201
|
Petkau-Milroy K, Sonntag MH, Colditz A, Brunsveld L. Multivalent protein assembly using monovalent self-assembling building blocks. Int J Mol Sci 2013; 14:21189-201. [PMID: 24152447 PMCID: PMC3821665 DOI: 10.3390/ijms141021189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/13/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.
Collapse
Affiliation(s)
- Katja Petkau-Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5612AZ, The Netherlands; E-Mails: (K.P.-M.); (M.H.S.); (A.C.)
| | - Michael H. Sonntag
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5612AZ, The Netherlands; E-Mails: (K.P.-M.); (M.H.S.); (A.C.)
| | - Alexander Colditz
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5612AZ, The Netherlands; E-Mails: (K.P.-M.); (M.H.S.); (A.C.)
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5612AZ, The Netherlands; E-Mails: (K.P.-M.); (M.H.S.); (A.C.)
| |
Collapse
|
202
|
Rashidian M, Kumarapperuma SC, Gabrielse K, Fegan A, Wagner CR, Distefano MD. Simultaneous dual protein labeling using a triorthogonal reagent. J Am Chem Soc 2013; 135:16388-96. [PMID: 24134212 DOI: 10.1021/ja403813b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Construction of heterofunctional proteins is a rapidly emerging area of biotherapeutics. Combining a protein with other moieties, such as a targeting element, a toxic protein or small molecule, and a fluorophore or polyethylene glycol (PEG) group, can improve the specificity, functionality, potency, and pharmacokinetic profile of a protein. Protein farnesyl transferase (PFTase) is able to site-specifically and quantitatively prenylate proteins containing a C-terminal CaaX-box amino acid sequence with various modified isoprenoids. Here, we describe the design, synthesis, and application of a triorthogonal reagent, 1, that can be used to site-specifically incorporate an alkyne and aldehyde group simultaneously into a protein. To illustrate the capabilities of this approach, a protein was enzymatically modified with compound 1 followed by oxime ligation and click reaction to simultaneously incorporate an azido-tetramethylrhodamine (TAMRA) fluorophore and an aminooxy-PEG moiety. This was performed with both a model protein [green fluorescent protein (GFP)] as well as a therapeutically useful protein [ciliary neurotrophic factor (CNTF)]. Next, a protein was enzymatically modified with compound 1 followed by coupling to an azido-bis-methotrexate dimerizer and aminooxy-TAMRA. Incubation of that construct with a dihydrofolate reductase (DHFR)-DHFR-anti-CD3 fusion protein resulted in the self-assembly of nanoring structures that were endocytosed into T-leukemia cells and visualized therein. These results highlight how complex multifunctional protein assemblies can be prepared using this facile triorthogonal approach.
Collapse
Affiliation(s)
- Mohammad Rashidian
- Department of Chemistry, and §Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
203
|
Szent-Gyorgyi C, Stanfield RL, Andreko S, Dempsey A, Ahmed M, Capek S, Waggoner AS, Wilson IA, Bruchez MP. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces. J Mol Biol 2013; 425:4595-613. [PMID: 23978698 DOI: 10.1016/j.jmb.2013.08.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/19/2023]
Abstract
We report that a symmetric small-molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* fluorogen activating protein is a VL domain that binds malachite green (MG) dye to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity-determining regions are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high-affinity protein tags and capture reagents.
Collapse
Affiliation(s)
- Chris Szent-Gyorgyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Ishida M, Watanabe H, Takigawa K, Kurishita Y, Oki C, Nakamura A, Hamachi I, Tsukiji S. Synthetic Self-Localizing Ligands That Control the Spatial Location of Proteins in Living Cells. J Am Chem Soc 2013; 135:12684-9. [DOI: 10.1021/ja4046907] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Yasutaka Kurishita
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | | | | | - Itaru Hamachi
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | | |
Collapse
|
205
|
Voss S, Wu YW. Tandem Orthogonal Chemically Induced Dimerization. Chembiochem 2013; 14:1525-7. [DOI: 10.1002/cbic.201300446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Indexed: 12/19/2022]
|
206
|
Hobert EM, Doerner AE, Walker AS, Schepartz A. Effective molarity redux: Proximity as a guiding force in chemistry and biology. Isr J Chem 2013; 53:567-576. [PMID: 25418998 PMCID: PMC4238305 DOI: 10.1002/ijch.201300063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell interior is a complex and demanding environment. An incredible variety of molecules jockey to identify the correct position-the specific interactions that promote biology that are hidden among countless unproductive options. Ensuring that the business of the cell is successful requires sophisticated mechanisms to impose temporal and spatial specificity-both on transient interactions and their eventual outcomes. Two strategies employed to regulate macromolecular interactions in a cellular context are co-localization and compartmentalization. Macromolecular interactions can be promoted and specified by localizing the partners within the same subcellular compartment, or by holding them in proximity through covalent or non-covalent interactions with proteins, lipids, or DNA- themes that are familiar to any biologist. The net result of these strategies is an increase in effective molarity: the local concentration of a reactive molecule near its reaction partners. We will focus on this general mechanism, employed by Nature and adapted in the lab, which allows delicate control in complex environments: the power of proximity to accelerate, guide, or otherwise influence the reactivity of signaling proteins and the information that they encode.
Collapse
|
207
|
King NP, Lai YT. Practical approaches to designing novel protein assemblies. Curr Opin Struct Biol 2013; 23:632-8. [PMID: 23827813 DOI: 10.1016/j.sbi.2013.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/21/2013] [Accepted: 06/01/2013] [Indexed: 12/29/2022]
Abstract
Molecular self-assembly offers a means by which sophisticated materials can be constructed with unparalleled precision. Designing self-assembling protein structures is of particular interest as a result of the unique functional capabilities of proteins. Custom-designed protein materials could lead to new possibilities in therapeutics, bioenergy, and materials science. Although the field was long hampered by the challenges involved in designing such complex molecules, novel approaches and computational tools have recently led to remarkable progress. Here we review recent design studies in the context of three fundamental aspects of self-assembling materials: subunit organization, subunit interactions, and regulation of assembly.
Collapse
Affiliation(s)
- Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
208
|
Shin SH, Comolli LR, Tscheliessnig R, Wang C, Nam KT, Hexemer A, Siegerist CE, De Yoreo JJ, Bertozzi CR. Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. ACS NANO 2013; 7:4946-4953. [PMID: 23705800 DOI: 10.1021/nn400263j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture.
Collapse
Affiliation(s)
- Seong-Ho Shin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Tomita D, Kimura T, Hosaka H, Daijima Y, Haruki R, Ludwig K, Böttcher C, Komatsu T. Covalent core-shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules 2013; 14:1816-25. [PMID: 23675962 DOI: 10.1021/bm400204y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Covalent core-shell structured protein clusters of hemoglobin (Hb) and human serum albumin (HSA) (HbX-HSAm) (m = 2, 3) with novel physiological properties were generated by linkage of Hb surface lysins to HSA cysteine-34 via an α-succinimidyl-ε-maleimide cross-linker (X: 1 or 2). The isoelectric points of HbX-HSAm (pI = 5.0-5.2) were markedly lower than that of Hb and almost identical to that of HSA. AFM and TEM measurements revealed a triangular Hb1-HSA3 cluster in aqueous medium. The complete 3D structure of Hb1-HSA3 based on TEM data was reconstructed, revealing two possible conformer variants. All HbX-HSAm clusters showed a moderately higher O2 affinity than the native Hb. Furthermore, the exterior HSA units possess a remarkable ability to bind lumiflavin (LF). The addition of NADH to an aqueous solution of the met-Hb2-(HSA-LF)3 cluster reduced the inactive ferric Hb center to the functional ferrous Hb. This O2-carrying hemoprotein cluster with strongly negative surface net charge, high O2 affinity, and NADH-dependent reductase unit can support a new generation of molecular architecture for red blood cell substitutes.
Collapse
Affiliation(s)
- Daiki Tomita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Lin YC, Nihongaki Y, Liu TY, Razavi S, Sato M, Inoue T. Rapidly reversible manipulation of molecular activity with dual chemical dimerizers. Angew Chem Int Ed Engl 2013; 52:6450-4. [PMID: 23649661 DOI: 10.1002/anie.201301219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
211
|
Lin YC, Nihongaki Y, Liu TY, Razavi S, Sato M, Inoue T. Rapidly Reversible Manipulation of Molecular Activity with Dual Chemical Dimerizers. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
212
|
Abstract
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
| | - Shiva Razavi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205
| | - Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
- PRESTO Investigator, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
213
|
Dang DT, Nguyen HD, Merkx M, Brunsveld L. Supramolecular Control of Enzyme Activity through Cucurbit[8]uril-Mediated Dimerization. Angew Chem Int Ed Engl 2013; 52:2915-9. [DOI: 10.1002/anie.201208239] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/02/2013] [Indexed: 12/13/2022]
|
214
|
Dang DT, Nguyen HD, Merkx M, Brunsveld L. Supramolecular Control of Enzyme Activity through Cucurbit[8]uril-Mediated Dimerization. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208239] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
215
|
Huard DJE, Kane KM, Tezcan FA. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat Chem Biol 2013; 9:169-76. [DOI: 10.1038/nchembio.1163] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022]
|
216
|
Kochańczyk T, Jakimowicz P, Krężel A. Femtomolar Zn(II) affinity of minimal zinc hook peptides--a promising small tag for protein engineering. Chem Commun (Camb) 2013; 49:1312-4. [PMID: 23303248 DOI: 10.1039/c2cc38174e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The minimal zinc hook peptide of Rad50 and its alanine mutants form highly stable Zn(II) complexes. These peptides were successfully used as a small, efficient tag for reversible Zn(II)-mediated protein homodimerization. The high stability, its biological consequences and potential applications in protein engineering are discussed.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Laboratory of Chemical Biology, University of Wrocław, ul. Tamka 2, 50-137 Wrocław, Poland
| | | | | |
Collapse
|
217
|
DeRose R, Miyamoto T, Inoue T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch 2013; 465:409-17. [PMID: 23299847 DOI: 10.1007/s00424-012-1208-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/27/2022]
Abstract
Chemically-inducible dimerization (CID) is a powerful tool that has proved useful in solving numerous problems in cell biology and related fields. In this review, we focus on case studies where CID was able to provide insight into otherwise refractory problems. Of particular interest are the cases of lipid second messengers and small GTPases, where the "signaling paradox" (how a small pool of signaling molecules can generate a large range of responses) can be at least partly explained through results gleaned from CID experiments. We also discuss several recent technical advances that provide improved specificity in CID action, novel CID substrates that allow simultaneous orthogonal manipulation of multiple systems in one cell, and several applications that move beyond the traditional CID technique of moving a protein of interest to a specific spatiotemporal location.
Collapse
Affiliation(s)
- Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
218
|
Petkau-Milroy K, Uhlenheuer DA, Spiering AJH, Vekemans JAJM, Brunsveld L. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chem Sci 2013. [DOI: 10.1039/c3sc50891a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
219
|
Abstract
Protein nanotechnology is an emerging field that is still defining itself. It embraces the intersection of protein science, which exists naturally at the nanoscale, and the burgeoning field of nanotechnology. In this opening chapter, a select review is given of some of the exciting nanostructures that have already been created using proteins, and the sorts of applications that protein engineers are reaching towards in the nanotechnology space. This provides an introduction to the rest of the volume, which provides inspirational case studies, along with tips and tools to manipulate proteins into new forms and architectures, beyond Nature's original intentions.
Collapse
Affiliation(s)
- Juliet A Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, MacDiarmid Institute for Advanced Materials and Nanotechnology, Riddet Institute, Christchurch, New Zealand
| |
Collapse
|
220
|
Synthetic spatially graded Rac activation drives cell polarization and movement. Proc Natl Acad Sci U S A 2012. [PMID: 23185021 DOI: 10.1073/pnas.1210295109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Migrating cells possess intracellular gradients of active Rho GTPases, which serve as central hubs in transducing signals from extracellular receptors to cytoskeletal and adhesive machinery. However, it is unknown whether shallow exogenously induced intracellular gradients of Rho GTPases are sufficient to drive cell polarity and motility. Here, we use microfluidic control to generate gradients of a small molecule and thereby directly induce linear gradients of active, endogenous Rac without activation of chemotactic receptors. Gradients as low as 15% were sufficient not only to trigger cell migration up the chemical gradient but to induce both cell polarization and repolarization. Cellular response times were inversely proportional to the steepness of Rac inducer gradient in agreement with a mathematical model, suggesting a function for chemoattractant gradient amplification upstream of Rac. Increases in activated Rac levels beyond a well-defined threshold augmented polarization and decreased sensitivity to the imposed gradient. The threshold was governed by initial cell polarity and PI3K activity, supporting a role for both in defining responsiveness to Rac activation. Our results reveal that Rac can serve as a starting point in defining cell polarity. Furthermore, our methodology may serve as a template to investigate processes regulated by intracellular signaling gradients.
Collapse
|
221
|
Mori Y, Wakabayashi R, Goto M, Kamiya N. Protein supramolecular complex formation by site-specific avidin-biotin interactions. Org Biomol Chem 2012; 11:914-22. [PMID: 23104386 DOI: 10.1039/c2ob26625c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The precise accumulation of protein functions on a nanoscale to fabricate advanced biomaterials has become possible by a bottom-up approach based on molecular self-assembly. The avidin-biotin interaction is widely employed in the design of functional protein self-assemblies. Herein we assessed how the spatial arrangement of the avidin-biotin interaction between protein building blocks affects the formation of a protein supramolecular complex (PSC). The enzymatic site-specific internal labeling of a symmetric protein scaffold, bacterial alkaline phosphatase (AP), with specifically designed biotinylation substrates revealed that the precise positioning of the biotinylation sites on AP and the linker flexibility of the substrate are critical factors for the growth of PSCs in the presence of streptavidin (SA). A potential diagnostic application of the PSCs comprised of AP and SA was demonstrated in an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Yutaro Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
222
|
Zhang W, Luo Q, Miao L, Hou C, Bai Y, Dong Z, Xu J, Liu J. Self-assembly of glutathione S-transferase into nanowires. NANOSCALE 2012; 4:5847-5851. [PMID: 22907071 DOI: 10.1039/c2nr31244a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study presents the Ni-ion-directed self-assembly of a C(2)-symmetric homodimeric enzyme into nanowires. A genetically introduced His-tag arm stretches out of the central structure of a C(2)-symmetric homodimer of glutathione S-transferase, which is used as a linker to recruit a second building block through interprotein metal coordination, forming self-assembled one-dimensional nanostructures with excellent enzymatic activity.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Lai YT, King NP, Yeates TO. Principles for designing ordered protein assemblies. Trends Cell Biol 2012; 22:653-61. [PMID: 22975357 DOI: 10.1016/j.tcb.2012.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/10/2012] [Accepted: 08/12/2012] [Indexed: 11/18/2022]
Abstract
In nature, many proteins have evolved to have self-complementary shapes. This drives them to assemble into supramolecular structures, sometimes of great complexity, and often carrying out sophisticated cellular functions. Designing novel proteins that can self-assemble into similarly complex structures is a longstanding goal in bioengineering. New ideas, combined with continually improving computer algorithms, are making it possible to advance on that goal, bringing wide-ranging applications in synthetic biology within reach. Prospective applications range from vaccine design to molecular delivery to bioactive materials. Recent strategies and examples of successfully designed protein cages, layers, and crystals are reviewed.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Biomedical Engineering Interdepartmental Degree Program, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
224
|
Shapiro MG, Frazier SJ, Lester HA. Unparalleled control of neural activity using orthogonal pharmacogenetics. ACS Chem Neurosci 2012; 3:619-29. [PMID: 22896806 DOI: 10.1021/cn300053q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022] Open
Abstract
Studying the functional architecture of the brain requires technologies to precisely measure and perturb the activity of specific neural cells and circuits in live animals. Substantial progress has been made in recent years to develop and apply such tools. In particular, technologies that provide precise control of activity in genetically defined populations of neurons have enabled the study of causal relationships between and among neural circuit elements and behavioral outputs. Here, we review an important subset of such technologies, in which neurons are genetically engineered to respond to specific chemical ligands that have no interfering pharmacological effect in the central nervous system. A rapidly expanding set of these "orthogonal pharmacogenetic" tools provides a unique combination of genetic specificity, functional diversity, spatiotemporal precision, and potential for multiplexing. We review the main classes of orthogonal pharmacogenetic technologies, including neuroreceptors to control neuronal excitability, systems to control gene transcription and translation, and general constructs to control protein-protein interactions, enzymatic function, and protein stability. We describe the key performance characteristics informing the use of these technologies in the brain, and potential directions for improvement and expansion of the orthogonal pharmacogenetics toolkit to enable more sophisticated systems neuroscience.
Collapse
Affiliation(s)
- Mikhail G. Shapiro
- Miller Research Institute, Department
of Bioengineering, and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California
94720, United States
| | | | | |
Collapse
|
225
|
Dopamine receptor D3 regulates endocytic sorting by a Prazosin-sensitive interaction with the coatomer COPI. Proc Natl Acad Sci U S A 2012; 109:12485-90. [PMID: 22802617 DOI: 10.1073/pnas.1207821109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macromolecules enter cells by endocytosis and are sorted to different cellular destinations in early/sorting endosomes. The mechanism and regulation of sorting are poorly understood, although transitions between vesicular and tubular endosomes are important. We found that the antihypertensive drug Prazosin inhibits endocytic sorting by an off-target perturbation of the G protein-coupled receptor dopamine receptor D(3) (DRD3). Prazosin is also a potent cytokinesis inhibitor, likely as a consequence of its effects on endosomes. Prazosin stabilizes a normally transient interaction between DRD3 and the coatomer COPI, a complex involved in membrane transport, and shifts endosomal morphology entirely to tubules, disrupting cargo sorting. RNAi depletion of DRD3 alone also inhibits endocytic sorting, indicating a noncanonical role for a G protein-coupled receptor. Prazosin is a powerful tool for rapid and reversible perturbation of endocytic dynamics.
Collapse
|
226
|
White BR, Carlson JCT, Kerns JL, Wagner CR. Protein interface remodeling in a chemically induced protein dimer. J Mol Recognit 2012; 25:393-403. [DOI: 10.1002/jmr.2196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brian R. White
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| | - Jonathan C. T. Carlson
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| | - Jessie L. Kerns
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, College of Pharmacy; University of Minnesota; Minneapolis; MN; 55455; USA
| |
Collapse
|
227
|
Rutkowska A, Schultz C. Protein Tango: The Toolbox to Capture Interacting Partners. Angew Chem Int Ed Engl 2012; 51:8166-76. [DOI: 10.1002/anie.201201717] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Indexed: 11/07/2022]
|
228
|
|
229
|
Putyrski M, Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett 2012; 586:2097-105. [DOI: 10.1016/j.febslet.2012.04.061] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 01/08/2023]
|
230
|
Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat Chem Biol 2012; 8:465-70. [PMID: 22446836 DOI: 10.1038/nchembio.922] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using both chemical inputs (rapamycin and GA(3)-AM), we designed and synthesized Boolean logic gates in living mammalian cells. These gates produced output signals such as fluorescence and membrane ruffling on a timescale of seconds, substantially faster than earlier intracellular logic gates. The use of two orthogonal dimerization systems in the same cell also allows for finer modulation of protein perturbations than is possible with a single dimerizer.
Collapse
|
231
|
DeRose R, Pohlmeyer C, Umeda N, Ueno T, Nagano T, Kuo S, Inoue T. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells. J Vis Exp 2012:3794. [PMID: 22433289 DOI: 10.3791/3794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).
Collapse
Affiliation(s)
- Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, MD, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
Tucker CL. Manipulating cellular processes using optical control of protein-protein interactions. PROGRESS IN BRAIN RESEARCH 2012; 196:95-117. [PMID: 22341323 DOI: 10.1016/b978-0-444-59426-6.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tools for optical control of proteins offer an unprecedented level of spatiotemporal control over biological processes, adding a new layer of experimental opportunity. While use of light-activated cation channels and anion pumps has already revolutionized neurobiology, an emerging class of more general optogenetic tools may have similar transformative effects. These tools consist of light-dependent protein interaction modules that allow control of target protein interactions and localization with light. Such tools are modular and can be applied to regulate a wide variety of biological activities. This chapter reviews the different properties of light-induced dimerization systems, based on plant phytochromes, cryptochromes, and light-oxygen-voltage domain proteins, exploring advantages and limitations of the different systems and practical considerations related to their use. Potential applications of these tools within the neurobiology field, including light control of various signaling pathways, neuronal activity, and DNA recombination and transcription, are discussed.
Collapse
Affiliation(s)
- Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
233
|
Abstract
Cell migration is required for many physiological processes, including wound repair and embryogenesis, and relies on precisely orchestrated events that are regulated in a spatially and temporally controlled manner. Most traditional approaches for studying migration, such as genetic methods or the use of chemical inhibitors, do not offer insight into these important components of protein function. However, chemical tools, which respond on a more rapid time scale and in localized regions of the cell, are capable of providing more detailed, real-time information. This Review describes these recent approaches to investigate cell migration and focuses on proteins that are activated by light or small molecules, as well as fluorescent sensors of protein activity.
Collapse
Affiliation(s)
- Brenda N. Goguen
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
234
|
Shekhawat SS, Ghosh I. Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 2011; 15:789-97. [PMID: 22070901 DOI: 10.1016/j.cbpa.2011.10.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/07/2011] [Accepted: 10/17/2011] [Indexed: 11/29/2022]
Abstract
It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches.
Collapse
Affiliation(s)
- Sujan S Shekhawat
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, AZ 85721, USA
| | | |
Collapse
|
235
|
Ma M, Bong D. Protein assembly directed by synthetic molecular recognition motifs. Org Biomol Chem 2011; 9:7296-9. [PMID: 21912803 DOI: 10.1039/c1ob05998j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tris-functionalized cyanuric acid (TCA) and melamine (TM) selectively recognize each other in aqueous solution with 1 : 1 stoichiometry. We have coupled biotin to TCA and TM to allow pseudo-tetrahedral display of TCA and TM on streptavidin through biotin-ligand binding. Synthetic cyanuric acid/melamine recognition is found to drive selective protein-protein assembly.
Collapse
Affiliation(s)
- Mingming Ma
- Department of Chemistry, The Ohio State University, Columbus, USA
| | | |
Collapse
|
236
|
Kitagishi H, Kashiwa K, Kano K. Functionalization of a protein surface with per-O-methylated β-cyclodextrin. Biopolymers 2011; 97:11-20. [DOI: 10.1002/bip.21695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 01/30/2023]
|
237
|
Sonntag T, Mootz HD. An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing. MOLECULAR BIOSYSTEMS 2011; 7:2031-9. [DOI: 10.1039/c1mb05025g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
238
|
Uhlenheuer DA, Young JF, Nguyen HD, Scheepstra M, Brunsveld L. Cucurbit[8]uril induced heterodimerization of methylviologen and naphthalene functionalized proteins. Chem Commun (Camb) 2011; 47:6798-800. [DOI: 10.1039/c1cc11197c] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
239
|
Liu HH, Chen Y. Selective photochromism and solvatochromism of a diarylethene with different bridge units. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02691c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
240
|
Uhlenheuer DA, Milroy LG, Neirynck P, Brunsveld L. Strong supramolecular control over protein self-assembly using a polyamine decorated β-cyclodextrin as synthetic recognition element. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12736e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|