H, Duan C, Huang F, Cao Y. Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole π-Spacers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:753-762. [PMID: 31808333 DOI: 10.1021/acsami.9b18048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Large energy loss is one of the key factors that limit the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we report reduced energy losses of OSCs via introducing thiazole π-spacers with different orientations to replace the thiophene π-spacers of the prototype polymer PBDB-T. The newly formed thiazole-containing isomeric polymers, PBDBTz-2 and PBDBTz-5, exhibited blue-shifted absorption and deeper lying energy levels compared to PBDB-T. When blended with IT-4F, the two polymers realized PCEs of 10.4% for PBDBTz-2 and 9.6% for PBDBTz-5, respectively, which were higher than that of PBDB-T (PCE = 9.3%). More critically, considerable open-circuit voltage (Voc) enhancements were achieved by PBDBTz-2 and PBDBTz-5, which were 0.14 and 0.21 V higher than that of PBDB-T. A detailed analysis showed that the reduced energy loss resulted from the lower radiative recombination below the band gap and nonradiative recombination loss. This study demonstrated that the introduction of thiazole π-spacers with different orientations is effective to reduce the energy losses of OSCs, which provided valuable inspirations for the development of new conjugated polymers to the efficiency breakthrough of OSCs in future.
Collapse
Affiliation(s)
- Long Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Baoqi Wu
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Long Ye
- School of Materials Science and Engineering , Tianjin University , Tianjin 300350 , P. R. China
- Department of Physics, Organic and Carbon Electronics Lab (ORaCEL) , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Xiaofei Sun
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Zhenfeng Wang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Ke Gao
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
213
|
Mishra R, S S, V.S A, Kaushik A, Gupta G, Singhal R, Sharma GD, Sankar J. Accepting to Donate: NDI-Based Small Molecule as a Donor for Bulk Heterojunction Binary Solar Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruchika Mishra
- IISER Bhopal, Bhauri, Bhopal, M.P.; Centre for Research on Environment and Sustainable Technologies; 462066 Bhopal India
| | - Sujesh S
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; 462066 Bhopal India
| | - Archana V.S
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; 462066 Bhopal India
| | - Ayushi Kaushik
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; 462066 Bhopal India
| | - Gaurav Gupta
- Department of Physics; The LNMIIT (Deemed University); 302031 Jaipur India
| | - Rahul Singhal
- Department of Physics; MNIT Jaipur; 302017 Jaipur India
| | - Ganesh D. Sharma
- Department of Physics; The LNMIIT (Deemed University); 302031 Jaipur India
| | - Jeyaraman Sankar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; 462066 Bhopal India
| |
Collapse
|
214
|
Sabury S, Adams TJ, Kocherga M, Kilbey SM, Walter MG. Synthesis and optoelectronic properties of benzodithiophene-based conjugated polymers with hydrogen bonding nucleobase side chain functionality. Polym Chem 2020. [DOI: 10.1039/d0py00972e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase functionalities in conjugated, alternating copolymers participate in interbase hydrogen bonding, which promotes molecular assembly and organization in thin films and enhances optical and electronic properties.
Collapse
Affiliation(s)
- Sina Sabury
- Department of Chemistry
- University of Tennessee – Knoxville
- Knoxville
- USA
| | - Tyler J. Adams
- Department of Chemistry
- University of North Carolina – Charlotte
- Charlotte
- USA
| | - Margaret Kocherga
- Department of Chemistry
- University of North Carolina – Charlotte
- Charlotte
- USA
| | - S. Michael Kilbey
- Department of Chemistry
- University of Tennessee – Knoxville
- Knoxville
- USA
- Department of Chemical & Biomolecular Engineering
| | - Michael G. Walter
- Department of Chemistry
- University of North Carolina – Charlotte
- Charlotte
- USA
| |
Collapse
|
215
|
Adhikari S, Ren YX, Stefan MC, Nelson TL. Facile C–H iodination of electron deficient benzodithiophene- S, S-tetraoxide for the development of n-type polymers. Polym Chem 2020. [DOI: 10.1039/d0py01292k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C–H iodination reaction of the electron-poor building block, benzo[1,2-b:4,5-b0]-dithiophene-1,1,5,5-tetraoxide has been reported. This facile functionalization has led to the development of two novel n-type donor–acceptor conjugated polymers.
Collapse
Affiliation(s)
| | - Yi Xin Ren
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Toby L. Nelson
- Department of Chemistry
- Oklahoma State University
- Stillwater
- USA
| |
Collapse
|
216
|
Liu Q, Bottle SE, Sonar P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903882. [PMID: 31797456 DOI: 10.1002/adma.201903882] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven E Bottle
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
217
|
Yang MC, Su MD. A mechanistic study of the activation of small molecules (H 2 and C 2H 2) by group 14 analogues of selenophene. NEW J CHEM 2020. [DOI: 10.1039/d0nj01077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the reactivity influenced by group 14 elements (E = C, Si, Ge, Sn, and Pb), which are used as substituents in heterocyclic five-membered rings, was theoretically examined by using density functional theory (B3PW91/def2-SVP).
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry
- National Chiayi University
- Chiayi 60004
- Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry
- National Chiayi University
- Chiayi 60004
- Taiwan
- Department of Medicinal and Applied Chemistry
| |
Collapse
|
218
|
Shi S, Liao Q, Wang H, Xiao G. Narrow bandgap difluorobenzochalcogenadiazole-based polymers for high-performance organic thin-film transistors and polymer solar cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj01006e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of difluorobenzochalcogenadiazole-bithiophene copolymers are developed for high-performance organic semiconductors.
Collapse
Affiliation(s)
- Shengbin Shi
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics
| | - Qiaogan Liao
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Hang Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
219
|
Chen D, Zhu D, Lin G, Du M, Shi D, Peng Q, Jiang L, Liu Z, Zhang G, Zhang D. New fused conjugated molecules with fused thiophene and pyran units for organic electronic materials. RSC Adv 2020; 10:12378-12383. [PMID: 35497610 PMCID: PMC9050829 DOI: 10.1039/d0ra01984d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Rigid and planar conjugated molecules have substantial significance due to their potential applications in organic electronics. Herein we report two highly fused ladder type conjugated molecules, TTCTTC and TTTCTTTC, with up to 10 fused rings in which the fused-thiophene rings are fused to the chromeno[6,5,4-def]chromene unit. Both molecules show high HOMO levels and accordingly they can be oxidized into their radical cations with absorptions extending to 1300 nm in the presence of trifluoroacetic acid. Thin films of TTCTTC and TTTCTTTC exhibit p-type semiconductor properties with hole mobilities up to 0.39 cm2 V−1 s−1. Moreover, TTCTTC shows a high fluorescence quantum yield of up to 16.5% in the solid state. Fused conjugated molecules TTCTTC and TTTCTTTC with up to ten heterocycles were constructed by fusing fused-thiophene to the chromeno[6,5,4-def]chromene unit.![]()
Collapse
|
220
|
Wang K, Li Y, Li Y. Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromol Rapid Commun 2020; 41:e1900437. [DOI: 10.1002/marc.201900437] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 451191 China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
221
|
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N, You S, Li W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb) 2020; 56:10394-10408. [DOI: 10.1039/d0cc04150e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thieno[3,4-c]pyrrole-4,6-dione (TPD) based conjugated polymers as an electron donor, acceptor and single-component for application in organic solar cells in the past ten years have been intensively reviewed in this Feature Article.
Collapse
Affiliation(s)
- Chaowei Zhao
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Fan Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhou Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- College of Chemistry and Environmental Science
| | - Yuefeng Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Nanfu Yan
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Shengyong You
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Weiwei Li
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites
| |
Collapse
|
222
|
Baig N, Shetty S, Fall S, Al-Mousawi S, Heiser T, Alameddine B. Conjugated copolymers bearing 2,7-dithienylphenanthrene-9,10-dialkoxy units: highly soluble and stable deep-blue emissive materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj01712d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excellent yields, high stability and solubility. Mw = 36.5–152.0 kDa and Đ = 2.5–3.0. Deep-blue emission with quantum yields up to 17%.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| | - Sadiara Fall
- Laboratoire ICube
- Université de Strasbourg
- CNRS
- UMR 7357
- Strasbourg
| | | | - Thomas Heiser
- Laboratoire ICube
- Université de Strasbourg
- CNRS
- UMR 7357
- Strasbourg
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| |
Collapse
|
223
|
|
224
|
Chao P, Chen H, Zhu Y, Zheng N, Meng H, He F. Chlorination of Conjugated Side Chains To Enhance Intermolecular Interactions for Elevated Solar Conversion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pengjie Chao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | | | | | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | | |
Collapse
|
225
|
Li F, Tang A, Zhang B, Zhou E. Indacenodithieno[3,2- b]thiophene-Based Wide Bandgap D-π-A Copolymer for Nonfullerene Organic Solar Cells. ACS Macro Lett 2019; 8:1599-1604. [PMID: 35619396 DOI: 10.1021/acsmacrolett.9b00704] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, a wide-bandgap (2.02 eV) donor-π-acceptor (D-π-A) polymer PIDTT-DTffBTA, composed of a rigid indacenodithieno[3,2-b]thiophene (IDTT) and fluorinated benzo[d][1,2,3]triazole (ffBTA) units as D and A units, respectively, is synthesized. In comparison with its analogue benzodithiophene-alt-benzotriazole copolymer J52 with classic benzodithiophene (BDT) as the D unit, PIDTT-DTffBTA demonstrates a lower-lying HOMO energy level and higher carrier mobilities when paired with a nonfullerene acceptor (NFA) Y6 based on a ladder-type dithienothiophen[3.2-b]-pyrrolobenzothiadiazole central unit. Thus, PIDTT-DTffBTA:Y6 based organic solar cells (OSCs) exhibit an improved power conversion efficiency (PCE) of 11.05% than that of J52:Y6 (7.15%), which is also the highest value for IDTT-based photovoltaic polymers. This result proves that the IDTT unit is also a promising building block to construct not only NFAs but also p-type photovoltaic polymers.
Collapse
Affiliation(s)
- Feng Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao Zhang
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
226
|
Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101175] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
227
|
Xiao Q, Li Y, Han M, Wu F, Leng X, Zhang D, Zhang X, Yang S, Zhang Y, Li Z, Zhou H, Li Z. Rational Design of 2D p–π Conjugated Polysquaraines for Both Fullerene and Nonfullerene Polymer Solar Cells. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qi Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yanxun Li
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Mengmeng Han
- Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Fei Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean EnergyFaculty of Materials and EnergySouthwest University Chongqing 400715 P. R. China
| | - Xuanye Leng
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Dongyang Zhang
- School of ChemistryBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Xuning Zhang
- School of ChemistryBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Shuo Yang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yuan Zhang
- School of ChemistryBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
- Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
228
|
Baldoli C, Cauteruccio S, Licandro E. Synthesis of Benzo[1,2‐
b
:4,5‐
b’
]dithiophene and Benzocondensed Thiaheterocycles. ChemistrySelect 2019. [DOI: 10.1002/slct.201903811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Clara Baldoli
- Institute of Molecular Science and Technology (ISTM)National Research Council (CNR) Via C. Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19. 20133. Milano Italy
| | - Emanuela Licandro
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19. 20133. Milano Italy
| |
Collapse
|
229
|
The effect of alkyl chain branching positions on the electron mobility and photovoltaic performance of naphthodithiophene diimide (NDTI)-based polymers. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9645-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
230
|
Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, Liao Q, Tu B, Luo J, Su M, Guo H, Kim MG, Facchetti A, Guo X. A Narrow-Bandgap n-Type Polymer Semiconductor Enabling Efficient All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905161. [PMID: 31566274 DOI: 10.1002/adma.201905161] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Currently, n-type acceptors in high-performance all-polymer solar cells (all-PSCs) are dominated by imide-functionalized polymers, which typically show medium bandgap. Herein, a novel narrow-bandgap polymer, poly(5,6-dicyano-2,1,3-benzothiadiazole-alt-indacenodithiophene) (DCNBT-IDT), based on dicyanobenzothiadiazole without an imide group is reported. The strong electron-withdrawing cyano functionality enables DCNBT-IDT with n-type character and, more importantly, alleviates the steric hindrance associated with typical imide groups. Compared to the benchmark poly(naphthalene diimide-alt-bithiophene) (N2200), DCNBT-IDT shows a narrower bandgap (1.43 eV) with a much higher absorption coefficient (6.15 × 104 cm-1 ). Such properties are elusive for polymer acceptors to date, eradicating the drawbacks inherited in N2200 and other high-performance polymer acceptors. When blended with a wide-bandgap polymer donor, the DCNBT-IDT-based all-PSCs achieve a remarkable power conversion efficiency of 8.32% with a small energy loss of 0.53 eV and a photoresponse of up to 870 nm. Such efficiency greatly outperforms those of N2200 (6.13%) and the naphthalene diimide (NDI)-based analog NDI-IDT (2.19%). This work breaks the long-standing bottlenecks limiting materials innovation of n-type polymers, which paves a new avenue for developing polymer acceptors with improved optoelectronic properties and heralds a brighter future of all-PSCs.
Collapse
Affiliation(s)
- Shengbin Shi
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Peng Chen
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yao Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kui Feng
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jianhua Chen
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Qiaogan Liao
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bao Tu
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jiasi Luo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Mengyao Su
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Han Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Myung-Gil Kim
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
231
|
Khaikate O, Inthalaeng N, Meesin J, Kantarod K, Pohmakotr M, Reutrakul V, Soorukram D, Leowanawat P, Kuhakarn C. Synthesis of Indolo- and Benzothieno[2,3-b]quinolines by a Cascade Cyclization of o-Alkynylisocyanobenzene Derivatives. J Org Chem 2019; 84:15131-15144. [DOI: 10.1021/acs.joc.9b02081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Onnicha Khaikate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Natthamon Inthalaeng
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Jatuporn Meesin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Kritchasorn Kantarod
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manat Pohmakotr
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
232
|
Yang H, Wu Y, Dong Y, Cui C, Li Y. Random Polymer Donor for High-Performance Polymer Solar Cells with Efficiency over 14. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40339-40346. [PMID: 31603307 DOI: 10.1021/acsami.9b14133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Constructing random copolymers has been regarded as an easy and effective approach to design polymer donors for state-of-the-art polymer solar cells (PSCs). In this work, we develop a naphtho[2,3-c]thiophene-4,9-dione-based copolymer PBN-Cl as a donor material for PSCs, and a moderate power conversion efficiency (PCE) of 11.21% is achieved with a relatively low fill factor (FF) of 0.615. We then incorporate a similar acceptor unit benzo[1,2-c:4,5-c']dithiophene-4,8-dione (BDD) into the polymeric backbone of PBN-Cl to tune its photovoltaic performance, and a significantly higher PCE of 14.05% is achieved from the random polymer PBN-Cl-B80 containing 80% BDD unit. The enhanced PCE of the PBN-Cl-B80-based device mainly relies on the higher FF value, resulting from the improved charge mobility properties, reduced bimolecular and trap-assisted recombination, and more appropriate phase separation. The results demonstrate a feasible strategy to tune the photovoltaic performance of polymer donors by constructing a random polymer with a compatible component.
Collapse
Affiliation(s)
- Hang Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yue Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yingying Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Chaohua Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yongfang Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
233
|
Ans M, Iqbal J, Bhatti IA, Ayub K. Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 2019; 9:34496-34505. [PMID: 35529957 PMCID: PMC9073892 DOI: 10.1039/c9ra06345e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Scientists are focusing on non-fullerene based acceptors due to their efficient photovoltaic properties. Here, we have designed four novel dithienonaphthalene based acceptors with better photovoltaic properties through structural modification of a well-known experimentally synthesized reference compound R. The newly designed molecules have a dithienonaphthalene core attached with different acceptors (end-capped). The acceptor moieties are 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (H1), 2-(5,6-dicyano-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)-malononitrile (H2), 2-(5-methylene-6-oxo-5,6-dihydrocylopenta[c]thiophe-4-ylidene)-malononitrile (H3) and 2-(3-(dicyanomethylene)-2,3-dihydroinden-1-yliden)malononitrile (H4). The photovoltaic parameters of the designed molecules are discussed in comparison with those of the reference R. All newly designed molecules show a reduced HOMO-LUMO energy gap (2.17 eV to 2.28 eV), compared to the reference R (2.31 eV). Charger transfer from donor to acceptor is confirmed by a frontier molecular orbital (FMO) diagram. All studied molecules show extensive absorption in the visible region and absorption maxima are red-shifted compared to R. All investigated molecules have lower excitation energies which reveal high charge transfer rates, as compared to R. To evaluate the open circuit voltage, the designed acceptor molecules are blended with a well-known donor PBDB-T. The molecule H3 has the highest V oc value (1.88 V). TDM has been performed to show the behaviour of electronic excitation processes and electron hole location between the donor and acceptor unit. The binding energies of all molecules are lower than that of R. The lowest is calculated for H3 (0.24 eV) which reflects the highest charge transfer. The reorganization energy value for both the electrons and holes of H2 is lower than R which is indicative of the highest charge transfer rate.
Collapse
Affiliation(s)
- Muhammad Ans
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
- Punjab Bio-energy Institute, University of Agriculture Faisalabad 38040 Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSAT University Abbottabad Campus Abbottabad KPK 22060 Pakistan
| |
Collapse
|
234
|
Kim J, Kim YR, Kim M, Jin JS, Sung JY, Back H, Kim H, Lee K, Suh H. Synthesis and application of amine-containing conjugated small molecules for the automatic formation of an electron transporting layer via spontaneous phase separation from the bulk-heterojunction layer. RSC Adv 2019; 9:31867-31876. [PMID: 35530776 PMCID: PMC9072745 DOI: 10.1039/c9ra06293a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Carbazole-based conjugated small molecule electrolytes (CSEs) containing different numbers of amine groups were synthesized and applied to bulk-heterojunction (BHJ) organic solar cells for the formation of a spontaneous self-assembled electron transporting layer (ETL). The active layer was spin-coated with a mixture solution containing the BHJ materials and a small amount of CSE, and a thin layer of CSE was formed underneath the active layer (CSE/BHJ bi-layer) via spontaneous phase separation, which is confirmed by the depth profile of the time of flight secondary ion mass spectroscopy (ToF-SIMS) spectrum. The amino groups in the CSEs form hydrogen-bonds with the surface of indium tin oxide (ITO), which acts as an ETL in BHJ solar cells. Moreover, the formed CSE layer is capable of changing the effective work function (WF) of ITO. An increasing number of amino groups in the CSEs (from Cz1N to Cz3N) provides more reduction of the effective WF of ITO, which results in a lower internal resistance and a higher power conversion efficiency (PCE). Furthermore, the enhanced hydrogen bonding between the amines and ITO with an increased number of amine groups has been studied by XPS. This result suggests that one-step processing provides a reduction of the manufacturing cost, which can provide an attractive design concept for ETL fabrication.
Collapse
Affiliation(s)
- Juae Kim
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University Busan 609-735 Republic of Korea
| | - Yong Ryun Kim
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Minji Kim
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University Busan 609-735 Republic of Korea
| | - Jong Sung Jin
- Busan Center, Korea Basic Science Institute (KBSI) Busan 46742 Republic of Korea
| | - Ji Yeong Sung
- Busan Center, Korea Basic Science Institute (KBSI) Busan 46742 Republic of Korea
| | - Hyungcheol Back
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Heejoo Kim
- Institute of Integrated Technology, Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Kwanghee Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Hongsuk Suh
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University Busan 609-735 Republic of Korea
| |
Collapse
|
235
|
Shavez M, Goswami J, Panda AN. Effect of fluorination of the donor unit on the properties of benzodithiophene-triazole based donor-acceptor systems for polymer solar cells: A computational investigation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
236
|
Belyaev A, Cheng Y, Liu Z, Karttunen AJ, Chou P, Koshevoy IO. A Facile Molecular Machine: Optically Triggered Counterion Migration by Charge Transfer of Linear Donor‐π‐Acceptor Phosphonium Fluorophores. Angew Chem Int Ed Engl 2019; 58:13456-13465. [DOI: 10.1002/anie.201906929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| | - Yu‐Hsuan Cheng
- Department of ChemistryNational (Taiwan) University Taipei 106 Taiwan
| | - Zong‐Ying Liu
- Department of ChemistryNational (Taiwan) University Taipei 106 Taiwan
| | - Antti J. Karttunen
- Department of Chemistry and Materials ScienceAalto-University 00076 Aalto Finland
| | - Pi‐Tai Chou
- Department of ChemistryNational (Taiwan) University Taipei 106 Taiwan
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| |
Collapse
|
237
|
Chen W, Huang G, Li X, Li Y, Wang H, Jiang H, Zhao Z, Yu D, Wang E, Yang R. Revealing the Position Effect of an Alkylthio Side Chain in Phenyl-Substituted Benzodithiophene-Based Donor Polymers on the Photovoltaic Performance of Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33173-33178. [PMID: 31405281 DOI: 10.1021/acsami.9b07112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, position effects of an alkylthio side chain were investigated by designing and synthesizing two copolymers based on a phenyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDTP) and difluorobenzotriazole (FTAZ). The polymer based on the meta-position-alkylthiolated BDTP, named m-PBDTPS-FTAZ, showed a relatively broader bandgap (2.00 vs 1.96 eV) and lower highest occupied molecular orbital (HOMO) energy level (-5.40 vs -5.32 eV) than its para-positioned structural isomeric analogue polymer (named p-PBDTPS-FTAZ), that is, m- and p-PBDTPS-FTAZ with the side chain structured as ethylhexyl- in the phenyl unit and hexyldecyl- in the FTAZ moiety. When blended with ITIC, m-PBDTPS-FTAZ showed a comparable crystallinity but more uniform morphology compared to that of p-PBDTPS-FTAZ. A high power conversion efficiency of 13.16% was achieved for m-PBDTPS-FTAZ:ITIC devices with a high open circuit voltage (VOC) of 0.95 V, which is higher than that of p-PBDTPS-FTAZ:ITIC devices (10.86%) with a VOC of 0.89 V. Therefore, m-BDTPS could be an effective donor unit to construct high-efficiency polymers due to its effectively decreased HOMO energy level of polymers while still maintaining good molecular stacking.
Collapse
Affiliation(s)
- Weichao Chen
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province , Qingdao University , Qingdao 266071 , China
| | - Gongyue Huang
- CAS Key Laboratory of Bio-Based Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Xiaoming Li
- CAS Key Laboratory of Bio-Based Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Yonghai Li
- CAS Key Laboratory of Bio-Based Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Huan Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province , Qingdao University , Qingdao 266071 , China
| | - Huanxiang Jiang
- CAS Key Laboratory of Bio-Based Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province , Qingdao University , Qingdao 266071 , China
| | - Donghong Yu
- Department of Chemistry and Bioscience , Aalborg University , Aalborg DK-9220 , Denmark
- Sino-Danish Centre for Education and Research , Aarhus DK-8000 , Denmark
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Göteborg SE-412 96 , Sweden
| | - Renqiang Yang
- CAS Key Laboratory of Bio-Based Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China
| |
Collapse
|
238
|
|
239
|
Santi S, Rossi S. Molecular design of star-shaped benzotrithiophene materials for organic electronics. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
240
|
Sung MJ, Hong J, Cha H, Jiang Y, Park CE, Durrant JR, An TK, Kwon S, Kim Y. Acene‐Modified Small‐Molecule Donors for Organic Photovoltaics. Chemistry 2019; 25:12316-12324. [DOI: 10.1002/chem.201902177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/07/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Min Jae Sung
- Department of Materials Engineering and Convergence Technology and ERIGyeongsang National University Jinju 660-701 Republic of Korea
| | - Jisu Hong
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 790-784 Republic of Korea
| | - Hyojung Cha
- Centre for Plastic ElectronicsDepartment of ChemistryImperial College London London SW7 2AZ UK
| | - Yifei Jiang
- Department of Materials Engineering and Convergence Technology and ERIGyeongsang National University Jinju 660-701 Republic of Korea
| | - Chan Eon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 790-784 Republic of Korea
| | - James R. Durrant
- Centre for Plastic ElectronicsDepartment of ChemistryImperial College London London SW7 2AZ UK
| | - Tae Kyu An
- Department of Polymer Science & Engineering and Department of IT ConvergenceKorea National University of Transportation Chungju 380-702 Republic of Korea
| | - Soon‐Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERIGyeongsang National University Jinju 660-701 Republic of Korea
| | - Yun‐Hi Kim
- Department of Chemistry and RINSGyeongsang National University Jinju 660-701 Republic of Korea
| |
Collapse
|
241
|
Tang A, Zhang Q, Du M, Li G, Geng Y, Zhang J, Wei Z, Sun X, Zhou E. Molecular Engineering of D−π–A Copolymers Based on 4,8-Bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene (BDT-T-Cl) for High-Performance Fullerene-Free Organic Solar Cells. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01233] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qianqian Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Mengzhen Du
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanfang Geng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
242
|
Belyaev A, Cheng Y, Liu Z, Karttunen AJ, Chou P, Koshevoy IO. A Facile Molecular Machine: Optically Triggered Counterion Migration by Charge Transfer of Linear Donor‐π‐Acceptor Phosphonium Fluorophores. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| | - Yu‐Hsuan Cheng
- Department of ChemistryNational (Taiwan) University Taipei 106 Taiwan
| | - Zong‐Ying Liu
- Department of ChemistryNational (Taiwan) University Taipei 106 Taiwan
| | - Antti J. Karttunen
- Department of Chemistry and Materials ScienceAalto-University 00076 Aalto Finland
| | - Pi‐Tai Chou
- Department of ChemistryNational (Taiwan) University Taipei 106 Taiwan
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| |
Collapse
|
243
|
Hu P, He X, Ng M, Ye J, Zhao C, Wang S, Tan K, Chaturvedi A, Jiang H, Kloc C, Hu W, Long Y. Trisulfide‐Bond Acenes for Organic Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peng Hu
- School of PhysicsNorthwest University Xi'an 710069 China
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Xuexia He
- School of Materials Science and EngineeringShaanxi Normal University Xi'an 710119 China
| | - Man‐Fai Ng
- Institute of High Performance ComputingAgency for Science, Technology and Research 138632 Singapore Singapore
| | - Jun Ye
- Institute of High Performance ComputingAgency for Science, Technology and Research 138632 Singapore Singapore
| | - Chenyang Zhao
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Shancheng Wang
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Kejie Tan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Apoorva Chaturvedi
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Hui Jiang
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Christian Kloc
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 China
| | - Yi Long
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)Nanomaterials for Energy and Energy-Water Nexus (NEW)Campus for Research Excellence and Technological Enterprise (CREATE) 138602 Singapore Singapore
| |
Collapse
|
244
|
Hu P, He X, Ng MF, Ye J, Zhao C, Wang S, Tan K, Chaturvedi A, Jiang H, Kloc C, Hu W, Long Y. Trisulfide-Bond Acenes for Organic Batteries. Angew Chem Int Ed Engl 2019; 58:13513-13521. [PMID: 31317598 DOI: 10.1002/anie.201906301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
The molecular design of organic battery electrodes is a big challenge. Here, we synthesize two metal-free organosulfur acenes and shed insight into battery properties using first-principles calculations. A new zone-melting chemical-vapor-transport (ZM-CVT) apparatus was fabricated to provide a simple, solvent-free, and continuous synthetic protocol, and produce single crystals of tetrathiotetracene (TTT) and hexathiapentacene (HTP) at a large scale. Single crystals of HTP showed better Li-ion battery performance and higher cycling stability than those of TTT. A two-step, three-electron lithiation mechanism instead of the commonly depicted two-electron mechanism is proposed for the HTP Li-ion battery. The superior performance of HTP is linked to unique trisulfide bonding scenarios, which are also responsible for the formation of empty channels along the stacking direction. In-depth theoretical analysis suggests that organosulfur acenes are potential prototypes for organic battery materials with tunable properties, and that the tuning of sulfur bonds is critical in designing these new materials.
Collapse
Affiliation(s)
- Peng Hu
- School of Physics, Northwest University, Xi'an, 710069, China.,School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Xuexia He
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Man-Fai Ng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore, Singapore
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore, Singapore
| | - Chenyang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Shancheng Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Kejie Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Apoorva Chaturvedi
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Hui Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Christian Kloc
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.,Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| |
Collapse
|
245
|
Raheem AA, Thangasamy P, Sathish M, Praveen C. Supercritical water assisted preparation of recyclable gold nanoparticles and their catalytic utility in cross-coupling reactions under sustainable conditions. NANOSCALE ADVANCES 2019; 1:3177-3191. [PMID: 36133589 PMCID: PMC9418514 DOI: 10.1039/c9na00240e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 06/16/2023]
Abstract
Preparation of gold nanoparticles (AuNPs) in environmentally friendly water without using any reducing agents under supercritical conditions is demonstrated. PXRD, XPS, FE-SEM and HR-TEM analysis confirmed the formation of phase-pure and crystalline AuNPs of the size of ∼10-30 nm. The catalytic potential of AuNPs was manifested through a generalized green procedure that could accommodate both Sonogashira as well as Suzuki coupling under aqueous conditions at low catalytic loading (0.1 mol%). The AuNP catalyst was found to be recuperated after the reaction and reused for up to six catalytic cycles with no leaching out of gold species as confirmed through ICP-OES analysis. With no confinement of AuNP catalysis to cross-coupling reaction, synthetic extension to one-flask preparation of π-conjugated semiconductors (4 examples) and their optoelectronic properties were also investigated. Other significant features of the present work include short reaction time, site-selectivity, wide substrate scope, high conversion, good chemical yields and applicability in gram-scale synthesis. Overall, the results of this paper signify an operationally sustainable supercritical fluid processing method for the synthesis of AuNPs and their catalytic application towards cross-coupling reactions in green media.
Collapse
Affiliation(s)
- Abbasriyaludeen Abdul Raheem
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Pitchai Thangasamy
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Marappan Sathish
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Chandrasekar Praveen
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| |
Collapse
|
246
|
Zhan H, Liu Q, So SK, Wong WY. Synthesis, characterization and photovoltaic properties of platinum-containing poly(aryleneethynylene) polymers with electron-deficient diketopyrrolopyrrole unit. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
247
|
Jin R, Li K, Han X. Improving optoelectronic and charge transport properties of D-π-D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cell applications. RSC Adv 2019; 9:22597-22603. [PMID: 35519482 PMCID: PMC9067137 DOI: 10.1039/c9ra04304g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
A series of novel diketopyrrolopyrrole-pyrene-based molecules were designed for small molecule based organic solar cell (SMOSC) applications. Their electronic and charge transfer properties were investigated by applying the PBE0/6-31G(d,p) method. The absorption spectra were simulated using the TD-PBE0/6-31G(d,p) method. The results showed that the frontier molecular orbital (FMO) energy levels, reorganization energy, the energetic driving force, and absorption spectra can be tuned by the introduction of different aromatic heterocyclic groups to the side of diketopyrrolopyrrole fragments' backbones. Additionally, the designed molecules possess suitable FMOs to match those of typical acceptors PC61BM and PC71BM. Meanwhile, the designed molecules can act as good ambipolar charge transport materials in SMOSC applications. Meanwhile, the electron and hole reorganization energies of the designed molecules are smaller than those of the typical electron and hole transport materials, respectively. Moreover, the differences between electron and hole reorganization energies do not exceed 0.046 eV. Our results suggest that the designed molecules can act as promising candidates for donor and ambipolar charge transport materials in SMOSC applications.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China .,Inner Mongolia Key Laboratory of Photoelectric Functional Materials Chifeng 024000 China
| | - Kexin Li
- College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China
| | - Xueli Han
- College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China
| |
Collapse
|
248
|
A new building block with intramolecular D-A character for conjugated polymers: ladder structure based on B←N unit. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9518-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
249
|
Zhu R, Wang Z, Gao Y, Zheng Z, Guo F, Gao S, Lu K, Zhao L, Zhang Y. Chain Engineering of Benzodifuran‐Based Wide‐Bandgap Polymers for Efficient Non‐Fullerene Polymer Solar Cells. Macromol Rapid Commun 2019; 40:e1900227. [DOI: 10.1002/marc.201900227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Ruoxi Zhu
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Zhen Wang
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Yueyue Gao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Zhi Zheng
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Fengyun Guo
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Shiyong Gao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Kun Lu
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Liancheng Zhao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Yong Zhang
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
- School of Materials Science and EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
250
|
Wang K, Guo X, Ye C, Wang Y, Meng Y, Li X, Zhang M. A New Small-Molecule Donor Containing Non-Fused Ring π-Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content. Chemphyschem 2019; 20:2674-2682. [PMID: 31257670 DOI: 10.1002/cphc.201900368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/23/2019] [Indexed: 01/09/2023]
Abstract
To achieve high open-circuit voltage (Voc ) and low acceptor content, the molecular design of a small-molecule donor with low energy loss (Eloss ) is very important for solution-processable organic solar cells (OSCs). Herein, we designed and synthesized a new coplanar A-D-A structured organic small-molecule semiconductor with non-fused ring structure π-bridge, namely B2TPR, and applied it as donor material in OSCs. Owing to the strong electron-withdrawing effect of the end group and the coplanar π-bridge, B2TPR exhibits a low-lying highest occupied molecular orbital and strong crystallinity. Furthermore, benefiting from the coplanar molecular skeleton, the high hole mobility, balanced charge transport and reduced recombination were achieved, leading to a high fill factor (FF). The OSCs based on B2TPR : PC71 BM blend film (w/w=1 : 0.35) demonstrates a moderate power conversion efficiency (PCE) of 7.10 % with a remarkable Voc of 0.98 V and FF of 64 %, corresponding to a low fullerene content of 25.9 % and a low Eloss of 0.70 eV. These results demonstrate the great potential of small-molecule with structure of B2TPR for future low-cost organic photovoltaic applications.
Collapse
Affiliation(s)
- Kun Wang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,School of of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chennan Ye
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yulong Wang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuan Meng
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaojie Li
- School of of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|