201
|
Katana B, Rouster P, Varga G, Muráth S, Glinel K, Jonas AM, Szilagyi I. Self-Assembly of Protamine Biomacromolecule on Halloysite Nanotubes for Immobilization of Superoxide Dismutase Enzyme. ACS APPLIED BIO MATERIALS 2019; 3:522-530. [DOI: 10.1021/acsabm.9b00953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bojana Katana
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Paul Rouster
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gábor Varga
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Szabolcs Muráth
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
202
|
Müller S, Gruhle K, Meister A, Hause G, Drescher S. Bolalipid-Doped Liposomes: Can Bolalipids Increase the Integrity of Liposomes Exposed to Gastrointestinal Fluids? Pharmaceutics 2019; 11:E646. [PMID: 31816937 PMCID: PMC6956191 DOI: 10.3390/pharmaceutics11120646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023] Open
Abstract
The use of archaeal lipids and their artificial analogues, also known as bolalipids, represents a promising approach for the stabilization of classical lipid vesicles for oral application. In a previous study, we investigated the mixing behavior of three single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidyl-cholines. We proved, that the bolalipids PC-C32(1,32C6)-PC and PC-C32(1,32C9)-PC show miscibility with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). In the present work, we extended our vesicle system to natural lipid mixtures using phosphatidylcholine from soy beans, and we investigated the effect of incorporated bolalipids on the integrity of these mixed liposomes (bolasomes) in different gastrointestinal fluids using a dithionite assay and a calcein release assay in combination with particle size measurements. Finally, we also studied the retention of calcein within the bolasomes during freeze-drying. As a main result, we could show that in particular PC-C32(1,32C6)-PC is able to increase the stability of bolasomes in simulated gastric fluid-a prerequisite for the further use of liposomes as oral drug delivery vehicles.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| | - Kai Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, 06120 Halle (Saale), Germany; (S.M.); (K.G.)
| |
Collapse
|
203
|
Unraveling the role of phase modifiers in the extraction of Nd(III) from nitric acid medium in tetra-bis(2-ethylhexyl)diglycolamide in n-dodecane containing long chain aliphatic alcohols. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
204
|
Swami KR, Venkatesan KA, Antony MP. Role of Phase Modifiers in Controlling the Third-phase Formation During the Solvent Extraction of Trivalent Actinides. SOLVENT EXTRACTION AND ION EXCHANGE 2019. [DOI: 10.1080/07366299.2019.1695560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K. Rama Swami
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
- Department of Chemical Sciences, Homi Bhabha National Institute, Mumbai, India
| | - K. A. Venkatesan
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
| | - M. P. Antony
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
- Department of Chemical Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
205
|
Sharma VK, Mitra S, Mukhopadhyay R. Dynamic Landscape in Self-Assembled Surfactant Aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14151-14172. [PMID: 30730752 DOI: 10.1021/acs.langmuir.8b03596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A process in which a disordered system of pre-existing molecules generates an organized structure through specific, local interactions among the molecules themselves is termed molecular self-assembly. Micelles, microemulsions, and vesicles are examples of such self-assembled systems where amphiphilic molecules are involved. As the functional properties of these systems (such as wetting and emulsification, release of solubilized drugs, etc.) are dictated by the dynamic behavior of the surfactants at the molecular level, it is of immense interest to investigate these systems for the same. The dynamics in soft matter systems is quite complex, involving different time and length scales. We used a combination of neutron scattering and molecular dynamics simulation studies in probing the dynamic landscape in various self-assembled surfactant aggregates. Neutron scattering experiments were carried out using several spectrometers covering a wide dynamic range to probe motions on different time scales. The interaction between the surfactants can be varied by changing the molecular architecture, counterion concentration, temperature, and so forth. It is important to study the effect of these parameters on the dynamics of surfactants in these aggregates. We have carried out experiments on various ionic (anionic as well as cationic) micelles with varied counterion concentrations, vesicles, and lipid bilayers to unravel the complex dynamic features present in these systems. In this feature article, we will discuss some important results of our recent work on dynamics in these self-assembled surfactant aggregates.
Collapse
Affiliation(s)
| | - Subhankur Mitra
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| | - Ramaprosad Mukhopadhyay
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|
206
|
Rama Swami K, Venkatesan KA. Effect of pKa of organophosphorus acidic extractants on the aggregation behavior of diglycolamide in n-dodecane. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
207
|
Atahar A, Mafy NN, Rahman MM, Mollah MYA, Susan MABH. Aggregation of urea in water: Dynamic light scattering analyses. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
208
|
Sáringer S, Akula RA, Szerlauth A, Szilagyi I. Papain Adsorption on Latex Particles: Charging, Aggregation, and Enzymatic Activity. J Phys Chem B 2019; 123:9984-9991. [DOI: 10.1021/acs.jpcb.9b08799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Rita Achieng Akula
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary
| |
Collapse
|
209
|
Affiliation(s)
- Fang-Yi Lin
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Mengguo Yan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
210
|
Ayotte Y, Marando VM, Vaillancourt L, Bouchard P, Heffron G, Coote PW, Larda ST, LaPlante SR. Exposing Small-Molecule Nanoentities by a Nuclear Magnetic Resonance Relaxation Assay. J Med Chem 2019; 62:7885-7896. [PMID: 31422659 DOI: 10.1021/acs.jmedchem.9b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Small molecules can self-assemble in aqueous solution into a wide range of nanoentity types and sizes (dimers, n-mers, micelles, colloids, etc.), each having their own unique properties. This has important consequences in the context of drug discovery including issues related to nonspecific binding, off-target effects, and false positives and negatives. Here, we demonstrate the use of the spin-spin relaxation Carr-Purcell-Meiboom-Gill NMR experiment, which is sensitive to molecular tumbling rates and can expose larger aggregate species that have slower rotational correlations. The strategy easily distinguishes lone-tumbling molecules versus nanoentities of various sizes. The technique is highly sensitive to chemical exchange between single-molecule and aggregate states and can therefore be used as a reporter when direct measurement of aggregates is not possible by NMR. Interestingly, we found differences in solution behavior for compounds within structurally related series, demonstrating structure-nanoentity relationships. This practical experiment is a valuable tool to support drug discovery efforts.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Victoria M Marando
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Louis Vaillancourt
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Patricia Bouchard
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Gregory Heffron
- Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Paul W Coote
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Sacha T Larda
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Steven R LaPlante
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada.,NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
211
|
Hu Y, Sun Y. Autonomous motion of immobilized enzyme on Janus particles significantly facilitates enzymatic reactions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
212
|
Clegg JR, Irani AS, Ander EW, Ludolph CM, Venkataraman AK, Zhong JX, Peppas NA. Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. SCIENCE ADVANCES 2019; 5:eaax7946. [PMID: 31598554 PMCID: PMC6764836 DOI: 10.1126/sciadv.aax7946] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/26/2019] [Indexed: 05/03/2023]
Abstract
Formulations and devices for precision medicine applications must be tunable and multiresponsive to treat heterogeneous patient populations in a calibrated and individual manner. We engineered modular poly(acrylamide-co-methacrylic acid) copolymers, cross-linked into multiresponsive nanogels with either a nondegradable or degradable disulfide cross-linker, that were customized via orthogonal chemistries to target biomarkers of an individual patient's disease or deliver multiple therapeutic modalities. Upon modification with functional small molecules, peptides, or proteins, these nanomaterials delivered methylene blue with environmental responsiveness, transduced visible light for photothermal therapy, acted as a functional enzyme, or promoted uptake by cells. In addition to quantifying the nanogels' composition, physicochemical characteristics, and cytotoxicity, we used a QCM-D method for characterizing nanomaterial degradation and a high-throughput assay for cellular uptake. In conclusion, we generated a tunable nanogel composition for precision medicine applications and new quantitative protocols for assessing the bioactivity of similar platforms.
Collapse
Affiliation(s)
- John R. Clegg
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Afshan S. Irani
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Eric W. Ander
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Catherine M. Ludolph
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Justin X. Zhong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
213
|
Dear BJ, Chowdhury A, Hung JJ, Karouta CA, Ramachandran K, Nieto MP, Wilks LR, Sharma A, Shay TY, Cheung JK, Truskett TM, Johnston KP. Relating Collective Diffusion, Protein–Protein Interactions, and Viscosity of Highly Concentrated Monoclonal Antibodies through Dynamic Light Scattering. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Barton J. Dear
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amjad Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica J. Hung
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Carl A. Karouta
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishan Ramachandran
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria P. Nieto
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Logan R. Wilks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ayush Sharma
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tony Y. Shay
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason K. Cheung
- Biophysical and Biochemical Characterization, Sterile Formulation Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P. Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
214
|
Hung JJ, Zeno WF, Chowdhury AA, Dear BJ, Ramachandran K, Nieto MP, Shay TY, Karouta CA, Hayden CC, Cheung JK, Truskett TM, Stachowiak JC, Johnston KP. Self-diffusion of a highly concentrated monoclonal antibody by fluorescence correlation spectroscopy: insight into protein-protein interactions and self-association. SOFT MATTER 2019; 15:6660-6676. [PMID: 31389467 DOI: 10.1039/c9sm01071h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic behavior of monoclonal antibodies (mAbs) at high concentration provides insight into protein microstructure and protein-protein interactions (PPI) that influence solution viscosity and protein stability. At high concentration, interpretation of the collective-diffusion coefficient Dc, as determined by dynamic light scattering (DLS), is highly challenging given the complex hydrodynamics and PPI at close spacings. In contrast, self-diffusion of a tracer particle by Brownian motion is simpler to understand. Herein, we develop fluorescence correlation spectroscopy (FCS) for the measurement of the long-time self-diffusion of mAb2 over a wide range of concentrations and viscosities in multiple co-solute formulations with varying PPI. The normalized self-diffusion coefficient D0/Ds (equal to the microscopic relative viscosity ηeff/η0) was found to be smaller than η/η0. Smaller ratios of the microscopic to macroscopic viscosity (ηeff/η) are attributed to a combination of weaker PPI and less self-association. The interaction parameters extracted from fits of D0/Ds with a length scale dependent viscosity model agree with previous measurements of PPI by SLS and SAXS. Trends in the degree of self-association, estimated from ηeff/η with a microviscosity model, are consistent with oligomer sizes measured by SLS. Finally, measurements of collective diffusion and osmotic compressibility were combined with FCS data to demonstrate that the changes in self-diffusion between formulations are due primarily to changes in the protein-protein friction in these systems, and not to protein-solvent friction. Thus, FCS is a robust and accessible technique for measuring mAb self-diffusion, and, by extension, microviscosity, PPI and self-association that govern mAb solution dynamics.
Collapse
Affiliation(s)
- Jessica J Hung
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
216
|
Singh P, Bodycomb J, Travers B, Tatarkiewicz K, Travers S, Matyas GR, Beck Z. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int J Pharm 2019; 566:680-686. [PMID: 31176851 DOI: 10.1016/j.ijpharm.2019.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
Liposomes are potent adjuvant constituents for licensed vaccines and vaccine candidates and carriers for drug delivery. Depending on the method of preparation, liposomes vary in size distribution, either forming uniform small size vesicles or a heterogeneous mixture of small to large vesicles. Importantly, differences in liposomal size have been demonstrated to induce differential immune responses. Determination of particle size distribution could therefore be crucial for the efficacy and stability of vaccine formulations. We compared the techniques of dynamic light scattering, laser diffraction, and conventional nanoparticle tracking analysis with a novel multispectral advanced nanoparticle tracking analysis (MANTA) for particle size determination of mono- and polydisperse liposomes. MANTA reported an average 146 nm size of monodisperse liposomes but showed a multimodal distribution of polydisperse liposomes with continuous sizes from 50 to 2000 nm. However, approximately 95% of particles were in the size range of 50-1500 nm and only few particles were identified in the 1500-2000 nm range for the investigated volume. Based on our results, we conclude that MANTA is the most suitable approach and can serve as stand-alone technique for particle size characterization of heterogeneous liposome samples in the 50-2000 nm size range.
Collapse
Affiliation(s)
- Pushpendra Singh
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, USA; Laboratory of Adjuvant and Antigen Research, U S Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Jeffrey Bodycomb
- HORIBA Instruments Inc, 20 Knightsbridge Rd, Piscataway Township, NJ, USA
| | - Bill Travers
- Anatom Technology Inc, 22803 Shady Grove Ct, Baldwin, MD, USA
| | | | - Sean Travers
- Anatom Technology Inc, 22803 Shady Grove Ct, Baldwin, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U S Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, USA; Laboratory of Adjuvant and Antigen Research, U S Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA.
| |
Collapse
|
217
|
Danielczak B, Meister A, Keller S. Influence of Mg2+ and Ca2+ on nanodisc formation by diisobutylene/maleic acid (DIBMA) copolymer. Chem Phys Lipids 2019; 221:30-38. [DOI: 10.1016/j.chemphyslip.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/15/2022]
|
218
|
Li Y, Lee JS. Staring at protein-surfactant interactions: Fundamental approaches and comparative evaluation of their combinations - A review. Anal Chim Acta 2019; 1063:18-39. [DOI: 10.1016/j.aca.2019.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
219
|
Kim A, Bernt W, Cho NJ. Improved Size Determination by Nanoparticle Tracking Analysis: Influence of Recognition Radius. Anal Chem 2019; 91:9508-9515. [DOI: 10.1021/acs.analchem.9b00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ahram Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - William Bernt
- Particle Characterization Laboratories, Inc., 845 Olive Ave, Suite A, Novato, California 94945, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
220
|
Arango-Restrepo A, Rubi JM. The Soret coefficient from the Faxén theorem for a particle moving in a fluid under a temperature gradient. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:55. [PMID: 31076909 DOI: 10.1140/epje/i2019-11822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
We compute the Soret coefficient for a particle moving through a fluid subjected to a temperature gradient. The viscosity and thermal conductivity of the particle are in general different from those of the solvent and its surface tension may depend on temperature. We find that the Soret coefficient depends linearly on the derivative of the surface tension with respect to temperature and decreases in accordance with the ratios between viscosities and thermal conductivities of particle and solvent. Additionally, the Soret coefficient also depends on a parameter which gives the ratio between Marangoni and shear stresses, a dependence which results from the local stresses inducing a heat flux along the particle surface. Our results are compared to those obtained by using the Stokes value for the mobility in the calculation of the Soret coefficient and in the estimation of the radius of the particle. We show cases in which these differences may be important. The new expression of the Soret coefficient can systematically be used for a more accurate study of thermophoresis.
Collapse
Affiliation(s)
- Andrés Arango-Restrepo
- Departament de Física de la Matéria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028, Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain.
| | - J Miguel Rubi
- Departament de Física de la Matéria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028, Barcelona, Spain
| |
Collapse
|
221
|
Paiva JS, Jorge PAS, Ribeiro RSR, Sampaio P, Rosa CC, Cunha JPS. Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: a potential contributor for biomedicine. Int J Nanomedicine 2019; 14:2349-2369. [PMID: 31040661 PMCID: PMC6452810 DOI: 10.2147/ijn.s174358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background In view of the growing importance of nanotechnologies, the detection/identification of nanoparticles type has been considered of utmost importance. Although the characterization of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, nanotextiles, theranostic nanoparticles), there are many examples of “naturally” generated nanostructures – for example, extracellular vesicles (EVs), lipoproteins, and virus – that provide useful information about human physiology or clinical conditions. For example, the detection of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority of them have diameters between 100 and 150 nm, thus being far below the diffraction limit. Methods This study investigated if, by projecting the information provided from short-term portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles in distilled water, in different concentration values. Results and discussion This technique ensured an optimal performance (100% accuracy) in detecting nanoparticles for a concentration above or equal to 3.89 µg/mL (8.74E+10 particles/mL), and a performance of 90% for concentrations below this value and higher than 1.22E−03 µg/mL (2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumor-derived and other types of EVs, as well as lipoproteins currently used as potential biomarkers of cardiovascular diseases. Conclusion The proposed technique is able to detect synthetic nanoparticles whose dimensions are similar to EVs and other “clinically” relevant nanostructures, and in concentrations equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological levels. This study can, therefore, provide valuable insights towards the future development of a device for EVs and other biological nanoparticles detection with innovative characteristics.
Collapse
Affiliation(s)
- Joana S Paiva
- INESC Technology and Science, Porto, Portugal, .,Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal, .,Faculty of Engineering, University of Porto, Porto, Portugal,
| | - Pedro A S Jorge
- INESC Technology and Science, Porto, Portugal, .,Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal,
| | | | - Paula Sampaio
- Institute for Molecular and Cell Biology, i3S - Institute for Innovation and Research in Health, Porto, Portugal
| | - Carla C Rosa
- INESC Technology and Science, Porto, Portugal, .,Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal,
| | - João P S Cunha
- INESC Technology and Science, Porto, Portugal, .,Faculty of Engineering, University of Porto, Porto, Portugal,
| |
Collapse
|
222
|
Kumar S, Yadav I, Ray D, Abbas S, Saha D, Aswal VK, Kohlbrecher J. Evolution of Interactions in the Protein Solution As Induced by Mono and Multivalent Ions. Biomacromolecules 2019; 20:2123-2134. [PMID: 30908911 DOI: 10.1021/acs.biomac.9b00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system. However, contrary to DLVO theory, the protein solution undergoes a reentrant phase transition from one-phase to a two-phase system and then back to the one-phase system in the presence of tri and tetravalent counterions. The results show that tri and tetravalent (unlike mono and divalent) counterions induce short-range attraction between the protein molecules, leading to the transformation from one-phase to two-phase system. The two-phase is characterized by the fractal structure of protein aggregates. The excess condensation of these higher-valent counterions in the double layer around the BSA causes the reversal of charge of the protein molecules resulting into reentrant of the one-phase, at higher salt concentrations. The complete phase behavior with mono and multivalent ions has been explained in terms of the interplay of electrostatic repulsion and ion-induced short-range attraction between the protein molecules.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Division of Materials and Environmental Chemistry , Stockholm University , Frescativagen 8 , Stockholm 10691 , Sweden
| | - Indresh Yadav
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Debes Ray
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Sohrab Abbas
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Debasish Saha
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Department of Science and Technology , New Delhi 110016 , India
| | - Vinod K Aswal
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, Paul Scherrer Institut , CH-5232 PSI Villigen , Switzerland
| |
Collapse
|
223
|
Wagner S, Reemtsma T. Things we know and don't know about nanoplastic in the environment. NATURE NANOTECHNOLOGY 2019; 14:300-301. [PMID: 30944425 DOI: 10.1038/s41565-019-0424-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Stephan Wagner
- Helmholtz-Centre for Environmental Research-UFZ, Department of Analytical Chemistry, Leipzig, Germany.
| | - Thorsten Reemtsma
- Helmholtz-Centre for Environmental Research-UFZ, Department of Analytical Chemistry, Leipzig, Germany
| |
Collapse
|
224
|
Camerini R, Poggi G, Chelazzi D, Ridi F, Giorgi R, Baglioni P. The carbonation kinetics of calcium hydroxide nanoparticles: A Boundary Nucleation and Growth description. J Colloid Interface Sci 2019; 547:370-381. [PMID: 30974252 DOI: 10.1016/j.jcis.2019.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
HYPOTHESIS The reaction of Ca(OH)2 with CO2 to form CaCO3 (carbonation process) is of high interest for construction materials, environmental applications and art preservation. Here, the "Boundary Nucleation and Growth" model (BNGM) was adopted for the first time to consider the effect of the surface area of Ca(OH)2 nanoparticles on the carbonation kinetics. EXPERIMENTS The carbonation of commercial and laboratory-prepared particles' dispersions was monitored by Fourier Transform Infrared Spectroscopy, and the BNGM was used to analyze the data. The contributions of nucleation and growth of CaCO3 were evaluated separately. FINDINGS During carbonation the boundary regions of the Ca(OH)2 particles are densely populated with CaCO3 nuclei, and transform early with subsequent thickening of slab-like regions centered on the original boundaries. A BNGM limiting case equation was thus used to fit the kinetics, where the transformation rate decreases exponentially with time. The carbonation rate constants, activation energies, and linear growth rate were calculated. Particles with larger size and lower surface area show a decrease of the rate at which the non-nucleated grains between the boundaries transform, and an increase of the ending time of Ca(OH)2 transformation. The effect of temperature on the carbonation kinetics and on the CaCO3 polymorphs formation was evaluated.
Collapse
Affiliation(s)
- R Camerini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - G Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - D Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - F Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - R Giorgi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - P Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
225
|
Laszakovits JR, Patterson A, Hipsher C, MacKay AA. Diethyl phenylene diamine (DPD) oxidation to measure low concentration permanganate in environmental systems. WATER RESEARCH 2019; 151:403-412. [PMID: 30622084 DOI: 10.1016/j.watres.2018.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Permanganate has been used traditionally in drinking water treatment for its oxidation properties and ease of use. The concentration of permanganate in treatment conditions is low and difficult to detect. A colorimetric method using diethylphenylene diamine (DPD) oxidation to measure low levels (i.e., less than 6 μM) of permanganate in water was developed and applied to quantify permanganate scavenging by dissolved organic matter (DOM). Manganese dioxide (MnO2) particles were shown to interfere with DPD oxidation; however, particles were removed effectively using 0.1 μm PVDF filters prior to reaction with DPD. DOM and complexed-Mn(III) were concluded to not interfere with the DPD reaction. The DPD method was validated by obtaining the second-order rate constant for permanganate reaction with phenol (1.7 ± 0.2 M-1 s-1), and comparing to the rate constant obtained independently by monitoring phenol degradation (i.e., UPLC-UV) (1.6 ± 0.2 M-1 s-1). Permanganate reaction with DOM isolate samples did not follow pseudo-first order kinetics. Faster reaction rates were observed with higher ionic strength (1 mM versus 5 mM carbonate). No change in reaction rates with pH was observed at lower ionic strength (1 mM); while at higher ionic strength, the reaction rate was faster at pH 7 than at pH 10. In contrast, linear kinetics were observed for permanganate reaction with DOM in filtered whole water samples. These samples showed similar trends with pH and ionic strength as for DOM isolates. The presented method is valid to quantify permanganate reaction rates with organic contaminants or with natural scavengers.
Collapse
Affiliation(s)
- Juliana R Laszakovits
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, United States
| | - Andrea Patterson
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, United States
| | - Carissa Hipsher
- Environmental Science Graduate Program, The Ohio State University, United States
| | - Allison A MacKay
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, United States.
| |
Collapse
|
226
|
Brouzet C, Mittal N, Lundell F, Söderberg LD. Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers on the Nanoscale. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Christophe Brouzet
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Nitesh Mittal
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Fredrik Lundell
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - L. Daniel Söderberg
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
227
|
Tunçer S, Çolakoğlu M, Ulusan S, Ertaş G, Karasu Ç, Banerjee S. Evaluation of colloidal platinum on cytotoxicity, oxidative stress and barrier permeability across the gut epithelium. Heliyon 2019; 5:e01336. [PMID: 30963117 PMCID: PMC6434063 DOI: 10.1016/j.heliyon.2019.e01336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/04/2019] [Accepted: 03/07/2019] [Indexed: 01/02/2023] Open
Abstract
Colloidal platinum (Pt) is widely consumed due to its health promoting benefits. However, the exact biological effects of these nanoparticles have not been studied in detail, particularly in the gut. In the present study we observed that colloidal Pt was not cytotoxic towards three different epithelial colon cancer cell lines. Co-treatment of the colon cancer cell line Caco-2 with the oxidative stress inducing agent hydrogen peroxide (H2O2) and colloidal Pt resulted in a significant decrease in H2O2 induced oxidative stress. Colloidal Pt by itself did not induce any oxidative stress. Additionally, both overnight pretreatment of Caco-2 cells with colloidal Pt followed by 1 h treatment with H2O2, or co-treatment of cells for 1 h with colloidal Pt and H2O2 resulted in a significant recovery of cell death. Of note, the same protective effects of colloidal Pt were not observed when the oxidative stress was induced in the presence of 2, 2-azobis (2-amidinopropane) dihydrochloride, indicating that the source of free radicals may define the outcome of anti-oxidant activity of colloidal Pt. Colloidal Pt was also able to cross a model intestinal barrier formed in vitro with differentiated Caco-2 cells easily. Overall, our data indicate that colloidal Pt was not toxic towards intestinal epithelial cells, reduced H2O2 induced oxidative stress, protected from oxidative stress related death of intestinal epithelial cells and could pass a model gut barrier easily. Colloidal Pt can therefore be consumed orally for its anti-oxidant and other health promoting benefits.
Collapse
Affiliation(s)
- Sinem Tunçer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara 06800, Turkey
| | - Melis Çolakoğlu
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara 06800, Turkey
| | - Sinem Ulusan
- Department of Chemistry, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara 06800, Turkey
| | - Gülay Ertaş
- Department of Chemistry, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara 06800, Turkey
| | - Çimen Karasu
- Department of Medical Pharmacology, Gazi University, Faculty of Medicine, Ankara 06500, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences and Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi (ODTU/METU), Ankara 06800, Turkey
| |
Collapse
|
228
|
Kim A, Ng WB, Bernt W, Cho NJ. Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Sci Rep 2019; 9:2639. [PMID: 30804441 PMCID: PMC6389903 DOI: 10.1038/s41598-019-38915-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
As the physicochemical properties of drug delivery systems are governed not only by the material properties which they are compose of but by their size that they conform, it is crucial to determine the size and distribution of such systems with nanometer-scale precision. The standard technique used to measure the size distribution of nanometer-sized particles in suspension is dynamic light scattering (DLS). Recently, nanoparticle tracking analysis (NTA) has been introduced to measure the diffusion coefficient of particles in a sample to determine their size distribution in relation to DLS results. Because DLS and NTA use identical physical characteristics to determine particle size but differ in the weighting of the distribution, NTA can be a good verification tool for DLS and vice versa. In this study, we evaluated two NTA data analysis methods based on maximum-likelihood estimation, namely finite track length adjustment (FTLA) and an iterative method, on monodisperse polystyrene beads and polydisperse vesicles by comparing the results with DLS. The NTA results from both methods agreed well with the mean size and relative variance values from DLS for monodisperse polystyrene standards. However, for the lipid vesicles prepared in various polydispersity conditions, the iterative method resulted in a better match with DLS than the FTLA method. Further, it was found that it is better to compare the native number-weighted NTA distribution with DLS, rather than its converted distribution weighted by intensity, as the variance of the converted NTA distribution deviates significantly from the DLS results.
Collapse
Affiliation(s)
- Ahram Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Wei Beng Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore
| | - William Bernt
- Particle Characterization Laboratories, Inc. 845 Olive Ave, Suite A, Novato, CA, 94945, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore.
| |
Collapse
|
229
|
Pandit S, Kundu S. Optical responses of BSA protein under re-entrant condensation in presence of trivalent ions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
230
|
Simon AJ, Zhou Y, Ramasubramani V, Glaser J, Pothukuchy A, Gollihar J, Gerberich JC, Leggere JC, Morrow BR, Jung C, Glotzer SC, Taylor DW, Ellington AD. Supercharging enables organized assembly of synthetic biomolecules. Nat Chem 2019; 11:204-212. [DOI: 10.1038/s41557-018-0196-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022]
|
231
|
Eggermont SGF, Rua-Ibarz A, Tirez K, Dominguez-Benetton X, Fransaer J. Oxidation-assisted alkaline precipitation: the effect of H2O2 on the size of CuO and FeOOH nanoparticles. RSC Adv 2019; 9:29902-29908. [PMID: 35531518 PMCID: PMC9072003 DOI: 10.1039/c9ra03086g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
H2O2 was demonstrated to narrow the size distribution and decrease the size of CuO and hydrous FeOOH (2-line ferrihydrite) nanoparticles under conditions of high supersaturation. We introduce oxidation-assisted alkaline precipitation (Ox-AP) and compare it to traditional alkaline precipitation (AP). While for AP, a metal salt solution (e.g., CuCl2) is mixed with an alkali (e.g., NaOH), for Ox-AP, the more reduced form of that metal salt solution (e.g., CuCl) is simultaneously mixed with that alkali and an oxidant (e.g., H2O2). The resulting precipitates were characterized with SEM, XRD, DLS and single particle ICP-MS and shown to be nanoparticles (NPs). Ox-AP CuO NPs were up to 3 times smaller than AP NPs. Ox-AP FeOOH NPs were up to 22.5% smaller than AP NPs. We discuss and propose a possible mechanism of Ox-AP through careful consideration of the known reaction chemistry of iron and copper. We propose that an increased monomer formation rate enhances the nucleation rate, which ultimately results in smaller particles with a more narrow distribution. The more distinct effect of Ox-AP on copper, was attributed to the fast formation of the stable CuO monomer, compared to AP, where the Cu(OH)2 and/or Cu2(OH)3Cl monomers are more likely formed. Although, the exact mechanism of Ox-AP needs experimental confirmation, our results nicely demonstrate the potential of using Ox-AP to produce smaller NPs with a more narrow distribution in comparison to using AP. H2O2 was demonstrated to narrow the size distribution and decrease the size of CuO and hydrous FeOOH (2-line ferrihydrite) nanoparticles under conditions of high supersaturation.![]()
Collapse
Affiliation(s)
| | - Ana Rua-Ibarz
- Flemish Institute for Technological Research (VITO)
- BE-2400 Mol
- Belgium
| | - Kristof Tirez
- Flemish Institute for Technological Research (VITO)
- BE-2400 Mol
- Belgium
| | | | | |
Collapse
|
232
|
Mork-Jansson AE, Eichacker LA. A strategy to characterize chlorophyll protein interaction in LIL3. PLANT METHODS 2019; 15:1. [PMID: 30622623 PMCID: PMC6320596 DOI: 10.1186/s13007-018-0385-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/26/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The function of proteins is at large determined by cofactors selectively bound to protein structure. Without chlorophyll specifically bound to protein, light harvesting and photosynthesis would not be possible. The binding of chlorophyll to light harvesting proteins has been extensively studied in reconstitution assays using proteins expressed in vitro; however, the mechanism of the reconstitution reaction remained unclear. We have shown that membrane integral light-harvesting-like protein, LIL3, binds chlorophyll a with a Kd of 146 nM in vitro by thermophoresis. Here, reconstitution of chlorophyll binding to LIL3 has been characterized by four different methods. RESULTS Structural changes in the reconstitution process have been investigated by light-scattering and differential Trp-fluorescence. For characterization of the chlorophyll binding site at LIL3, the analysis of LIL3 mutants has been conducted using native PAGE and thermophoresis. We find that the oxidized state of dithiothreitol is the essential component for reconstitution of chlorophyll binding to LIL3 in n-Dodecyl β-d-maltoside micelles at RT. Chlorophyll increased the polydispersity of the micellar states while dithiothreitol maintained LIL3 in a partially unfolded state at RT. Dimerization of LIL3 was abolished if amino acids N174, R176, and E171 were mutated to Ala; while, chlorophyll binding to LIL3 was abolished in mutant N174A, but retained in E171A, and R176A albeit at an about six- and five-fold decreased dissociation constant. Results show that N174 of LIL3 is essential for binding chlorophyll a. CONCLUSIONS Chlorophyll binding to LIL3 can be shown by thermophoresis, and native gel electrophoresis, while analysis of reconstitution conditions by dynamic light scattering and differential scanning fluorometry are of critical importance for method optimization.
Collapse
Affiliation(s)
| | - Lutz Andreas Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
233
|
Cristóvão JS, Henriques BJ, Gomes CM. Biophysical and Spectroscopic Methods for Monitoring Protein Misfolding and Amyloid Aggregation. Methods Mol Biol 2019; 1873:3-18. [PMID: 30341600 DOI: 10.1007/978-1-4939-8820-4_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins exhibit a remarkable structural plasticity and may undergo conformational changes resulting in protein misfolding both in a biological context and upon perturbing physiopathological conditions. Such nonfunctional protein conformers, including misfolded states and aggregates, are often associated to protein folding diseases. Understanding the biology of protein folding diseases thus requires tools that allow the structural characterization of nonnative conformations of proteins and their interconversions. Here we present detailed procedures to monitor protein conformational changes and aggregation based on spectroscopic and biophysical methods that include circular dichroism, ATR-Fourier-transformed infrared spectroscopy, fluorescence spectroscopy and dynamic light scattering. To illustrate the application of these methods we report to our previous studies on misfolding, aggregation and amyloid fibril formation by superoxide dismutase 1 (SOD1), a protein whose toxic deposition is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Joana S Cristóvão
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal
| | - Bárbara J Henriques
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisbon, Lisbon, Portugal. .,Department of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
234
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
235
|
Dodero A, Williams R, Gagliardi S, Vicini S, Alloisio M, Castellano M. A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid. Carbohydr Polym 2019; 203:349-355. [DOI: 10.1016/j.carbpol.2018.09.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/05/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
|
236
|
Zhou Y, Fujisawa S, Saito T, Isogai A. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl−Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering. Biomacromolecules 2018; 20:750-757. [DOI: 10.1021/acs.biomac.8b01689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yaxin Zhou
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuji Fujisawa
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Isogai
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
237
|
Pandey SK, Singh S, Mehta SK. Ultrasonication assisted fabrication of l-lysine functionalized gadolinium oxide nanoparticles and its biological acceptability. ULTRASONICS SONOCHEMISTRY 2018; 49:53-62. [PMID: 30057179 DOI: 10.1016/j.ultsonch.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Gadolinium oxide nanoparticles (GdO) have recently gained attention due to their diverse bio-applications. However, their functionalization with amino acids has not been reported yet to the best of our knowledge. In the present report, the potential of sonication technique (for the first time to the best of our knowledge) in the fabrication of GdO nanoparticles was explored. Sonication is an efficient technique for the synthesis of evenly dispersing nanoparticles in liquids thus, the present report highlights the use of ultrasonication technique for the fabrication of uniform 2 nm sized luminescent l-lysine coated gadolinium oxide nanoparticles (l-lysine@GdO). Investigation of l-lysine conjugation with nanoparticles was confirmed by FT-IR, Differential Scanning Calorimetric analysis and Zeta potential. The interactions of serum protein (BSA) with synthesized nanoparticles have been explored using UV-visible spectroscopy, Fluorescence spectroscopy and Circular Dichroism (CD). The synthesized l-lysine coated nanoparticles demonstrated potential for antimicrobial and antifungal agents, which has been tested against two bacterial strains Escherichia coli and Staphylococcus aureus and two antifungal Candida albicans and Candida glabrata cells. The minimal inhibition concentrations (MIC) of nanoparticles against E.coli and S. aureus are 8 µg mL-1 and 16 µg mL-1, respectively. The cell viability, MTT assay on HaCaT cell lines revealed the non-toxicity of synthesized nanoparticles.
Collapse
Affiliation(s)
- Satish Kumar Pandey
- CSIR - Central Scientific Instruments Organization, Sector-30, Chandigarh 160030, India
| | - Suman Singh
- CSIR - Central Scientific Instruments Organization, Sector-30, Chandigarh 160030, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
238
|
Somosi Z, Pavlovic M, Pálinkó I, Szilágyi I. Effect of Polyelectrolyte Mono- and Bilayer Formation on the Colloidal Stability of Layered Double Hydroxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E986. [PMID: 30487401 PMCID: PMC6316193 DOI: 10.3390/nano8120986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Sequential adsorption of polyelectrolytes on nanoparticles is a popular method to obtain thin films after deposition. However, the effect of polyelectrolyte multilayer formation on the colloidal stability of the nanoparticles has not been studied in detail. In the present work, layered double hydroxides (LDH) were synthesized and interaction with oppositely and like-charged polyelectrolytes was investigated. Electrophoretic and light scattering measurements revealed that colloidal stability of LDH can be tuned by adsorption of poly(styrene sulfonate) (PSS) on the oppositely charged LDH surface in appropriate doses and thus, unstable or stable dispersions can be designed. Negatively charged LDH of adsorbed PSS monolayer was obtained and a poly(diallyldimethyl ammonium chloride) (PDADMAC) second layer was systematically built on the particles. The obtained polyelectrolyte bilayer provided high colloidal stability for the LDH-PSS-PDADMAC dispersions due to the presence of repulsive interparticle forces of electrostatic and steric origin. The results provide crucial quantitative information on designing highly stable particle-polyelectrolyte systems for the preparation of thin films or immobilization of guest substances between the layers for delivery processes.
Collapse
Affiliation(s)
- Zoltán Somosi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Marko Pavlovic
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - István Pálinkó
- Material and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary.
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
239
|
Samykutty A, Grizzle WE, Fouts BL, McNally MW, Chuong P, Thomas A, Chiba A, Otali D, Woloszynska A, Said N, Frederick PJ, Jasinski J, Liu J, McNally LR. Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 2018; 182:114-126. [PMID: 30118979 PMCID: PMC6289590 DOI: 10.1016/j.biomaterials.2018.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
At the intersection of the newly emerging fields of optoacoustic imaging and theranostic nanomedicine, promising clinical progress can be made in dismal prognosis of ovarian cancer. An acidic pH targeted wormhole mesoporous silica nanoparticle (V7-RUBY) was developed to serve as a novel tumor specific theranostic nanoparticle detectable using multispectral optoacoustic tomographic (MSOT) imaging. We report the synthesis of a small, < 40 nm, biocompatible asymmetric wormhole pore mesoporous silica core particle that has both large loading capacity and favorable release kinetics combined with tumor-specific targeting and gatekeeping. V7-RUBY exploits the acidic tumor microenvironment for tumor-specific targeting and tumor-specific release. In vitro, treatment with V7-RUBY containing either paclitaxel or carboplatin resulted in increased cell death at pH 6.6 in comparison to drug alone (p < 0.0001). In orthotopic ovarian xenograft mouse models, V7-RUBY containing IR780 was specifically detected within the tumor 7X and 4X higher than the liver and >10X higher than in the kidney using both multispectral optoacoustic tomography (MSOT) imaging with secondary confirmation using near infrared fluorescence imaging (p < 0.0004). The V7-RUBY system carrying a cargo of either contrast agent or an anti-neoplastic drug has the potential to become a theranostic nanoparticle which can improve both diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Abhilash Samykutty
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Benjamin L Fouts
- Department of Chemistry, Earlham College, Indianapolis, IN, 27013, USA
| | - Molly W McNally
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Phillip Chuong
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Akiko Chiba
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Dennis Otali
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Peter J Frederick
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Jacek Jasinski
- Conn Center Materials Characterization, University of Louisville, Louisville, KY 40202, USA
| | - Jie Liu
- Department of Forest Materials, North Carolina State University, Raleigh, NC 27695, USA
| | - Lacey R McNally
- Department of Bioengineering, Wake Forest School of Medicine, Winston-Salem, North Carolina 27013, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA.
| |
Collapse
|
240
|
Müller S, Kind M, Gruhle K, Hause G, Meister A, Drescher S. Mixing behaviour of bilayer-forming phosphatidylcholines with single-chain alkyl-branched bolalipids: effect of lateral chain length. Biophys Chem 2018; 244:1-10. [PMID: 30388712 DOI: 10.1016/j.bpc.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Liposomes are a promising class of drug delivery vehicles. However, no liposomal formulation has been approved for an oral application so far, due to stability issues of the liposomes in the gastrointestinal tract. Herein, we investigate the miscibility of three novel single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidylcholines by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) of stained samples, vitrified specimens, or replica of freeze-fractured samples, and dynamic light scattering (DLS). The novel bolalipids contain lateral alkyl chains of different length in 1- and 32-position of the long membrane-spanning C32 alkyl chain. We will show for the first time that these single-chain alkyl-branched bolalipids show a miscibility with bilayer-forming phospholipids-by maintaining the vesicular aggregate structure-due to the lateral alkyl substituents located next to the phosphocholine headgroup of the bolalipid. We are convinced that these alkyl side chains are able to fill the void volume, which is created when unmodified single-chain bolalipids are inserted in a transmembrane fashion into a phospholipid bilayer. Consequently, the miscibility of our alkyl-chained bolalipids with bilayer-forming phospholipids rose with increasing lengths of the lateral alkyl chain of the bolalipid. Finally, we were successful in preparing liposomes from various bolalipid/phospholipid mixtures, which were stable in size upon storage for at least 21 days. These mixed liposomes (bolasomes) could be used as oral drug delivery systems in the near future.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Maximilian Kind
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Kai Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, Weinbergweg 22, Halle (Saale) 06120, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
241
|
Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers. Colloids Surf B Biointerfaces 2018; 173:295-302. [PMID: 30308454 DOI: 10.1016/j.colsurfb.2018.09.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS The use of polymer-based surfactants in the double-emulsion (water/oil/water, W/O/W) solvent-evaporation technique is becoming a widespread strategy for preparing biocompatible and biodegradable polymeric nanoparticles (NPs) loaded with biomolecules of interest in biomedicine, or biotechnology. This approach enhances the stability of the NPs, reduces their size and recognition by the mononuclear phagocytic system, and protects the encapsulated biomolecule against losing biological activity. Different protocols to add the surfactant during the synthesis lead to different NP colloidal properties and biological activity. EXPERIMENTS We develop an in vitro model to mimic the first step of the W/O/W NP synthesis method, which enables us to analyze the surfactant-biomolecule interaction at the O/W interface. We compare the interfacial properties when the surfactant is added from the aqueous or the organic phase, and the effect of pH of the biomolecule solution. We work with a widely used biocompatible surfactant (Pluronic F68), and lysozyme, reported as a protein model. FINDINGS The surfactant, when added from the water phase, displaces the protein from the interface, hence protecting the biomolecule. This could explain the improved colloidal stability of NPs, and the higher biological activity of the lysozyme released from nanoparticles found with the counterpart preparation.
Collapse
|
242
|
Singh R, Panthi K, Weerasooriya U, Mohanty KK. Multistimuli-Responsive Foams Using an Anionic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11010-11020. [PMID: 30149723 DOI: 10.1021/acs.langmuir.8b01796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we report a novel class of a commercially available surfactant which shows a multistimuli-responsive behavior toward foam stability. It comprises three components-a hydrophobe (tristyrylphenol), a temperature-sensitive block (polypropylene oxide, PO), and a pH-sensitive moiety (carboxyl group). The hydrophobicity-hydrophilicity balance of the surfactant can be tuned by changing either the pH or temperature of the system. At or below pH 4, the carboxyl functional group is dominantly protonated, resulting in zero foamability. At higher pH, the surfactant exhibits good foamability and foam stability marked with a fine bubble texture (∼200 μm). Foam destabilization could be achieved rapidly by either lowering the pH or bubbling CO2 gas. At a fixed pH in the presence of salt, increasing the temperature to 65 °C resulted in rapid defoaming because of the increased hydrophobicity of the PO chain. This stimuli-induced stabilization and destabilization of foam were found to be reversible. We envisage the use of such a multi-responsive foaming system in diverse applications such as foam-enhanced oil recovery and environmental remediation where spatial and temporal control over foam stability is desirable. The low-cost commercial availability of the surfactant further makes it lucrative.
Collapse
Affiliation(s)
- Robin Singh
- Department of Petroleum and Geosystems Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Krishna Panthi
- Department of Petroleum and Geosystems Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Upali Weerasooriya
- Department of Petroleum and Geosystems Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Kishore K Mohanty
- Department of Petroleum and Geosystems Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
243
|
Mudalige TK, Qu H, Van Haute D, Ansar SM, Linder SW. Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: A critical comparative review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
244
|
Comparison of particle size methodology and assessment of nanoparticle tracking analysis (NTA) as a tool for live monitoring of crystallisation pathways. Eur J Pharm Biopharm 2018; 130:314-326. [DOI: 10.1016/j.ejpb.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 11/18/2022]
|
245
|
Wishard A, Gibb BC. Dynamic light scattering studies of the effects of salts on the diffusivity of cationic and anionic cavitands. Beilstein J Org Chem 2018; 14:2212-2219. [PMID: 30202474 PMCID: PMC6122325 DOI: 10.3762/bjoc.14.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022] Open
Abstract
Although alkali halide salts play key roles in all living systems, the physical models used to describe the properties of aqueous solutions of salts do not take into account specific ion–ion interactions. To identify specific ion–ion interactions possibly contributing to the aggregation of proteins, we have used dynamic light scattering (DLS) to probe the aggregation of charged cavitands. DLS measurements of negatively charged 1 in the presence of a range of alkali metal halides reveal no significant aggregation of host 1 as a function of the nature of the cation of the added salt. Only at high concentrations could trace amounts of aggregation be detected by 1H NMR spectroscopy. Contrarily, 1 was readily aggregated and precipitated by ZnCl2. In contrast, although fluoride and chloride did not induce aggregation of positively charged host 2, this cavitand exhibited marked aggregation as a function of bromide and iodide concentration. Specifically, bromide induced small but significant amounts of dimerization, whilst iodide induced extreme aggregation. Moreover, in these cases aggregation of host 2 also exhibited a cationic dependence, with an observed trend Na+ > Li+ > K+ ≈ Cs+. In combination, these results reveal new details of specific ion pairings in aqueous solution and how this can influence the properties of dissolved organics.
Collapse
Affiliation(s)
- Anthony Wishard
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
246
|
Saenmuangchin R, Siripinyanond A. Flow field-flow fractionation for hydrodynamic diameter estimation of gold nanoparticles with various types of surface coatings. Anal Bioanal Chem 2018; 410:6845-6859. [DOI: 10.1007/s00216-018-1284-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
|
247
|
Kumar A, Kuhn LT, Balbach J. A Cu 2+ complex induces the aggregation of human papillomavirus oncoprotein E6 and stabilizes p53. FEBS J 2018; 285:3013-3025. [PMID: 29931810 DOI: 10.1111/febs.14591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Papillomavirus oncoprotein E6 is a critical factor in the modulation of cervical cancer in humans. At the molecular level, formation of the E6-E6AP-p53 ternary complex, which directs p53's degradation, is the key instigator of cancer transforming properties. Herein, a Cu2+ anthracenyl-terpyridine complex is described which specifically induces the aggregation of E6 in vitro and in cultured cells. For a hijacking mechanism, both E6 and E6AP are required for p53 ubiquitination and degradation. The Cu2+ complex interacts with E6 at the E6AP and p53 binding sites. We show that E6 function is suppressed by aggregation, rendering it incapable of hijacking p53 and thus increasing its cellular level. Therapeutic treatments of cervical cancer are currently unavailable to infected individuals. We anticipate that this Cu2+ complex might open up a new therapeutic avenue for the design and development of new chemical entities for the diagnosis and treatment of HPV-induced cancers.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, UK.,Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Institute of Technical Biochemistry e.V., Martin-Luther-University Halle-Wittenberg, Germany
| | - Lars T Kuhn
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Institute of Technical Biochemistry e.V., Martin-Luther-University Halle-Wittenberg, Germany
| |
Collapse
|
248
|
Müller S, Meister A, Otto C, Hause G, Drescher S. Mixing behaviour of asymmetrical glycerol diether bolalipids with saturated and unsaturated phosphatidylcholines. Biophys Chem 2018; 238:39-48. [DOI: 10.1016/j.bpc.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
|
249
|
Theochari I, Papadimitriou V, Papahatjis D, Assimomytis N, Pappou E, Pratsinis H, Xenakis A, Pletsa V. Oil-In-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination. Biomimetics (Basel) 2018; 3:biomimetics3020013. [PMID: 31105235 PMCID: PMC6352693 DOI: 10.3390/biomimetics3020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023] Open
Abstract
Targeted delivery of chemotherapeutics in order to overcome side effects and enhance chemosensitivity remains a major issue in cancer research. In this context, biocompatible oil-in-water (O/W) microemulsions were developed as matrices for the encapsulation of DPS-2 a benzothiophene analogue, exhibiting high cytotoxicity in various cancer cell lines, among them the MW 164 skin melanoma and Caco-2 human epithelial colorectal adenocarcinoma cell lines. The microemulsion delivery system was structurally characterized by dynamic light scattering (DLS) and electron paramagnetic resonance (EPR) spectroscopy. The effective release of a lipophilic encapsulated compound was evaluated via confocal microscopy. The cytotoxic effect, in the presence and absence of DPS-2, was examined through the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay. When encapsulated, DPS-2 was as cytotoxic as when dissolved in dimethyl sulfoxide (DMSO). Hence, the oil cores of O/W microemulsions were proven effective biocompatible carriers of lipophilic bioactive molecules in biological assessment experiments. Further investigation through fluorescence-activated cell sorting (FACS) analysis, comet assay, and Western blotting, revealed that DPS-2, although non-genotoxic, induced S phase delay accompanied by cdc25A degradation and a nonapoptotic cell death in both cell lines, which implies that this benzothiophene analogue is a deoxyribonucleic acid (DNA) replication inhibitor.
Collapse
Affiliation(s)
- Ioanna Theochari
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Vassiliki Papadimitriou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
| | - Demetris Papahatjis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
| | - Nikos Assimomytis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
| | - Efthimia Pappou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, 11635 Athens, Greece;
| | - Aristotelis Xenakis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
| | - Vasiliki Pletsa
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (I.T.); (V.Pa.); (D.P.); (N.A.); (E.P.); (A.X.)
- Correspondence: ; Tel.: +302-107-273-7541
| |
Collapse
|
250
|
Shaikh SAM, Singh BG, Barik A, Ramani MV, Balaji NV, Subbaraju GV, Naik DB, Indira Priyadarsini K. Diketo modification of curcumin affects its interaction with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:394-402. [PMID: 29635184 DOI: 10.1016/j.saa.2018.03.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×105, 8.4×105 and 2.5×105M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.
Collapse
Affiliation(s)
- Shaukat Ali M Shaikh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | - Neduri V Balaji
- Natsol Laboratories, J.N. Pharmacity, Visakhapatnam 531019, India
| | | | - Devidas B Naik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | |
Collapse
|