201
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
202
|
|
203
|
Young TA, Gheorghe R, Duarte F. cgbind: A Python Module and Web App for Automated Metallocage Construction and Host–Guest Characterization. J Chem Inf Model 2020; 60:3546-3557. [DOI: 10.1021/acs.jcim.0c00519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tom A. Young
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Razvan Gheorghe
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
204
|
Wu GY, Shi X, Phan H, Qu H, Hu YX, Yin GQ, Zhao XL, Li X, Xu L, Yu Q, Yang HB. Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nat Commun 2020; 11:3178. [PMID: 32576814 PMCID: PMC7311404 DOI: 10.1038/s41467-020-16940-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/21/2020] [Indexed: 12/02/2022] Open
Abstract
Sophisticated mechanically interlocked molecules (MIMs) with interesting structures, properties and applications have attracted great interest in the field of supramolecular chemistry. We herein report a highly efficient self-assembly of heterometallic triangular necklace 1 containing Cu and Pt metals with strong antibacterial activity. Single-crystal X-ray analysis shows that the finely arranged triangular necklace 1 has two racemic enantiomers in its solid state with intriguing packing motif. The superior antibacterial activity of necklace 1 against both standard and clinically drug-resistant pathogens implies that the presence of Cu(I) center and platinum(II) significantly enhance the bacterium-binding/damaging activity, which is mainly attributed to the highly positively charged nature, the possible synergistic effect of heterometals in the necklace, and the improved stability in culture media. This work clearly discloses the structure-property relationships that the existence of two different metal centers not only facilitates successful construction of heterometallic triangular necklace but also endows it with superior nuclease properties and antibacterial activities. Precise assembly of heterometallic complexes is a challenge. Here, the authors design a heterometallic triangular necklace through a highly efficient threading-and-ring-closing approach driven by metal-ligand coordination, which shows strong bacterium-binding and cell wall/plasma membrane-disrupting capacity for killing bacterial cells.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Hoa Phan
- Vinh University, 182 LeDuan Street, Vinh, Vietnam
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| |
Collapse
|
205
|
Sun Y, Chen C, Liu J, Stang PJ. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem Soc Rev 2020; 49:3889-3919. [PMID: 32412574 PMCID: PMC7846457 DOI: 10.1039/d0cs00038h] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination-driven suprastructures have attracted much interest due to their unique properties. Among these structures, platinum-based architectures have been broadly studied due to their facile preparation. The resultant two- or three-dimensional (2D or 3D) systems have many advantages over their precursors, such as improved emission tuning, sensitivity as sensors, and capture and release of guests, and they have been applied in biomedical diagnosis as well as in catalysis. Herein, we review the recent results related to platinum-based coordination-driven self-assembly (CDSA), and the text is organized to emphasizes both the synthesis of new metallacycles and metallacages and their various applications.
Collapse
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | | | | | | |
Collapse
|
206
|
Affiliation(s)
- Aeri J. Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Casey A. Rowland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
207
|
Combining Coordination and Hydrogen Bonds to Develop Discrete Supramolecular Metalla-Assemblies. CHEMISTRY 2020. [DOI: 10.3390/chemistry2020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Nature, metal ions play critical roles at different levels, and they are often found in proteins. Therefore, metal ions are naturally incorporated in hydrogen-bonded systems. In addition, the combination of metal coordination and hydrogen bonds have been used extensively to develop supramolecular materials. However, despite this win-win combination between coordination and hydrogen bonds in many supramolecular systems, the same combination remains scarce in the field of coordination-driven self-assemblies. Indeed, as illustrated in this mini-review, only a few discrete supramolecular metalla-assemblies combining coordination and hydrogen bonds can be found in the literature, but that figure might change rapidly.
Collapse
|
208
|
Ferrer M, Gallen A, Gutiérrez A, Martínez M, Ruiz E, Lorenz Y, Engeser M. Self‐Assembled, Highly Positively Charged, Allyl–Pd Crowns: Cavity‐Pocket‐Driven Interactions of Fluoroanions. Chemistry 2020; 26:7847-7860. [DOI: 10.1002/chem.202000316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Montserrat Ferrer
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Albert Gallen
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Albert Gutiérrez
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i OrgànicaSecció de Química InorgànicaUniversitat de Barcelona c/ Martí i Franquès 1-1 08028 Barcelona Spain
- Institut de Química Teòrica i ComputacionalUniversitat de Barcelona c/ Martí i Franquès 1-11 08028 Barcelona Spain
| | - Yvonne Lorenz
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Marianne Engeser
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
209
|
Jiang X, Zhou Z, Yang H, Shan C, Yu H, Wojtas L, Zhang M, Mao Z, Wang M, Stang PJ. Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy. Inorg Chem 2020; 59:7380-7388. [PMID: 31961145 PMCID: PMC7821909 DOI: 10.1021/acs.inorgchem.9b02775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this report, we describe the synthesis of two porphyrin-containing Pt(II) supramolecular assemblies via coordination-driven self-assembly. X-ray crystallographic analysis on one assembly reveals that the metalla-assembly formation imposes large interchromophore distances, leading to a higher 1O2 generation efficiency, relative to the corresponding small molecular precursors. The metalla-assemblies were examined as photosensitizers for photodynamic therapy as the potential reduction of the unfavorable self-aggregation phenomenon. In vivo and in vitro investigations demonstrate that the metalla-assemblies exhibit enhanced anticancer activity with minimal dose requirement and side effects comparable to the small molecule precursors. Thus, our work demonstrates that self-assembly provides a promising methodology for enhancing the therapeutic effectiveness of anticancer agents.
Collapse
Affiliation(s)
- Xin Jiang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chuan Shan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Hao Yu
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ming Wang
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
210
|
Hong T, Zhang Z, Sun Y, Tao JJ, Tang JD, Xie C, Wang M, Chen F, Xie SS, Li S, Stang PJ. Chiral Metallacycles as Catalysts for Asymmetric Conjugate Addition of Styrylboronic Acids to α,β-Enones. J Am Chem Soc 2020; 142:10244-10249. [DOI: 10.1021/jacs.0c01563] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Jia-Ju Tao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Dong Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunsong Xie
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Min Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shang-Shu Xie
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
211
|
Dobashi H, Catti L, Tanaka Y, Akita M, Yoshizawa M. N-Doping of Polyaromatic Capsules: Small Cavity Modification Leads to Large Change in Host-Guest Interactions. Angew Chem Int Ed Engl 2020; 59:11881-11885. [PMID: 32291946 DOI: 10.1002/anie.202004168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/02/2020] [Indexed: 12/16/2022]
Abstract
To gain insight into the host functions of a nanocavity encircled by both polyaromatic panels and heteroatoms, nitrogen-doped polyaromatic capsules were successfully synthesized from metal ions and pyridine-embedded, bent anthracene-based ligands. The new capsules display unique host-guest interactions in the isolated cavities, which are distinct from those of the undoped analogues. Besides the inclusion of Ag+ ions, the large absorption change of fullerene C60 and altered emission of a BODIPY dimer are observed upon encapsulation by the present hosts. Moreover, the N-doped capsule exhibits specific binding ability toward progesterone and methyltestosterone, known as a natural female and synthetic male hormone, respectively, in water.
Collapse
Affiliation(s)
- Hiroki Dobashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Lorenzo Catti
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
212
|
Pesce L, Perego C, Grommet AB, Klajn R, Pavan GM. Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage. J Am Chem Soc 2020; 142:9792-9802. [PMID: 32353237 PMCID: PMC7644116 DOI: 10.1021/jacs.0c03444] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Photoswitchable
molecules are employed for many applications, from
the development of active materials to the design of stimuli-responsive
molecular systems and light-powered molecular machines. To fully exploit
their potential, we must learn ways to control the mechanism and kinetics
of their photoinduced isomerization. One possible strategy involves
confinement of photoresponsive switches such as azobenzenes or spiropyrans
within crowded molecular environments, which may allow control over
their light-induced conversion. However, the molecular factors that
influence and control the switching process under realistic conditions
and within dynamic molecular regimes often remain difficult to ascertain.
As a case study, here we have employed molecular models to probe the
isomerization of azobenzene guests within a Pd(II)-based coordination
cage host in water. Atomistic molecular dynamics and metadynamics
simulations allow us to characterize the flexibility of the cage in
the solvent, the (rare) guest encapsulation and release events, and
the relative probability/kinetics of light-induced isomerization of
azobenzene analogues in these host–guest systems. In this way,
we can reconstruct the mechanism of azobenzene switching inside the
cage cavity and explore key molecular factors that may control this
event. We obtain a molecular-level insight on the effects of crowding
and host–guest interactions on azobenzene isomerization. The
detailed picture elucidated by this study may enable the rational
design of photoswitchable systems whose reactivity can be controlled
via host–guest interactions.
Collapse
Affiliation(s)
- Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland.,Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
213
|
Lewis JEM, Crowley JD. Metallo‐Supramolecular Self‐Assembly with Reduced‐Symmetry Ligands. Chempluschem 2020; 85:815-827. [DOI: 10.1002/cplu.202000153] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Indexed: 12/20/2022]
Affiliation(s)
- James E. M. Lewis
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub 80 Wood Lane London W12 0BZ United Kingdom
| | - James. D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
214
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020; 59:11101-11107. [DOI: 10.1002/anie.202003220] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
215
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
216
|
Fink D, Orth N, Ebel V, Gogesch FS, Staiger A, Linseis M, Ivanović-Burmazović I, Winter RF. Self-Assembled Redox-Active Tetraruthenium Macrocycles with Large Intracyclic Cavities. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Fink
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Nicole Orth
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Viktoria Ebel
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Franciska S. Gogesch
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anne Staiger
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
217
|
Singh J, Kim DH, Kim EH, Kim H, Hadiputra R, Jung J, Chi KW. The First Quantitative Synthesis of a Closed Three-Link Chain (613) Using Coordination and Noncovalent Interactions-Driven Self-Assembly. J Am Chem Soc 2020; 142:9327-9336. [DOI: 10.1021/jacs.0c01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipments, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| |
Collapse
|
218
|
Lagesse NR, Tan KYL, Crowley JD, Findlay JA. Planar 2‐Pyridyl‐1,2,3‐triazole Derived Metallo‐ligands: Self‐assembly with PdCl2and Photocatalysis. Chem Asian J 2020; 15:1567-1573. [DOI: 10.1002/asia.202000284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Natalie R. Lagesse
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - Kelvin Y. L. Tan
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
219
|
Li ZW, Wang X, Wei LQ, Ivanović-Burmazović I, Liu GF. Subcomponent Self-Assembly of Covalent Metallacycles Templated by Catalytically Active Seven-Coordinate Transition Metal Centers. J Am Chem Soc 2020; 142:7283-7288. [PMID: 32243756 DOI: 10.1021/jacs.0c01035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coordination geometries of transition metals play vital roles in the self-assembly process of supramolecular coordination complexes. Herein, seven-coordinate 3d metal ions were applied as templates and catalytically active sites for subcomponent self-assembly that resulted in a new category of covalent metallacycles. Single-crystal structures showed that the sizes, configurations, and functionalization of covalent metallacycles could be tuned by the selection of rigid dihydrazide, transition metal ions, and prefunctionalized subcomponents, respectively. Moreover, metallacycles decorated with carboxylic groups could be employed as precursors to prepare aerogels through hierarchical self-assembly, which also exhibited high catalytic activity for cycloaddition of CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Zhi-Wei Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Gao-Feng Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
220
|
Chen L, Chen C, Sun Y, Lu S, Huo H, Tan T, Li A, Li X, Ungar G, Liu F, Zhang M. Luminescent Metallacycle‐Cored Liquid Crystals Induced by Metal Coordination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Long Chen
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials ScienceCollege of Chemistry and Material SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Shuai Lu
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
- College of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Anquan Li
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
221
|
Chen L, Chen C, Sun Y, Lu S, Huo H, Tan T, Li A, Li X, Ungar G, Liu F, Zhang M. Luminescent Metallacycle-Cored Liquid Crystals Induced by Metal Coordination. Angew Chem Int Ed Engl 2020; 59:10143-10150. [PMID: 32080962 DOI: 10.1002/anie.201915055] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Indexed: 12/31/2022]
Abstract
Two rhomboidal metallacycles based on metal-coordination-driven self-assembly are presented. Because metal-coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation-induced emission properties were well-retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal-coordination interactions. This study not only reveals the mechanism for the formation of cavity-cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Anquan Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
222
|
Cyclodextrins Modified/Coated Metal-Organic Frameworks. MATERIALS 2020; 13:ma13061273. [PMID: 32168874 PMCID: PMC7143562 DOI: 10.3390/ma13061273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023]
Abstract
Recent progress about a novel organic–inorganic hybrid materials, namely cyclodextrins (CDs) modified/coated metal–organic frameworks (MOFs) is summarized by using a special categorization method focusing on the interactions between CDs and MOFs moieties, such as ligand–metal cations interactions, supramolecular interactions including host–guest interactions and hydrogen bonding, as well as covalent bonds. This review mainly focuses on the interactions between CDs and MOFs and the strategy of combining them together, diverse external stimuli responsiveness of CDs-modified/coated MOFs, as well as applications of these hybrid materials to drug delivery and release system, catalysis and detection materials. Additionally, due to the importance of investigating advanced chemical architectures and physiochemical properties of CDs-modified/coated MOFs, a separate section is involved in diverse characterization methods and instruments. Furthermore, this minireview also foresees future research directions in this rapidly developing field.
Collapse
|
223
|
Taylor CGP, Argent SP, Ludden MD, Piper JR, Mozaceanu C, Barnett SA, Ward MD. One Guest or Two? A Crystallographic and Solution Study of Guest Binding in a Cubic Coordination Cage. Chemistry 2020; 26:3054-3064. [PMID: 31816132 PMCID: PMC7079040 DOI: 10.1002/chem.201905499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/22/2023]
Abstract
A crystallographic investigation of a series of host-guest complexes in which small-molecule organic guests occupy the central cavity of an approximately cubic M8 L12 coordination cage has revealed some unexpected behaviour. Whilst some guests form 1:1 H⋅G complexes as we have seen before, an extensive family of bicyclic guests-including some substituted coumarins and various saturated analogues-form 1:2 H⋅G2 complexes in the solid state, despite the fact that solution titrations are consistent with 1:1 complex formation, and the combined volume of the pair of guests significantly exceeds the Rebek 55±9 % packing for optimal guest binding, with packing coefficients of up to 87 %. Re-examination of solution titration data for guest binding in two cases showed that, although conventional fluorescence titrations are consistent with 1:1 binding model, alternative forms of analysis-Job plot and an NMR titration-at higher concentrations do provide evidence for 1:2 H⋅G2 complex formation. The observation of guests binding in pairs in some cases opens new possibilities for altered reactivity of bound guests, and also highlights the recently articulated difficulties associated with determining stoichiometry of supramolecular complexes in solution.
Collapse
Affiliation(s)
| | | | | | - Jerico R. Piper
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Sarah A. Barnett
- Diamond Light Source Ltd., Diamond HouseHarwell Science and Innovation CampusDidcot, OxfordshireOX11 0DEUK
| | - Michael D. Ward
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
224
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
225
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:6420-6427. [DOI: 10.1002/anie.201915281] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
226
|
Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorg Chem 2020; 59:2083-2091. [PMID: 31971781 PMCID: PMC10615217 DOI: 10.1021/acs.inorgchem.9b03572] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control over the stimuli-responsive behavior of smart molecular systems can influence their capability to execute complex functionalities. Herein, we report the development of a suite of spiropyran-based multi-stimuli-responsive self-assembled platinum(II) macrocycles (5-7), rendering coordination-assisted enhanced photochromism relative to the corresponding ligands. 5 showed shrinking and swelling during photoreversal, while 6 and 7 are fast and fatigue-free supramolecular photoswitches. 6 turns out to be a better fatigue-resistant photoswitch and can retain an intact photoswitching ability of up to 20 reversible cycles. The switching behavior of the macrocycles can also be precisely controlled by tuning the pH of the medium. Our present strategy for the construction of rapid stimuli-responsive supramolecular architectures via coordination-driven self-assembly represents an efficient route for the development of smart molecular switches.
Collapse
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
- Department of Industrial Chemistry , Mizoram University , Aizawl , Mizoram 796004 , India
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Sumit Kumar Panja
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| |
Collapse
|
227
|
Zhang Z, Zhao Z, Wu L, Lu S, Ling S, Li G, Xu L, Ma L, Hou Y, Wang X, Li X, He G, Wang K, Zou B, Zhang M. Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. J Am Chem Soc 2020; 142:2592-2600. [PMID: 31940435 DOI: 10.1021/jacs.9b12689] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is quite challenging to realize fluorescence resonance energy transfer (FRET) between two chromophores with specific positions and directions. Herein, through the self-assembly of two carefully selected fluorescent ligands via metal-coordination interactions, we prepared two tetragonal prismatic platinum(II) cages with a reverse FRET process between their faces and pillars. Bearing different responses to external stimuli, these two emissive ligands are able to tune the FRET process, thus making the cages sensitive to solvents, pressure, and temperature. First, these cages could distinguish structurally similar alcohols such as n-butanol, t-butanol, and i-butanol. Furthermore, they showed decreased emission with bathochromic shifts under high pressure. Finally, they exhibited a remarkable ratiometric response to temperature over a wide range (223-353 K) with high sensitivity. For example, by plotting the ratio of the maximum emission (I600/I480) of metallacage 4b against the temperature, the slope reaches 0.072, which is among the highest values for ratiometric fluorescent thermometers reported so far. This work not only offers a strategy to manipulate the FRET efficiency in emissive supramolecular coordination complexes but also paves the way for the future design and preparation of smart emissive materials with external stimuli responsiveness.
Collapse
Affiliation(s)
| | | | - Lianwei Wu
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | | | | | | | | | | | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | | | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P. R. China
| | | |
Collapse
|
228
|
Wang LJ, Li X, Bai S, Wang YY, Han YF. Self-Assembly, Structural Transformation, and Guest-Binding Properties of Supramolecular Assemblies with Triangular Metal–Metal Bonded Units. J Am Chem Soc 2020; 142:2524-2531. [DOI: 10.1021/jacs.9b12309] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Juan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
229
|
Wong KKG, Hoyas Pérez N, White AJP, Lewis JEM. Self-assembly of a porous metallo-[5]rotaxane. Chem Commun (Camb) 2020; 56:10453-10456. [DOI: 10.1039/d0cc04780e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A dynamic rotaxane ligand self-assembles with palladium(ii) ions to form a metallo-[5]rotaxane with a porous cage at its core.
Collapse
Affiliation(s)
- Kevin Kei Gwan Wong
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - Nadia Hoyas Pérez
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - Andrew J. P. White
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James E. M. Lewis
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
230
|
Lai YL, Wang XZ, Dai RR, Huang YL, Zhou XC, Zhou XP, Li D. Self-assembly of mixed-valence and heterometallic metallocycles: efficient catalysts for the oxidation of alcohols to aldehydes in ambient air. Dalton Trans 2020; 49:7304-7308. [DOI: 10.1039/d0dt01340d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mixed-valence CuII/CuI and two heterometallic CuII/AgI metallocycles have been synthesized by the assembly of designed metalloligands and CuI/AgI ions, respectively.
Collapse
Affiliation(s)
- Ya-Liang Lai
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Rui-Rong Dai
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Yong-Liang Huang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| |
Collapse
|
231
|
Abstract
Liquid crystals are among us, in living organisms and in electronic devices, and they have contributed to the development of our modern society. Traditionally developed by organic chemists, the field of liquid-crystalline materials is now involving chemists and physicists of all domains (computational, physical, inorganic, supramolecular, electro-chemistry, polymers, materials, etc.,). Such diversity in researchers confirms that the field remains highly active and that new applications can be foreseen in the future. In this review, liquid-crystalline materials developed around coordination complexes are presented, focusing on those showing thermotropic behavior, a relatively unexplored family of compounds.
Collapse
|
232
|
Ostrowska M, Toporivska Y, Golenya IA, Shova S, Fritsky IO, Pecoraro VL, Gumienna-Kontecka E. Explaining How α-Hydroxamate Ligands Control the Formation of Cu(II)-, Ni(II)-, and Zn(II)-Containing Metallacrowns. Inorg Chem 2019; 58:16642-16659. [DOI: 10.1021/acs.inorgchem.9b02724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Irina A. Golenya
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kiev, Ukraine
| | - Sergiu Shova
- “Poni Petru” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kiev, Ukraine
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
233
|
A self-assembled Ru-Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proc Natl Acad Sci U S A 2019; 116:20296-20302. [PMID: 31548389 DOI: 10.1073/pnas.1912549116] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment procedure that relies on cytotoxic reactive oxygen species (ROS) generated by the light activation of a photosensitizer. The photophysical and biological properties of photosensitizers are vital for the therapeutic outcome of PDT. In this work a 2D rhomboidal metallacycle and a 3D octahedral metallacage were designed and synthesized via the coordination-driven self-assembly of a Ru(II)-based photosensitizer and complementary Pt(II)-based building blocks. The metallacage showed deep-red luminescence, a large 2-photon absorption cross-section, and highly efficient ROS generation. The metallacage was encapsulated into an amphiphilic block copolymer to form nanoparticles to encourage cell uptake and localization. Upon internalization into cells, the nanoparticles selectively accumulate in the lysosomes, a favorable location for PDT. The nanoparticles are almost nontoxic in the dark, and can efficiently destroy tumor cells via the generation of ROS in the lysosomes under 2-photon near-infrared light irradiation. The superb PDT efficacy of the metallacage-containing nanoparticles was further validated by studies on 3D multicellular spheroids (MCS) and in vivo studies on A549 tumor-bearing mice.
Collapse
|
234
|
Acharyya K, Bhattacharyya S, Sepehrpour H, Chakraborty S, Lu S, Shi B, Li X, Mukherjee PS, Stang PJ. Self-Assembled Fluorescent Pt(II) Metallacycles as Artificial Light-Harvesting Systems. J Am Chem Soc 2019; 141:14565-14569. [PMID: 31479260 DOI: 10.1021/jacs.9b08403] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-harvesting is one of the key steps in photosynthesis, but developing artificial light-harvesting systems (LHSs) with high energy transfer efficiencies has been a challenging task. Here we report fluorescent hexagonal Pt(II) metallacycles as a new platform to fabricate artificial LHSs. The metallacycles (4 and 5) are easily accessible by coordination-driven self-assembly of a triphenylamine-based ditopic ligand 1 with di-platinum acceptors 2 and 3, respectively. They possess good fluorescence properties both in solution and in the solid state. Notably, the metallacycles show aggregation-induced emission enhancement (AIEE) characteristics in a DMSO-H2O solvent system. In the presence of the fluorescent dye Eosin Y (ESY), the emission intensities of the metallacycles decrease but the emission intensity of ESY increases. The absorption spectrum of ESY and the emission spectra of the metallacycles show a considerable overlap, suggesting the possibility of energy transfer from the metallacycles to ESY, with an energy transfer efficiency as high as 65% in the 4a+ESY system.
Collapse
Affiliation(s)
- Koushik Acharyya
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Hajar Sepehrpour
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Shubhadip Chakraborty
- Institut de Physique de Rennes , UMR CNRS 6251, Université de Rennes 1 , Campus de Beaulieu , 35042 Rennes Cedex, France
| | - Shuai Lu
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Bingbing Shi
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|