201
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires‐Up Wet Colloids. Angew Chem Int Ed Engl 2022; 61:e202203568. [DOI: 10.1002/anie.202203568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Pengcheng Lei
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yan Hao
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
202
|
Komsthöft T, Bovone G, Bernhard S, Tibbitt MW. Polymer functionalization of inorganic nanoparticles for biomedical applications. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
203
|
Song B, Chung I, Kim J, Yun M, Yun Y. Promoting effects of residual poly(vinyl alcohol) capping agent on the activity and chemoselectivity of Pt/Al2O3 for catalytic hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
204
|
Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
205
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
206
|
Mourdikoudis S, Menelaou M, Fiuza-Maneiro N, Zheng G, Wei S, Pérez-Juste J, Polavarapu L, Sofer Z. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. NANOSCALE HORIZONS 2022; 7:941-1015. [PMID: 35770698 DOI: 10.1039/d2nh00111j] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of colloidal chemical approaches has been developed in the last few decades for the controlled synthesis of nanostructured materials in either water or organic solvents. Besides the precursors, the solvents, reducing agents, and the choice of surfactants are crucial for tuning the composition, morphology and other properties of the resulting nanoparticles. The ligands employed include thiols, amines, carboxylic acids, phosphines and phosphine oxides. Generally, adding a single ligand to the reaction mixture is not always adequate to yield the desired features. In this review, we discuss in detail the role of the oleic acid/oleylamine ligand pair in the chemical synthesis of nanoparticles. The combined use of these ligands belonging to two different categories of molecules aims to control the size and shape of nanoparticles and prevent their aggregation, not only during their synthesis but also after their dispersion in a carrier solvent. We show how the different binding strengths of these two molecules and their distinct binding modes on specific facets affect the reaction kinetics toward the production of nanostructures with tailored characteristics. Additional functions, such as the reducing function, are also noted, especially for oleylamine. Sometimes, the carboxylic acid will react with the alkylamine to form an acid-base complex, which may serve as a binary capping agent and reductant; however, its reducing capacity may range from lower to much lower than that of oleylamine. The types of nanoparticles synthesized in the simultaneous presence of oleic acid and oleylamine and discussed herein include metal oxides, metal chalcogenides, metals, bimetallic structures, perovskites, upconversion particles and rare earth-based materials. Diverse morphologies, ranging from spherical nanoparticles to anisotropic, core-shell and hetero-structured configurations are presented. Finally, the relation between tuning the resulting surface and volume nanoparticle properties and the relevant applications is highlighted.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 - Prague 6, Czech Republic.
| | - Melita Menelaou
- Department of Chemical Engineering, Faculty of Geotechnical Sciences and Environmental Management, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Nadesh Fiuza-Maneiro
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain.
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuangying Wei
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 - Prague 6, Czech Republic.
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 - Prague 6, Czech Republic.
| |
Collapse
|
207
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
208
|
Chiou YR, Lin CJ, Harroun SG, Chen YR, Chang L, Wu AT, Chang FC, Lin YW, Lin HJ, Anand A, Unnikrishnan B, Nain A, Huang CC. Aminoglycoside-mimicking carbonized polymer dots for bacteremia treatment. NANOSCALE 2022; 14:11719-11730. [PMID: 35913451 DOI: 10.1039/d2nr01959k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteremia and associated bacterial sepsis are potentially fatal and occur when the host response to microbial invasion is impaired or compromised. This motivated us to develop carbonized polymer dots (CPDsMan/AA) from a mixture of mannose (Man) and positively charged amino acids [AAs; lysine, arginine (Arg), or histidine] through a one-step mild pyrolysis procedure, which effectively inhibited drug-resistant bacterial strains isolated from septic patients. The as-prepared CPDsMan/AA showed broad-spectrum antibacterial activity, including multidrug-resistant bacteria, even in human plasma. The minimal inhibitory concentration of CPDsMan/Arg is ca. 1.0 μg mL-1, which is comparable to or lower than those of other tested antibiotics (e.g., ampicillin, gentamicin, and vancomycin). In addition to directly disrupting bacterial membranes, the CPDsMan/Arg feature a structure similar to aminoglycoside antibiotics that could bind to 16S rRNA, thereby blocking bacterial protein synthesis. In vitro cytotoxic and hemolytic assays demonstrated the high biocompatibility of the CPDsMan/AA. In addition, in vivo studies on methicillin-resistant Staphylococcus aureus-infected mice treated with the CPDsMan/Arg showed a significant decrease in mortality-even better than that of antibiotics. Overall, the synthesis of the CPDsMan/AA is cost-efficient, straightforward, and effective for treating bacteremia. The polymeric features of the CPDsMan/Arg, including cationic charges and specific groups, can be recognized as a safe and broad-spectrum biocide to lessen our reliance on antibiotics to treat systemic bacterial infections in the future.
Collapse
Affiliation(s)
- Yi-Ru Chiou
- Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Yi-Ru Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan
| | - An-Tai Wu
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Fu-Chieh Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei 11260, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
209
|
Zuluaga-Villamil A, Mencia G, Asensio JM, Fazzini PF, Baquero EA, Chaudret B. N-Heterocyclic Carbene-Based Iridium and Ruthenium/Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C–H Bond Activations. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alejandra Zuluaga-Villamil
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321 Bogotá, Colombia
| | - Gabriel Mencia
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Juan M. Asensio
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Pier-Francesco Fazzini
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077 Toulouse, France
| | - Edwin A. Baquero
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321 Bogotá, Colombia
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
210
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
211
|
Weiss R, VanOrman ZA, Sullivan CM, Nienhaus L. A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS MATERIALS AU 2022; 2:641-654. [PMID: 36855545 PMCID: PMC9928406 DOI: 10.1021/acsmaterialsau.2c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The process of photon upconversion promises importance for many optoelectronic applications, as it can result in higher efficiencies and more effective photon management. Upconversion via triplet-triplet annihilation (TTA) occurs at low incident powers and at high efficiencies, requirements for integration into existing optoelectronic devices. Semiconductor nanocrystals are a diverse class of triplet sensitizers with advantages over traditional molecular sensitizers such as energetic tunability and minimal energy loss during the triplet sensitization process. In this Perspective, we review current progress in semiconductor nanocrystal triplet sensitization, specifically focusing on the nanocrystal, the ligand shell which surrounds the nanocrystal, and progress in solid-state sensitization. Finally, we discuss potential areas of improvement which could result in more efficient upconversion systems sensitized by semiconductor nanocrystals. Specifically, we focus on the development of solid-state TTA upconversion systems, elucidation of the energy transfer mechanisms from nanocrystal to transmitter ligand which underpin the upconversion process and propose novel configurations of nanocrystal-sensitized systems.
Collapse
|
212
|
Wang H, Nienhaus K, Shang L, Nienhaus GU. Highly luminescent positively charged quantum dots interacting with proteins and cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haixia Wang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Li Shang
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Department of Physics University of Illinois at Urbana‐Champaign Urbana IL 61801 USA
| |
Collapse
|
213
|
Henrique RBL, Lima RRM, Monteiro CAP, Oliveira WF, Pereira G, Cabral Filho PE, Fontes A. Advances in the study of spheroids as versatile models to evaluate biological interactions of inorganic nanoparticles. Life Sci 2022; 302:120657. [PMID: 35609631 DOI: 10.1016/j.lfs.2022.120657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022]
Abstract
Spheroids are in vitro three-dimensional multicellular microstructures able to mimic the biological microenvironment, including the complexity of tumor architecture. Therefore, results closer to those expected for in vivo organisms can be reached using spheroids compared to the cell culture monolayer model. Inorganic nanoparticles (NPs) have also been playing relevant roles in the comprehension of biological processes. Moreover, they have been probed as novel diagnostic and therapeutical nanosystems. In this context, in this review, we present applications, published in the last five years, which show that spheroids can be versatile models to study and evaluate biological interactions involving inorganic NPs. Applications of spheroids associated with (i) basic studies to assess the penetration profile of nanostructures, (ii) the evaluation of NP toxicity, and (iii) NP-based therapeutical approaches are described. Fundamentals of spheroids and their formation methods are also included. We hope that this review can be a reference and guide future investigations related to this interesting three-dimensional biological model, favoring advances to Nanobiotechnology.
Collapse
Affiliation(s)
- Rafaella B L Henrique
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rennan R M Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Camila A P Monteiro
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
214
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
215
|
Marro N, Suo R, Naden AB, Kay ER. Constitutionally Selective Dynamic Covalent Nanoparticle Assembly. J Am Chem Soc 2022; 144:14310-14321. [PMID: 35901233 PMCID: PMC9376925 DOI: 10.1021/jacs.2c05446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The future of materials chemistry will be defined by
our ability
to precisely arrange components that have considerably larger dimensions
and more complex compositions than conventional molecular or macromolecular
building blocks. However, exerting structural and constitutional control
in the assembly of nanoscale entities presents a considerable challenge.
Dynamic covalent nanoparticles are emerging as an attractive category
of reaction-enabled solution-processable nanosized building block
through which the rational principles of molecular synthetic chemistry
can be extended into the nanoscale. From a mixture of two hydrazone-based
dynamic covalent nanoparticles with complementary reactivity, specific
molecular instructions trigger selective assembly of intimately mixed
heteromaterial (Au–Pd) aggregates or materials highly enriched
in either one of the two core materials. In much the same way as complementary
reactivity is exploited in synthetic molecular chemistry, chemospecific
nanoparticle-bound reactions dictate building block connectivity;
meanwhile, kinetic regioselectivity on the nanoscale regulates the
detailed composition of the materials produced. Selectivity, and hence
aggregate composition, is sensitive to several system parameters.
By characterizing the nanoparticle-bound reactions in isolation, kinetic
models of the multiscale assembly network can be constructed. Despite
ignoring heterogeneous physical processes such as aggregation and
precipitation, these simple kinetic models successfully link the underlying
molecular events with the nanoscale assembly outcome, guiding rational
optimization to maximize selectivity for each of the three assembly
pathways. With such predictive construction strategies, we can anticipate
that reaction-enabled nanoparticles can become fully incorporated
in the lexicon of synthetic chemistry, ultimately establishing a synthetic
science that manipulates molecular and nanoscale components with equal
proficiency.
Collapse
Affiliation(s)
- Nicolas Marro
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Rongtian Suo
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
216
|
Substituted Poly(Vinylphosphonate) Coatings of Magnetite Nanoparticles and Clusters. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Magnetite nanoparticles and clusters of nanoparticles have been of Increasing scientific interest in the past decades. In order to prepare nanoparticles and clusters that are stable in suspension, different coatings have been used. Phosphates and phosphonates are a preferred anchoring group for the coating of magnetite nanomaterials. However, poly(vinylphosphonates) have rarely been used as a coating agent for any nanoparticles. Here, poly(methylvinylphosphonate) and other substituted polyvinylphosphonates are described as new coatings for magnetite nanoparticles and clusters. They show great stability in aqueous suspension. This is also the first time phosphonate-coated magnetite clusters have been synthesized in a one-pot polyol reaction. The coated magnetite nanoparticles and clusters have been characterized by TEM, EDX, FTIR, magnetization measurement, XRD as well as XPS. It has been shown that substituted vinylphosphonates can be easily synthesized in one-step procedures and as a polymeric coating can imbue important properties such as stability in suspension, tight binding to the particle surface, the ability to be further functionalized or to tightly adsorb metal ions. For the synthesis of magnetite clusters the cluster formation, polymerization and coating are done in a one-pot reaction and the resulting magnetite clusters show a higher amount of phosphonate coating than with a three-step procedure including a ligand exchange.
Collapse
|
217
|
Sartaliya S, Mahajan R, Sharma R, Dar AH, Jayamurugan G. New Water-Soluble Magnetic Field-Induced Drug Delivery System Obtained Via Preferential Molecular Marriage over Narcissistic Self-Sorting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8999-9009. [PMID: 35829621 DOI: 10.1021/acs.langmuir.2c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials that respond to stimuli are of considerable interest for drug delivery applications. Drug delivery has been a leading challenge when it comes to the externally triggered controlled release of hydrophobic drugs. The present paper describes a unique arrangement of polymers in a competitive environment derived from the dynamic self-sorting behavior of the hydrophobic chains of amphiphilic mPEG-PLLA and poly-l-lactic acid (PLLA)-coated iron oxide nanoparticles IONP@PLLA to achieve a core-shell structure in which the hydrophobic PLLA part acts as a dense core and poly(ethylene glycol) (PEG) as an uncrowded shell. By using irreversible covalent interactions created by hydrophobic polymer-functionalized IONPs, it was possible to selectively form socially self-sorted nanocarriers (SS-NCs) with a higher hydrophobic core than the hydrophilic shell over narcissistic self-sorted nanocarriers (NS-NCs), that is, homo-micelles of amphiphilic polymers. The higher hydrophobic core of SS-NCs is indeed helpful in achieving higher drug [doxorubicin (DOX)] loading and encapsulation efficiencies of around 17 and 90%, respectively, over 10.3 and 65.6% for NS-NCs. Furthermore, due to the presence of IONPs and the densely packed hydrophobic compartments, the controlled release of DOX was facilitated by direct magnetism and temperature stimulation when an alternating magnetic field (AMF) was applied. An appreciably higher rate of drug release (∼50%) than that without AMF (∼18%) was achieved under ambient conditions in 24 h. The present study, therefore, proposes a new drug delivery system that exceeds homo-micelles and adds an extra feature of manipulating drug release through magnetism and temperature, that is, hyperthermia.
Collapse
Affiliation(s)
- Shaifali Sartaliya
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Ritu Mahajan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Raina Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Arif Hassan Dar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| |
Collapse
|
218
|
Ling JL, Wu CD. Transformation of metal-organic frameworks with retained networks. Chem Commun (Camb) 2022; 58:8602-8613. [PMID: 35833566 DOI: 10.1039/d2cc02865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous coordination materials with systematically designable network structures and tunable properties, demonstrating great potential for applications in diverse fields. However, the generally poor stability of dynamic coordination bonds in MOFs hinders their practical applications in harsh environments. Although MOFs have been used as precursors and templates for the production of various derivatives with enhanced stability via thermal treatment, the extreme thermolytic conditions often destroy the network structures, consequently resulting in obvious decreases in porosity and surface areas with undesired characteristics. This feature article discusses the generally used pathways for the transformation of MOFs and the advanced fabrication methods for the production of various MOF-derived materials. We particularly emphasize the recent progress in the designed strategies for customization and derivation tailoring of MOFs, which could produce MOF-derived functional materials with remaining framework skeletons and inherited characteristics (surface area, porosity and properties) of the parent MOFs, exhibiting great promise for practical applications.
Collapse
Affiliation(s)
- Jia-Long Ling
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
219
|
Selection of cryoprotectants for freezing and freeze-drying of gold nanoparticles towards further uses in various applications. Colloids Surf B Biointerfaces 2022; 217:112702. [PMID: 35863234 DOI: 10.1016/j.colsurfb.2022.112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
Recently, cryopreservation of AuNPs without aggregation has been attempted to improve their long-term stability. This study investigated criteria to select cryoprotectants for AuNPs using a variety of materials, including sugar (sucrose), surfactant (Tween 20), polymers (polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP)), and biopolymer (pectin). For cryoprotective performance, UV-vis spectroscopy reveals the potential of all cryoprotectants for preventing citrate-capped AuNPs (cit-AuNPs) from irreversible aggregation under freezing. While sucrose, PVP, and pectin were more suitable than Tween 20 and PVA as cryoprotectants for lyophilization of AuNPs with the maintained redispersability. For storage and further use, Luria-Bertani agar plate, dynamic light scattering (DLS), and transmission electron microscopy (TEM) results indicate impacts of the cryoprotectant coexisted with AuNPs after resuspension and imply that washing of the restored AuNPs is encouraged. Otherwise, running the restored AuNPs through applications, such as functionalization, protein conjugation, and surface-enhanced Raman scattering (SERS), without washing the cryoprotectant could lead to inaccurate results. This study also serves as a guideline for a comprehensive practice flow of AuNP handling, encompassing the synthesis step, cryopreservation, and use after resuspension.
Collapse
|
220
|
Distaso M, Lautenbach V, Uttinger MJ, Walter J, Lübbert C, Thajudeen T, Peukert W. A widely applicable method to stabilize nanoparticles comprising oxygen-rich functional groups. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
221
|
Ekici DD, Mutlugun E. Superior CdSe/ZnS@Fe
2
O
3
Yolk‐Shell Nanoparticles as Optically Active MRI Contrast Agents**. ChemistrySelect 2022. [DOI: 10.1002/slct.202104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Derya D. Ekici
- Department of Materials Science and Nanotechnology Engineering Abdullah Gul University Kayseri Turkey TR-38039
| | - Evren Mutlugun
- Department of Electrical-Electronics Engineering Abdullah Gul University Kayseri Turkey TR-38039
- UNAM – Institute of Materials Science and Nanotechnology Bilkent University Ankara 06800 Turkey
| |
Collapse
|
222
|
Li Z, Li Z, Zuo C, Fang X. Application of Nanostructured TiO 2 in UV Photodetectors: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109083. [PMID: 35061927 DOI: 10.1002/adma.202109083] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
As a wide-bandgap semiconductor material, titanium dioxide (TiO2 ), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting-edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low-cost fabrication, the construction of high-performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2 -based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon-generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in-depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p-type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2 -based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications.
Collapse
Affiliation(s)
- Ziliang Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chaolei Zuo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
223
|
Aqueous-phase assembly of ultra-stable perovskite nanocrystals in chiral cellulose nanocrystal films for circularly polarized luminescence. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
224
|
Pankhurst JR, Castilla-Amorós L, Stoian DC, Vavra J, Mantella V, Albertini PP, Buonsanti R. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. J Am Chem Soc 2022; 144:12261-12271. [PMID: 35770916 PMCID: PMC9284559 DOI: 10.1021/jacs.2c03489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Understanding the
structure and behavior of intermediates in chemical
reactions is the key to developing greater control over the reaction
outcome. This principle is particularly important in the synthesis
of metal nanocrystals (NCs), where the reduction, nucleation, and
growth of the reaction intermediates will determine the final size
and shape of the product. The shape of metal NCs plays a major role
in determining their catalytic, photochemical, and electronic properties
and, thus, the potential applications of the material. In this work,
we demonstrate that layered coordination polymers, called lamellae,
are reaction intermediates in Cu NC synthesis. Importantly, we discover
that the lamella structure can be fine-tuned using organic ligands
of different lengths and that these structural changes control the
shape of the final NC. Specifically, we show that short-chain phosphonate
ligands generate lamellae that are stable enough at the reaction temperature
to facilitate the growth of Cu nuclei into anisotropic Cu NCs, being
primarily triangular plates. In contrast, lamellae formed from long-chain
ligands lose their structure and form spherical Cu NCs. The synthetic
approach presented here provides a versatile tool for the future development
of metal NCs, including other anisotropic structures.
Collapse
Affiliation(s)
- James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Dragos C Stoian
- The Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Petru P Albertini
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| |
Collapse
|
225
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
226
|
Li W, Li K, Zhao X, Liu C, Coudert FX. Defective Nature of CdSe Quantum Dots Embedded in Inorganic Matrices. J Am Chem Soc 2022; 144:11296-11305. [PMID: 35713308 DOI: 10.1021/jacs.2c03039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum dots (QDs) embedded in inorganic matrices have been extensively studied for their potential applications in lighting, displays, and solar cells. While a significant amount of research studies focused on their experimental fabrication, the origin of their relatively low photoluminescence quantum yield has not been investigated yet, although it severely hinders practical applications. In this study, we use time-dependent density functional theory (TDDFT) to pinpoint the nature of excited states of CdSe QDs embedded in various inorganic matrices. The formation of undercoordinated Se atoms and nonbridging oxygen atoms at the QD/glass interface is responsible for the localization of a hole wave function, leading to the formation of low-energy excited states with weak oscillator strength. These states provide pathways for nonradiative processes and compete with radiative emission. The photoluminescence performance is predicted for CdSe QDs in different matrices and validated by experiments. The results of this study have significant implications for understanding the underlying photophysics of CdSe QDs embedded in inorganic matrices that would facilitate the fabrication of highly luminescent glasses.
Collapse
Affiliation(s)
- Wenke Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, China.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| | - Kai Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, China
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| |
Collapse
|
227
|
Liu Y, Peng N, Yao Y, Zhang X, Peng X, Zhao L, Wang J, Peng L, Wang Z, Mochizuki K, Yue M, Yang S. Breaking the nanoparticle's dispersible limit via rotatable surface ligands. Nat Commun 2022; 13:3581. [PMID: 35739115 PMCID: PMC9226028 DOI: 10.1038/s41467-022-31275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/10/2022] [Indexed: 12/30/2022] Open
Abstract
Achieving versatile dispersion of nanoparticles in a broad range of solvents (e.g., water, oil, and biofluids) without repeatedly recourse to chemical modifications are desirable in optoelectronic devices, self-assembly, sensing, and biomedical fields. However, such a target is limited by the strategies used to decorate nanoparticle's surface properties, leading to a narrow range of solvents for existing nanoparticles. Here we report a concept to break the nanoparticle's dispersible limit via electrochemically anchoring surface ligands capable of sensing the surrounding liquid medium and rotating to adapt to it, immediately forming stable dispersions in a wide range of solvents (polar and nonpolar, biofluids, etc.). Moreover, the smart nanoparticles can be continuously electrodeposited in the electrolyte, overcoming the electrode surface-confined low throughput limitation of conventional electrodeposition methods. The anomalous dispersive property of the smart Ag nanoparticles enables them to resist bacteria secreted species-induced aggregation and the structural similarity of the surface ligands to that of the bacterial membrane assists them to enter the bacteria, leading to high antibacterial activity. The simple but massive fabrication process and the enhanced dispersion properties offer great application opportunities to the smart nanoparticles in diverse fields.
Collapse
Affiliation(s)
- Yue Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Na Peng
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yifeng Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Xuan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Xianqi Peng
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyan Zhao
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liang Peng
- Deparment of Mechanical Engineering, City University of Hongkong, Hongkong, 999077, China
| | - Zuankai Wang
- Deparment of Mechanical Engineering, City University of Hongkong, Hongkong, 999077, China
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China.
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. .,Hainan Institute of Zhejiang University, Sanya, 572025, China. .,Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China. .,Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China. .,Baotou Research Institute of Rare Earths, Baotou, 014030, China.
| |
Collapse
|
228
|
Shen M, Ding T, Tan C, Rackers WH, Zhang D, Lew MD, Sadtler B. In Situ Imaging of Catalytic Reactions on Tungsten Oxide Nanowires Connects Surface-Ligand Redox Chemistry with Photocatalytic Activity. NANO LETTERS 2022; 22:4694-4701. [PMID: 35674669 DOI: 10.1021/acs.nanolett.2c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductor nanocrystals are promising candidates for generating chemical feedstocks through photocatalysis. Understanding the role of ligands used to prepare colloidal nanocrystals in catalysis is challenging due to the complexity and heterogeneity of nanocrystal surfaces. We use in situ single-molecule fluorescence imaging to map the spatial distribution of active regions along individual tungsten oxide nanowires before and after functionalizing them with ascorbic acid. Rather than blocking active sites, we observed a significant enhancement in activity for photocatalytic water oxidation after treatment with ascorbic acid. While the initial nanowires contain inactive regions dispersed along their length, the functionalized nanowires show high uniformity in their photocatalytic activity. Spatial colocalization of the active regions with their surface chemical properties shows that oxidation of ascorbic acid during photocatalysis generates new oxygen vacancies along the nanowire surface. We demonstrate that controlling surface-ligand redox chemistry during photocatalysis can enhance the active site concentration on nanocrystal catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Tianben Ding
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Che Tan
- Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - William H Rackers
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Dongyan Zhang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
229
|
Zhou R, Zhang M, He J, Liu J, Sun X, Ni P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS OMEGA 2022; 7:21325-21336. [PMID: 35755339 PMCID: PMC9219052 DOI: 10.1021/acsomega.2c02683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 05/07/2023]
Abstract
To overcome the limitation of conventional nanodrugs in tumor targeting efficiency, coupling targeting ligands to polymeric nanoparticles can enhance the specific binding of nanodrugs to tumors. Cyclo(Arg-Gly-Asp-d-Phe-Lys) (abbreviated as c(RGDfK)) peptide has been widely adopted due to its high affinity to the tumor marker αvβ3 integrin receptor. In this study, we develop a cRGD peptide-conjugated camptothecin (CPT) prodrug, which enables self-assembly of nanoparticles for precise targeting and enrichment in tumor tissue. We first synthesized a camptothecin derivative (CPT-ss-N3) with a reduction-sensitive bond and simultaneously modified PEG to obtain cRGD-PEG-N3. After ring-opening polymerization of the 2-(but-3-yn-1-yolxy)-2-oxo-1,3,2-dioxaphospholane (BYP), an amphiphilic polymeric prodrug, referred to as cRGD-PEG-g-(PBYP-ss-CPT), was obtained via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The self-assembly in buffer solution of the cRGD-functional prodrug was studied through DLS and TEM. The in vitro drug release behavior of cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles was investigated. The results show that the nanoparticles are reduction-responsive and the bonded CPT can be released. Endocytosis and MTT assays demonstrate that the cRGD-conjugated prodrug has better affinity for tumor cells, accumulates more intracellularly, and is therefore, more effective. The in vivo drug metabolism studies show that nanoparticles greatly prolong the retention time in circulation. By monitoring drug distribution in tumor and in various tissues, we find that free CPT can be rapidly metabolized, resulting in low accumulation in all tissues. However, cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles accumulate in tumor tissues in higher amounts than PEG-g-(PBYP-ss-CPT) nanoparticles, except for the inevitable capture by the liver. This indicates that the nanomedicine with cRGD has a certain targeting property, which can improve drug delivery efficiency.
Collapse
Affiliation(s)
- Ru Zhou
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Xingwei Sun
- Intervention
Department, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, P. R. China
| | - Peihong Ni
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
- . Tel: +86
512 65882047
| |
Collapse
|
230
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires up Wet Colloids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Lei
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yanjuan Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Xiaojun Song
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yan Hao
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhaoxiang Deng
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
231
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
232
|
Lee E, Lee M, Kwon S, Kim J, Kwon Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. NANO CONVERGENCE 2022; 9:27. [PMID: 35680772 PMCID: PMC9184696 DOI: 10.1186/s40580-022-00320-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/29/2022] [Indexed: 05/02/2023]
Abstract
For decades, nanoparticles (NPs) have been widely implemented in various biomedical fields due to their unique optical, thermal, and tunable properties. Particularly, gold nanoparticles (AuNPs) have opened new frontiers in sensing, targeted drug delivery, imaging, and photodynamic therapy, showing promising results for the treatment of various intractable diseases that affect quality of life and longevity. Despite the tremendous achievements of AuNPs-based approaches in biomedical applications, few AuNP-based nanomedicines have been evaluated in clinical trials, which is likely due to a shortage of understanding of the biological and pathological effects of AuNPs. The biological fate of AuNPs is tightly related to a variety of physicochemical parameters including size, shape, chemical structure of ligands, charge, and protein corona, and therefore evaluating the effects of these parameters on specific biological interactions is a major ongoing challenge. Therefore, this review focuses on ongoing nanotoxicology studies that aim to characterize the effect of various AuNP characteristics on AuNP-induced toxicity. Specifically, we focus on understanding how each parameter alters the specific biological interactions of AuNPs via mechanistic analysis of nano-bio interactions. We also discuss different cellular functions affected by AuNP treatment (e.g., cell motility, ROS generation, interaction with DNA, and immune response) to understand their potential human health risks. The information discussed herein could contribute to the safe usage of nanomedicine by providing a basis for appropriate risk assessment and for the development of nano-QSAR models.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Minhyeong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - San Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jongpil Kim
- Department of Chemistry, Dongguk University, Seoul, 04620, Korea.
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
233
|
Hao Y, Peng B, Si C, Wang B, Luo C, Chen M, Luo C, Gong B, Li Z. PVP-Modified Multifunctional Bi 2WO 6 Nanosheets for Enhanced CT Imaging and Cancer Radiotherapy. ACS OMEGA 2022; 7:18795-18803. [PMID: 35694478 PMCID: PMC9178605 DOI: 10.1021/acsomega.2c01591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Malignant tumors are one of the main causes of human death. The clinical treatment of malignant tumors is usually surgery, chemotherapy, radiotherapy, and so forth. Radiotherapy, as a traditional and effective treatment method for cancer, is widely used in clinical practice, but the radiation resistance of tumor cells and the toxic side effects to normal cells are still the Achilles heel of radiotherapy. Multifunctional inorganic high-atom nanomaterials are expected to enhance the effect of tumor radiotherapy. Tungsten and bismuth, which contain elements with high atomic coefficients, have strong X-ray energy attenuation capability. We synthesized Bi2WO6 nanosheets (NSs) using a hydrothermal synthesis method and modified polyvinylpyrrolidone (PVP) on their surface to make them more stable. PVP-Bi2WO6 NSs have a variety of effects after absorbing X-rays (such as the photoelectric effect and Compton effect) and release a variety of particles such as photoelectrons, Compton electrons, auger electrons, and so forth, which can react with organic molecules or water in cells, generate a large number of free radicals, and promote cell apoptosis, thereby improving the effect of radiotherapy. We show through γ-H2AX and DCFH-DA probe analysis experiments that PVP-Bi2WO6 NSs can effectively increase cell DNA damage and reactive oxygen species formation under X-ray irradiation. Clone formation analysis showed that PVP-Bi2WO6 NSs can effectively suppress cell colony formation under X-ray irradiation. These versatile functions endow PVP-Bi2WO6 NSs with enhanced radiotherapy efficacy in animal models. In addition, PVP-Bi2WO6 NSs can also be used as contrast agents for X-ray computed tomography (CT) imaging with obvious effects. Therefore, PVP-Bi2WO6 NSs can be used as CT imaging contrast agents and tumor radiotherapy sensitizers and have potential medical applications.
Collapse
Affiliation(s)
- Yifan Hao
- Department
of Oral Radiology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin
Provincial Key Laboratory of Tooth Development and Bone Remodeling,
School and Hospital of Stomatology, Jilin
University, Changchun 130021, P. R. China
| | - Bo Peng
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Chao Si
- Department
of Oral Radiology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin
Provincial Key Laboratory of Tooth Development and Bone Remodeling,
School and Hospital of Stomatology, Jilin
University, Changchun 130021, P. R. China
| | - Bo Wang
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Chengfeng Luo
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Menghao Chen
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Cheng Luo
- Department
of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Baijuan Gong
- Department
of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Zhimin Li
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| |
Collapse
|
234
|
Dhanjal DS, Mehra P, Bhardwaj S, Singh R, Sharma P, Nepovimova E, Chopra C, Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int J Nanomedicine 2022; 17:2505-2533. [PMID: 35677678 PMCID: PMC9170235 DOI: 10.2147/ijn.s363282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Mehra
- Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| |
Collapse
|
235
|
Synthesis of Citrate-T20-Ser-Gold Nanoparticles and effect of heavy metal cations on its colloidal stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
236
|
Pandit S, Maroli N, Naskar S, Khatri B, Maiti PK, De M. Graphene oxide as a dual template for induced helicity of peptides. NANOSCALE 2022; 14:7881-7890. [PMID: 35583859 DOI: 10.1039/d2nr00183g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial template-mediated fabrication of secondary structures within peptides always attracts great interest in biological systems due to several biomimetic interactions. In all earlier studies, a uniform template containing molecules/nanomaterials was used to target only one type of peptide at a time, which extensively limits the diversity in the generation of artificial protein surface/binding sites. This limitation can be overcome by the incorporation of more than one binding template (heterogeneity) in a single system, for example, Janus nanomaterials, which are challenging and difficult to synthesize. In this context, graphene oxide (GO) is considered an artificial binding site (template). It contains two distinctive binding zones, i.e., surface and edge, which can induce the secondary structure of peptides based on complementary interactions. To establish our concept, we have implemented a hybrid sequence i.e., i, i + 4, i + 7 and i + 11 pattern peptides, which defines a more linear surface, suitable for recognition by the two-dimensional GO. Depending on the amino acid residue at the specific locations, we observed substantial enhancement of peptide helicity either at the surface or at the edges of GO from the random coil. However, non-interacting peptides remain as a random coil. We have established this by circular dichroism study at various conditions, as well as atomic force microscopy and optical imaging study. Furthermore, we have also established our observations using molecular dynamics (MD) simulations. This study reveals that the synthesized GO-peptides composite with different secondary structures and recognition residues can mimic biological systems.
Collapse
Affiliation(s)
- Subrata Pandit
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
237
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
238
|
Sreevani K, Anierudhe VV. Synthesis and Characterization of Molybdenum Oxide Nanoparticles by Green Method Useful in Antifungal Applications Against Colletotrichum Gloeosporioides. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, the synthesis of molybdenum oxide nanoparticles is done by the reduction of Ammonium molybdate with the extract from the leaves of Citrus sinensis. The optical studies like Fourier Transform Infrared studies and UV-vis-NIR gives insight on the details of presence
of functional groups and absorption of light. The X ray diffraction studies reveal its crystallinity and its particle size have been calculated. The zeta potential, which is used to characterize the metal nanoparticles, has been studied. The antifungal property of the nanoparticles has been
studied and a plot for disease index has been discussed. This natural method of synthesizing the molybdenum oxide nanoparticles can find numerous applications in biophysics.
Collapse
Affiliation(s)
- K. Sreevani
- Center for Nanoscience and Technology, Chennai Institute of Technology, Kundrathur, Chennai 600069, Tamil Nadu, India
| | - V. V. Anierudhe
- Department of Biotechnology, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600048, Tamil Nadu, India
| |
Collapse
|
239
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
240
|
Ubasart E, Mustieles Marin I, Asensio JM, Mencia G, López-Vinasco ÁM, García-Simón C, Del Rosal I, Poteau R, Chaudret B, Ribas X. Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters. NANOSCALE HORIZONS 2022; 7:607-615. [PMID: 35389405 DOI: 10.1039/d1nh00677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF)8 to develop a synthetic methodology for sub-nanometric RuNP (0.6-0.7 nm). The catalytic properties of these sub-nanometric nanoparticles were tested on the hydrogenation of styrene, obtaining excellent selectivity for the hydrogenation of the alkene moiety. In addition, the encapsulation of [Ru5] clusters inside the nanocapsule is strikingly observed in most of the experimental conditions, as ascertained by HR-MS. Moreover, a thorough DFT study enlightens the nature of the [Ru5] clusters as tb-Ru5H2(η6-PhH)2(η6-pyz)3 (2) trapped by two arene moieties of the clip, or as tb-Ru5H2(η1-pyz)6(η6-pyz)3 (3) trapped between the two Zn-porphyrin units of the nanocapsule. Both options fulfill the Wade-Mingos counting rules, i.e. 72 CVEs for the closotb. The trapped [Ru5] metallic clusters are proposed to be the first-grown seeds of subsequent formation of the subnanometric RuNP. Moreover, the double role of the nanocapsule in stabilising ∼0.7 nm NPs and also in hosting ultra-small Ru clusters, is unprecedented and may pave the way towards the synthesis of ultra-small metallic clusters for catalytic purposes.
Collapse
Affiliation(s)
- Ernest Ubasart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| | - Irene Mustieles Marin
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Juan Manuel Asensio
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Ángela M López-Vinasco
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| | - Iker Del Rosal
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Romuald Poteau
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
241
|
Iftikhar S, Aslam S, Duran H, Çitoğlu S, Kirchhoff K, Lieberwirth I, Sohail M, Yameen B. Poly(3‐hexylthiophene) stabilized ultrafine nickel oxide nanoparticles as superior electrocatalyst for oxygen evolution reaction: Catalyst design through synergistic combination of
π
‐conjugated polymers and metal‐based nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunniya Iftikhar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE) Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Saba Aslam
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE) Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering TOBB University of Economics and Technology Ankara Turkey
| | - Senem Çitoğlu
- Department of Materials Science & Nanotechnology Engineering TOBB University of Economics and Technology Ankara Turkey
| | | | | | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences (SNS) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Basit Yameen
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE) Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
242
|
Dhaene E, Pokratath R, Aalling-Frederiksen O, Jensen KMØ, Smet PF, De Buysser K, De Roo J. Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS NANO 2022; 16:7361-7372. [PMID: 35476907 DOI: 10.1021/acsnano.1c08966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ligands play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that monoalkyl phosphinic acids are another interesting ligand class, forming metal complexes with a reactivity that is intermediate between the traditional carboxylates and phosphonates. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleylphosphinic acid. These compounds are suitable ligands for high-temperature nanocrystal synthesis (240-300 °C) since, in contrast to phosphonic acids, they do not form anhydride oligomers. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and their UV-vis spectrum is free from background scattering. The CdSe nanocrystals have a low polydispersity and a photoluminescence quantum yield up to 18% (without shell). Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands with high shape purity. We conclude that the reactivity toward TOP-S and TOP-Se precursors decreases in the following series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.
Collapse
Affiliation(s)
- Evert Dhaene
- Department of Chemistry, Ghent University, Gent B-9000, Belgium
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Philippe F Smet
- Department of Solid State Sciences, Ghent University, Gent B-9000, Belgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
243
|
Han Z, Vaidya RM, Arogundade OH, Ma L, Zahid MU, Sarkar S, Kuo CW, Selvin PR, Smith AM. Structural Design of Multidentate Copolymers as Compact Quantum Dot Coatings for Live-Cell Single-Particle Imaging. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4621-4632. [PMID: 36968145 PMCID: PMC10038122 DOI: 10.1021/acs.chemmater.2c00498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Quantum dots (QDs) are a class of semiconductor nanocrystal used broadly as fluorescent emitters for analytical studies in the life sciences. These nanomaterials are particularly valuable for single-particle imaging and tracking applications in cells and tissues. An ongoing technological goal is to reduce the hydrodynamic size of QDs to enhance access to sterically hindered biological targets. Multidentate polymer coatings are a focus of these efforts and have resulted in compact and stable QDs with hydrodynamic diameters near 10 nm. New developments are needed to reach smaller sizes to further enhance transport through pores in cells and tissues. Here, we describe how structural characteristics of linear multidentate copolymers determine hydrodynamic size, colloidal stability, and biomolecular interactions of coated QDs. We tune copolymer composition, degree of polymerization, and hydrophilic group length, and coat polymers on CdSe and (core)shell (HgCdSe)CdZnS QDs. We find that a broad range of polymer structures and compositions yield stable colloidal dispersions; however, hydrodynamic size minimization and nonspecific binding resistance can only be simultaneously achieved within a narrow range of properties, requiring short polymers, balanced compositions, and small nanocrystals. In quantitative single-molecule imaging assays in synapses of live neurons, size reduction progressively increases labeling specificity of neurotransmitter receptors. Our findings provide a design roadmap to next-generation QDs with sizes approaching fluorescent protein labels that are the standard of many live-cell biomolecular studies.
Collapse
Affiliation(s)
- Zhiyuan Han
- Department of Materials Science and Engineering and Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit M Vaidya
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Opeyemi H Arogundade
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Liang Ma
- Department of Materials Science and Engineering and Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mohammad U Zahid
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suresh Sarkar
- Holonyak Micro and Nanotechnology Laboratory and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chia-Wei Kuo
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul R Selvin
- Center for Biophysics and Quantitative Biology, Center for the Physics of Living Cells, and Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States-8163
| | - Andrew M Smith
- Department of Materials Science and Engineering, Holonyak Micro and Nanotechnology Laboratory, Department of Bioengineering, Cancer Center at Illinois, and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| |
Collapse
|
244
|
Valdivia V, Gimeno-Ferrero R, Pernia Leal M, Paggiaro C, Fernández-Romero AM, González-Rodríguez ML, Fernández I. Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles. NANOMATERIALS 2022; 12:nano12101753. [PMID: 35630975 PMCID: PMC9145561 DOI: 10.3390/nano12101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
The preparation of new and functional nanostructures has received more attention in the scientific community in the past decade due to their wide application versatility. Among these nanostructures, micelles appear to be one of the most interesting supramolecular organizations for biomedical applications because of their ease of synthesis and reproducibility and their biocompatibility since they present an organization similar to the cell membrane. In this work, we developed micellar nanocarrier systems from surfactant molecules derived from oleic acid and tetraethylene glycol that were able to encapsulate and in vitro release the drug dexamethasone. In addition, the designed micelle precursors were able to functionalize metallic NPs, such as gold NPs and iron oxide NPs, resulting in monodispersed hybrid nanomaterials with high stability in aqueous media. Therefore, a new triazole-derived micelle precursor was developed as a versatile encapsulation system, opening the way for the preparation of new micellar nanocarrier platforms for drug delivery, magnetic resonance imaging, or computed tomography contrast agents for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Victoria Valdivia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| | - Raúl Gimeno-Ferrero
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| | - Chiara Paggiaro
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
| | - Ana María Fernández-Romero
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (A.M.F.-R.); (M.L.G.-R.)
| | - María Luisa González-Rodríguez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (A.M.F.-R.); (M.L.G.-R.)
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (R.G.-F.); (C.P.)
- Correspondence: (V.V.); (M.P.L.); (I.F.)
| |
Collapse
|
245
|
Cruz-Nova P, Ancira-Cortez A, Ferro-Flores G, Ocampo-García B, Gibbens-Bandala B. Controlled-Release Nanosystems with a Dual Function of Targeted Therapy and Radiotherapy in Colorectal Cancer. Pharmaceutics 2022; 14:pharmaceutics14051095. [PMID: 35631681 PMCID: PMC9145578 DOI: 10.3390/pharmaceutics14051095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles are excellent platforms for several biomedical applications, including cancer treatment. They can incorporate different molecules to produce combinations of chemotherapeutic agents, radionuclides, and targeting molecules to improve the therapeutic strategies against cancer. These specific nanosystems are designed to have minimal side effects on healthy cells and better treatment efficacy against cancer cells when compared to chemotherapeutics, external irradiation, or targeted radiotherapy alone. In colorectal cancer, some metal and polymeric nanoparticle platforms have been used to potentialize external radiation therapy and targeted drug delivery. Polymeric nanoparticles, liposomes, albumin-based nanoparticles, etc., conjugated with PEG and/or HLA, can be excellent platforms to increase blood circulation time and decrease side effects, in addition to the combination of chemo/radiotherapy, which increases therapeutic efficacy. Additionally, radiolabeled nanoparticles have been conjugated to target specific tissues and are mainly used as agents for diagnosis, drug/gene delivery systems, or plasmonic photothermal therapy enhancers. This review aims to analyze how nanosystems are shaping combinatorial therapy and evaluate their status in the treatment of colorectal cancer.
Collapse
|
246
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
247
|
Robinson R, Krause V, Wang S, Yan S, Shang G, Gordon J, Tycko S, Zhong CJ. Silver-Copper Alloy Nanoinks for Ambient Temperature Sintering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5633-5644. [PMID: 35475615 DOI: 10.1021/acs.langmuir.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an increasing need to reduce the silver content in silver-based inks or pastes and achieve low-temperature sintering for scalable and low-cost production of printed wearable electronics. This need depends on the ability to control the metal composition and the surface properties of the nanoinks. Alloying silver with copper provides a pathway for meeting the need in terms of cost reduction, but little is known about the composition controllability and the low-temperature sintering capability. We report herein a scalable wet chemical synthesis of bimetallic silver-copper alloy nanoinks with room temperature sintering properties. The bimetallic alloy nanoparticles with a controllable composition can be formulated as stable nanoinks. The nanoinks printed on paper substrates are shown to sinter under room temperature. In addition to composition dependence, the results reveal an intriguing dependence of sintering on humidity above the printed nanoink films. These findings are assessed based on theoretical simulation of the sintering processes via surface-mediated sintering and interparticle necking mechanisms in terms of nanoscale adsorption, adhesion and diffusion, and surface free energies. Implications of the findings for room temperature fabrication of wearable sensors are also discussed.
Collapse
Affiliation(s)
- Richard Robinson
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Virginia Krause
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shan Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guojun Shang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Justine Gordon
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Serena Tycko
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
248
|
Idris AH, Che Abdullah CA, Yusof NA, Abdul Rahman MB. One-pot synthesis of iron oxide nanoparticles: Effect of stirring rate and reaction time on its physical characteristics. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2072339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Auni Hamimi Idris
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Che Azurahanim Che Abdullah
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
249
|
Munawaroh HSH, Hazmatulhaq F, Gumilar GG, Pratiwi RN, Kurniawan I, Ningrum A, Hidayati NA, Koyande AK, Kumar PS, Show PL. Microalgae as a potential sustainable solution to environment health. CHEMOSPHERE 2022; 295:133740. [PMID: 35124085 DOI: 10.1016/j.chemosphere.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria such as Spirulina platensis secretes numerous biomolecules while consuming CO2 for photosynthesis which can reduce the environmental pollution as it can also be grown in wastewater. These biomolecules can be further processed in numerous pathways such as feed, fuel, pharmaceuticals, and nutraceuticals. This study aims to screen the potential molecular mechanisms of pigments from cyanobacteria as antidiabetic type-2 candidates through molecular docking. The activities of the test compounds were compared to commercial diabetic drugs, such as acarbose, linagliptin and polydatin. The results indicated that the binding affinity of pheophytin, β-carotene, and phycocyanobilin to α-amylase were 0.4, 2, and 2.6 kcal/mol higher than that of acarbose with α-amylase. Binding affinity between pheophytin, β-carotene, and phycocyanobilin with α-glucosidase were found to be comparable, which resulted 1.2, and 1.6 kcal/mol higher than that of acarbose with α-glucosidase. Meanwhile, binding activity of β-carotene and phycocyanobilin with DPP-IV were 0.5 and 0.3 kcal/mol higher than that of linagliptin with DPP-IV, whereas pheophytin, β-carotene, and phycocyanobilin with Glucose-6-phosphate dehydrogenase (G6PD) were 0.2, 1, and 1.4 kcal/mol higher from that of polydatin with G6PD. Moreover, pheophytin, β-carotene and phycocyanobilin were likely to inhibit α-amylase, α-glucosidase, and DPP-IV competitively, while uncompetitively for G6PD. Thus, the integration of molecular docking and experimental approach, such as in vitro and in vivo studies may greatly improve the discovery of true bioactive compounds in cyanobacteria for type 2 diabetes mellitus drugs and treatments.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia.
| | - Farah Hazmatulhaq
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia
| | - Riska Nur Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung, 40154, Indonesia
| | - Isman Kurniawan
- School of Computing, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia; Research Center of Human Centric Engineering, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, 5528, Indonesia
| | - Nur Akmalia Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia.
| |
Collapse
|
250
|
Chatterjee S, Lou XY, Liang F, Yang YW. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|