201
|
Gagnon MG, Lin J, Bulkley D, Steitz TA. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome. Science 2014; 345:684-7. [PMID: 25104389 PMCID: PMC9153294 DOI: 10.1126/science.1253525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4-guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - Jinzhong Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA.
| |
Collapse
|
202
|
Purdy MD, Bennett BC, McIntire WE, Khan AK, Kasson PM, Yeager M. Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Curr Opin Struct Biol 2014; 27:138-48. [PMID: 25238653 PMCID: PMC6387792 DOI: 10.1016/j.sbi.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
Abstract
Three vignettes exemplify the potential of combining EM and X-ray crystallographic data with molecular dynamics (MD) simulation to explore the architecture, dynamics and functional properties of multicomponent, macromolecular complexes. The first two describe how EM and X-ray crystallography were used to solve structures of the ribosome and the Arp2/3-actin complex, which enabled MD simulations that elucidated functional dynamics. The third describes how EM, X-ray crystallography, and microsecond MD simulations of a GPCR:G protein complex were used to explore transmembrane signaling by the β-adrenergic receptor. Recent technical advancements in EM, X-ray crystallography and computational simulation create unprecedented synergies for integrative structural biology to reveal new insights into heretofore intractable biological systems.
Collapse
Affiliation(s)
- Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brad C Bennett
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William E McIntire
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ali K Khan
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peter M Kasson
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
203
|
Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure 2014; 22:1210-1218. [PMID: 25043550 DOI: 10.1016/j.str.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 01/10/2023]
Abstract
The structural understanding of eukaryotic translation lags behind that of translation on bacterial ribosomes. Here, we present two subnanometer resolution structures of S. cerevisiae 80S ribosome complexes formed with either one or two tRNAs and bound in response to an mRNA fragment containing the Kozak consensus sequence. The ribosomes adopt two globally different conformations that are related to each other by the rotation of the small subunit. Comparison with bacterial ribosome complexes reveals that the global structures and modes of intersubunit rotation of the yeast ribosome differ significantly from those in the bacterial counterpart, most notably in the regions involving the tRNA, small ribosomal subunit, and conserved helix 69 of the large ribosomal subunit. The structures provide insight into ribosome dynamics implicated in tRNA translocation and help elucidate the role of the Kozak fragment in positioning an open reading frame during translation initiation in eukaryotes.
Collapse
|
204
|
Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proc Natl Acad Sci U S A 2014; 111:9822-7. [PMID: 24958863 DOI: 10.1073/pnas.1406744111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.
Collapse
|
205
|
Chen J, Petrov A, Johansson M, Tsai A, O'Leary SE, Puglisi JD. Dynamic pathways of -1 translational frameshifting. Nature 2014; 512:328-32. [PMID: 24919156 PMCID: PMC4472451 DOI: 10.1038/nature13428] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
Spontaneous changes in the reading frame of translation are rare (frequency of 10−3 – 10−4 per codon)1, but can be induced by specific features in the messenger RNA (mRNA). In the presence of mRNA secondary structures, a heptanucleotide “slippery sequence” usually defined by the motif X XXY YYZ, and (in some prokaryotic cases) mRNA sequences that base pair with the 3′ end of the 16S ribosomal rRNA (internal Shine-Dalgarno (SD) sequences), there is an increased probability that a specific programmed change of frame occurs, wherein the ribosome shifts one nucleotide backwards into an overlapping reading frame (−1 frame) and continues by translating a new sequence of amino acids2,3. Despite extensive biochemical and genetic studies, there is no clear mechanistic description for frameshifting. Here, we apply single-molecule fluorescence to track the compositional and conformational dynamics of the individual ribosomes at each codon during translation of a frameshift-inducing mRNA from the dnaX gene in Escherichia coli. Ribosomes that frameshift into the −1 frame are characterized by a 10-fold longer pause in elongation compared to non-frameshifted ribosomes, which translate through unperturbed. During the pause, interactions of the ribosome with the mRNA stimulatory elements uncouple EF-G catalyzed translocation from normal ribosomal subunit reverse-rotation, leaving the ribosome in a non-canonical intersubunit rotated state with an exposed codon in the aminoacyl-tRNA site (A site). tRNALys sampling and accommodation to the empty A site either lead to the slippage of the tRNAs into the −1 frame or maintain the ribosome into the 0 frame. Our results provide a general mechanistic and conformational framework for −1 frameshifting, highlighting multiple kinetic branchpoints during elongation.
Collapse
Affiliation(s)
- Jin Chen
- 1] Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Magnus Johansson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Albert Tsai
- 1] Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Seán E O'Leary
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| |
Collapse
|
206
|
Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proc Natl Acad Sci U S A 2014; 111:9139-44. [PMID: 24927574 DOI: 10.1073/pnas.1406335111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In cap-dependent translation initiation, the open reading frame (ORF) of mRNA is established by the placement of the AUG start codon and initiator tRNA in the ribosomal peptidyl (P) site. Internal ribosome entry sites (IRESs) promote translation of mRNAs in a cap-independent manner. We report two structures of the ribosome-bound Taura syndrome virus (TSV) IRES belonging to the family of Dicistroviridae intergenic IRESs. Intersubunit rotational states differ in these structures, suggesting that ribosome dynamics play a role in IRES translocation. Pseudoknot I of the IRES occupies the ribosomal decoding center at the aminoacyl (A) site in a manner resembling that of the tRNA anticodon-mRNA codon. The structures reveal that the TSV IRES initiates translation by a previously unseen mechanism, which is conceptually distinct from initiator tRNA-dependent mechanisms. Specifically, the ORF of the IRES-driven mRNA is established by the placement of the preceding tRNA-mRNA-like structure in the A site, whereas the 40S P site remains unoccupied during this initial step.
Collapse
|
207
|
The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157:77-94. [PMID: 24679528 DOI: 10.1016/j.cell.2014.03.008] [Citation(s) in RCA: 1746] [Impact Index Per Article: 158.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/07/2014] [Indexed: 12/14/2022]
Abstract
Noncoding RNAs (ncRNAs) accomplish a remarkable variety of biological functions. They regulate gene expression at the levels of transcription, RNA processing, and translation. They protect genomes from foreign nucleic acids. They can guide DNA synthesis or genome rearrangement. For ribozymes and riboswitches, the RNA structure itself provides the biological function, but most ncRNAs operate as RNA-protein complexes, including ribosomes, snRNPs, snoRNPs, telomerase, microRNAs, and long ncRNAs. Many, though not all, ncRNAs exploit the power of base pairing to selectively bind and act on other nucleic acids. Here, we describe the pathway of ncRNA research, where every established "rule" seems destined to be overturned.
Collapse
|
208
|
Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, Hall KT, Kim TJ, Zimmermann MT, Jernigan RL, Jaeger L, Shapiro BA. Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 2014; 67:256-65. [PMID: 24189588 PMCID: PMC4007386 DOI: 10.1016/j.ymeth.2013.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles.
Collapse
Affiliation(s)
- Kirill A Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Praneet S Puppala
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Alex R Diehl
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kenneth T Hall
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Tae Jin Kim
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael T Zimmermann
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Robert L Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.
| | - Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
209
|
Lareau LF, Hite DH, Hogan GJ, Brown PO. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 2014; 3:e01257. [PMID: 24842990 PMCID: PMC4052883 DOI: 10.7554/elife.01257] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28–30 nucleotides and 20–22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. DOI:http://dx.doi.org/10.7554/eLife.01257.001 To make a protein from a gene, the gene is first transcribed to produce a molecule of messenger RNA (mRNA), which then passes through a molecular machine called a ribosome. The ribosome reads the genetic code in the mRNA in groups of three letters at a time, and each triplet of letters (or codon) represents an amino acid. The ribosome then joins the relevant amino acids together to build a protein. The ribosome processes about six amino acids per second, on average, but the mRNA is not fed through at a constant rate. Instead, the ribosome changes its shape to ratchet along the mRNA from one codon to the next: it then reads the new codon and adds another amino acid to the protein. However, many of the details of this ratcheting process are not fully understood. In this study, Lareau, Hite et al. have used a technique called ‘ribosome profiling’ to explore the movement of ribosomes along mRNA molecules. First, all of the pieces of mRNA molecules that are not protected inside a ribosome were chemically destroyed. The sequences of the protected fragments were then read and matched to the full-length gene sequences. The protected fragments came in two different sizes: some were about 28–30 letters long, and others were about 20–22 letters long. Lareau, Hite et al. suggest that these different fragment sizes occur because the ribosome switches between two shapes at each codon as it ratchets along the mRNA, and so it protects different lengths of mRNA. In previous ribosome-profiling experiments, the fragments had all been about 28 letters long; but these experiments had used a chemical to halt the progress of the ribosomes along the mRNAs before measuring the length of the fragments. Lareau, Hite et al. argue that this chemical locks the ribosome in the same shape when it brings the ribosome to a halt, and so the protected fragments always have the same length. Further, other chemicals that halt ribosomes appear to lock this molecular machine in the other shape, and so it can only protect the shorter fragments. The findings of Lareau, Hite et al. show that ribosomal profiling experiments can reveal much more than simply where a ribosome is on an mRNA molecule. Further study into the different stages of the ribosome ratcheting process will help uncover how the speed that a ribosome translates an mRNA into a protein can be encoded in the mRNA sequence itself. DOI:http://dx.doi.org/10.7554/eLife.01257.002
Collapse
Affiliation(s)
- Liana F Lareau
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Dustin H Hite
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Gregory J Hogan
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Patrick O Brown
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
210
|
Xie P. Dynamics of tRNA translocation, mRNA translocation and tRNA dissociation during ribosome translation through mRNA secondary structures. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:229-40. [DOI: 10.1007/s00249-014-0957-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
|
211
|
Vashisth H, Skiniotis G, Brooks CL. Collective variable approaches for single molecule flexible fitting and enhanced sampling. Chem Rev 2014; 114:3353-65. [PMID: 24446720 PMCID: PMC3983124 DOI: 10.1021/cr4005988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Harish Vashisth
- Department
of Chemical Engineering, University of New
Hampshire, Durham, New Hampshire 03824, United States
| | - Georgios Skiniotis
- Life Sciences Institute, Department
of Biological Chemistry, and
Biophysics Program, and Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles Lee Brooks
- Life Sciences Institute, Department
of Biological Chemistry, and
Biophysics Program, and Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
212
|
Yamashita Y, Kadokura Y, Sotta N, Fujiwara T, Takigawa I, Satake A, Onouchi H, Naito S. Ribosomes in a stacked array: elucidation of the step in translation elongation at which they are stalled during S-adenosyl-L-methionine-induced translation arrest of CGS1 mRNA. J Biol Chem 2014; 289:12693-704. [PMID: 24652291 DOI: 10.1074/jbc.m113.526616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-L-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state.
Collapse
Affiliation(s)
- Yui Yamashita
- From the Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Holtkamp W, Cunha CE, Peske F, Konevega AL, Wintermeyer W, Rodnina MV. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO J 2014; 33:1073-85. [PMID: 24614227 DOI: 10.1002/embj.201387465] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G-GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
214
|
|
215
|
Kumar A, Kumar S, Taneja B. The structure of Rv2372c identifies an RsmE-like methyltransferase fromMycobacterium tuberculosis. ACTA ACUST UNITED AC 2014; 70:821-32. [DOI: 10.1107/s1399004713033555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022]
Abstract
U1498 of 16S rRNA plays an important role in translation fidelity as well as in antibiotic response. U1498 is present in a methylated form in the decoding centre of the ribosome. In this study, Rv2372c fromMycobacterium tuberculosishas been identified as an RsmE-like methyltransferase which specifically methylates U1498 of 16S rRNA at the N3 position and can complement RsmE-deletedEscherichia coli. The crystal structure of Rv2372c has been determined, and reveals that the protein belongs to a distinct class in the SPOUT superfamily and exists as a dimer. The deletion of critical residues at the C-terminus of Rv2372c leads to an inability of the protein to form stable dimers and to abolition of the methyltransferase activity. A ternary model of Rv2372c with its cofactorS-adenosylmethionine (SAM) and the 16S rRNA fragment148716S rRNA1510helps to identify binding pockets for SAM (in the deep trefoil knot) and substrate RNA (at the dimer interface) and suggests an SN2 mechanism for the methylation of N3 of U1498 in 16S rRNA.
Collapse
|
216
|
Abstract
The high-resolution structure of the eukaryotic ribosome from yeast, determined at 3.0-Å resolution, permitted the unambiguous determination of the protein side chains, eukaryote-specific proteins, protein insertions, and ribosomal RNA expansion segments of the 80 proteins and ∼5,500 RNA bases that constitute the 80S ribosome. A comparison between this first atomic model of the entire 80S eukaryotic ribosome and previously determined structures of bacterial ribosomes confirmed early genetic and structural data indicating that they share an evolutionarily conserved core of ribosomal RNA and proteins. It also confirmed the conserved organization of essential functional sites, such as the peptidyl transferase center and the decoding site. New structural information about eukaryote-specific elements, such as expansion segments and new ribosomal proteins, forms the structural framework for the design and analysis of experiments that will explore the eukaryotic translational apparatus and the evolutionary forces that shaped it. New nomenclature for ribosomal proteins, based on the names of protein families, has been proposed.
Collapse
Affiliation(s)
- Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg F-67000, France
| | | |
Collapse
|
217
|
Himeno H, Kurita D, Muto A. Mechanism of trans-translation revealed by in vitro studies. Front Microbiol 2014; 5:65. [PMID: 24600445 PMCID: PMC3929946 DOI: 10.3389/fmicb.2014.00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/04/2014] [Indexed: 11/28/2022] Open
Abstract
tmRNA is a bacterial small RNA having a structure resembling the upper half of tRNA and its 3′ end accepts alanine followed by binding to EF-Tu like tRNA. Instead of lacking a lower half of the cloverleaf structure including the anticodon, tmRNA has a short coding sequence for tag-peptide that serves as a target of cellular proteases. An elaborate coordination of two functions as tRNA and mRNA facilitates an irregular translation termed trans-translation: a single polypeptide is synthesized from two mRNA molecules. It allows resumption of translation stalled on a truncated mRNA, producing a chimeric polypeptide comprising the C-terminally truncated polypeptide derived from truncated mRNA and the C-terminal tag-peptide encoded by tmRNA. Trans-translation promotes recycling of the stalled ribosomes in the cell, and the resulting C-terminally tagged polypeptide is preferentially degraded by cellular proteases. Biochemical studies using in vitro trans-translation systems together with structural studies have unveiled the molecular mechanism of trans-translation, during which the upper and lower halves of tRNA are mimicked by the tRNA-like structure of tmRNA and a tmRNA-specific binding protein called SmpB, respectively. They mimic not only the tRNA structure but also its behavior perhaps at every step of the trans-translation process in the ribosome. Furthermore, the C-terminal tail of SmpB, which is unstructured in solution, occupies the mRNA path in the ribosome to play a crucial role in trans-translation, addressing how tmRNA·SmpB recognizes the ribosome stalled on a truncated mRNA.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan ; RNA Research Center, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan ; RNA Research Center, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
218
|
Bailey BL, Visscher K, Watkins J. A stochastic model of translation with -1 programmed ribosomal frameshifting. Phys Biol 2014; 11:016009. [PMID: 24501223 DOI: 10.1088/1478-3975/11/1/016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
Collapse
Affiliation(s)
- Brenae L Bailey
- Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
219
|
Xie P. Dynamics of +1 ribosomal frameshifting. Math Biosci 2014; 249:44-51. [PMID: 24508018 DOI: 10.1016/j.mbs.2014.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
Abstract
It has been well characterized that the amino acid starvation can induce +1 frameshifting. However, how the +1 frameshifting occurs has not been fully understood. Here, taking Escherichia coli RF2 programmed frameshifting as an example we present systematical analysis of the +1 frameshifting that could occur during every state-transition step in elongation phase of protein synthesis, showing that the +1 frameshifting can occur only during the period after deacylated tRNA dissociation from the posttranslocation state and before the recognition of the next "hungry" codon. The +1 frameshifting efficiency is theoretically studied, with the simple analytical solutions showing that the high efficiency is almost solely due to the occurrence of ribosome pausing which in turn results from the insufficient RF2. The analytical solutions also provide a consistent explanation of a lot of independent experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
220
|
Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL, Hunt JF, Frank J. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat Struct Mol Biol 2014; 21:152-9. [PMID: 24389465 PMCID: PMC4143144 DOI: 10.1038/nsmb.2741] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023]
Abstract
Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, energy-dependent translational throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cryo-EM, we demonstrate that the ATP-bound form of EttA binds to the ribosomal tRNA-exit site, where it forms bridging interactions between the ribosomal L1 stalk and the tRNA bound in the peptidyl-tRNA-binding site. Using single-molecule fluorescence resonance energy transfer, we show that the ATP-bound form of EttA restricts ribosome and tRNA dynamics required for protein synthesis. This work represents the first example, to our knowledge, in which the detailed molecular mechanism of any ABC-F family protein has been determined and establishes a framework for elucidating the mechanisms of other regulatory translation factors.
Collapse
Affiliation(s)
- Bo Chen
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Grégory Boël
- 1] Department of Biological Sciences, Columbia University, New York, New York, USA. [2] Northeast Structural Genomics Consortium, Columbia University, New York, New York, USA. [3]
| | - Yaser Hashem
- 1] Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA. [2]
| | - Wei Ning
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Jingyi Fei
- 1] Department of Chemistry, Columbia University, New York, New York, USA. [2]
| | - Chi Wang
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York, USA
| | - John F Hunt
- 1] Department of Biological Sciences, Columbia University, New York, New York, USA. [2] Northeast Structural Genomics Consortium, Columbia University, New York, New York, USA
| | - Joachim Frank
- 1] Department of Biological Sciences, Columbia University, New York, New York, USA. [2] Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| |
Collapse
|
221
|
Qin P, Yu D, Zuo X, Cornish PV. Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep 2014; 15:185-90. [PMID: 24401932 DOI: 10.1002/embr.201337762] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During protein synthesis, mRNA and tRNA are moved through the ribosome by the process of translocation. The small diameter of the mRNA entrance tunnel only permits unstructured mRNA to pass through. However, there are structured elements within mRNA that present a barrier for translocation that must be unwound. The ribosome has been shown to unwind RNA in the absence of additional factors, but the mechanism remains unclear. Here, we show using single molecule Förster resonance energy transfer and small angle X-ray scattering experiments a new global conformational state of the ribosome. In the presence of the frameshift inducing dnaX hairpin, the ribosomal subunits are driven into a hyper-rotated state and the L1 stalk is predominantly in an open conformation. This previously unobserved conformational state provides structural insight into the helicase activity of the ribosome and may have important implications for understanding the mechanism of reading frame maintenance.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
222
|
Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CMT, Nierhaus KH. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol 2013; 12:89-100. [PMID: 24362468 DOI: 10.1038/nrmicro3176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosomes translate the codon sequence of an mRNA into the amino acid sequence of the corresponding protein. One of the most crucial events is the translocation reaction, which involves movement of both the mRNA and the attached tRNAs by one codon length and is catalysed by the GTPase elongation factor G (EF-G). Interestingly, recent studies have identified a structurally related GTPase, EF4, that catalyses movement of the tRNA2-mRNA complex in the opposite direction when the ribosome stalls, which is known as back-translocation. In this Review, we describe recent insights into the mechanistic basis of both translocation and back-translocation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2]
| | - Yan Qin
- 1] Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China. [2]
| | - John Achenbach
- 1] NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany. [2]
| | - Chengmin Li
- Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China
| | - Jaroslaw Kijek
- Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Knud H Nierhaus
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2] Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| |
Collapse
|
223
|
Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci U S A 2013; 110:20994-9. [PMID: 24324137 DOI: 10.1073/pnas.1311423110] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, tRNAs and their associated mRNA codons move sequentially on the ribosome from the A (aminoacyl) site to the P (peptidyl) site to the E (exit) site in a process catalyzed by a universally conserved ribosome-dependent GTPase [elongation factor G (EF-G) in prokaryotes and elongation factor 2 (EF-2) in eukaryotes]. Although the high-resolution structure of EF-G bound to the posttranslocation ribosome has been determined, the pretranslocation conformation of the ribosome bound with EF-G and A-site tRNA has evaded visualization owing to the transient nature of this state. Here we use electron cryomicroscopy to determine the structure of the 70S ribosome with EF-G, which is trapped in the pretranslocation state using antibiotic viomycin. Comparison with the posttranslocation ribosome shows that the small subunit of the pretranslocation ribosome is rotated by ∼12° relative to the large subunit. Domain IV of EF-G is positioned in the cleft between the body and head of the small subunit outwardly of the A site and contacts the A-site tRNA. Our findings suggest a model in which domain IV of EF-G promotes the translocation of tRNA from the A to the P site as the small ribosome subunit spontaneously rotates back from the hybrid, rotated state into the nonrotated posttranslocation state.
Collapse
|
224
|
Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc Natl Acad Sci U S A 2013; 110:20964-9. [PMID: 24324168 DOI: 10.1073/pnas.1320387110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.
Collapse
|
225
|
|
226
|
Sulima SO, Gülay SP, Anjos M, Patchett S, Meskauskas A, Johnson AW, Dinman JD. Eukaryotic rpL10 drives ribosomal rotation. Nucleic Acids Res 2013; 42:2049-63. [PMID: 24214990 PMCID: PMC3919601 DOI: 10.1093/nar/gkt1107] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ribosomes transit between two conformational states, non-rotated and rotated, through the elongation cycle. Here, we present evidence that an internal loop in the essential yeast ribosomal protein rpL10 is a central controller of this process. Mutations in this loop promote opposing effects on the natural equilibrium between these two extreme conformational states. rRNA chemical modification analyses reveals allosteric interactions involved in coordinating intersubunit rotation originating from rpL10 in the core of the large subunit (LSU) through both subunits, linking all the functional centers of the ribosome. Mutations promoting rotational disequilibria showed catalytic, biochemical and translational fidelity defects. An rpL3 mutation promoting opposing structural and biochemical effects, suppressed an rpL10 mutant, re-establishing rotational equilibrium. The rpL10 loop is also involved in Sdo1p recruitment, suggesting that rotational status is important for ensuring late-stage maturation of the LSU, supporting a model in which pre-60S subunits undergo a ‘test drive’ before final maturation.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA, Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA and Department of Biotechnology and Microbiology, Vilnius University, Vilnius LT-03101, Lithuania
| | | | | | | | | | | | | |
Collapse
|
227
|
Yao L, Li Y, Tsai TW, Xu S, Wang Y. Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EF-G during Ribosome Translocation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
228
|
Yao L, Li Y, Tsai TW, Xu S, Wang Y. Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EF-G during Ribosome Translocation. Angew Chem Int Ed Engl 2013; 52:14041-4. [DOI: 10.1002/anie.201307419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/23/2013] [Indexed: 01/13/2023]
|
229
|
Bock LV, Blau C, Schröder GF, Davydov II, Fischer N, Stark H, Rodnina MV, Vaiana AC, Grubmüller H. Energy barriers and driving forces in tRNA translocation through the ribosome. Nat Struct Mol Biol 2013; 20:1390-6. [DOI: 10.1038/nsmb.2690] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/06/2013] [Indexed: 12/31/2022]
|
230
|
Seo S, Jang Y, Qian P, Liu WK, Choi JB, Lim BS, Kim MK. Efficient prediction of protein conformational pathways based on the hybrid elastic network model. J Mol Graph Model 2013; 47:25-36. [PMID: 24296313 DOI: 10.1016/j.jmgm.2013.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Various computational models have gained immense attention by analyzing the dynamic characteristics of proteins. Several models have achieved recognition by fulfilling either theoretical or experimental predictions. Nonetheless, each method possesses limitations, mostly in computational outlay and physical reality. These limitations remind us that a new model or paradigm should advance theoretical principles to elucidate more precisely the biological functions of a protein and should increase computational efficiency. With these critical caveats, we have developed a new computational tool that satisfies both physical reality and computational efficiency. In the proposed hybrid elastic network model (HENM), a protein structure is represented as a mixture of rigid clusters and point masses that are connected with linear springs. Harmonic analyses based on the HENM have been performed to generate normal modes and conformational pathways. The results of the hybrid normal mode analyses give new physical insight to the 70S ribosome. The feasibility of the conformational pathways of hybrid elastic network interpolation (HENI) was quantitatively evaluated by comparing three different overlap values proposed in this paper. A remarkable observation is that the obtained mode shapes and conformational pathways are consistent with each other. Our timing results show that HENM has some advantage in computational efficiency over a coarse-grained model, especially for large proteins, even though it takes longer to construct the HENM. Consequently, the proposed HENM will be one of the best alternatives to the conventional coarse-grained ENMs and all-atom based methods (such as molecular dynamics) without loss of physical reality.
Collapse
Affiliation(s)
- Sangjae Seo
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yunho Jang
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Pengfei Qian
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jae-Boong Choi
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Byeong Soo Lim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Moon Ki Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
231
|
Xie P. A dynamical model of programmed −1 ribosomal frameshifting. J Theor Biol 2013; 336:119-31. [DOI: 10.1016/j.jtbi.2013.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
232
|
Sahu B, Khade PK, Joseph S. Highly conserved base A55 of 16S ribosomal RNA is important for the elongation cycle of protein synthesis. Biochemistry 2013; 52:6695-701. [PMID: 24025161 PMCID: PMC11849674 DOI: 10.1021/bi4008879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate decoding of mRNA requires the precise interaction of protein factors and tRNAs with the ribosome. X-ray crystallography and cryo-electron microscopy have provided detailed structural information about the 70S ribosome with protein factors and tRNAs trapped during translation. Crystal structures showed that one of the universally conserved 16S rRNA bases, A55, in the shoulder domain of the 30S subunit interacts with elongation factors Tu and G (EF-Tu and EF-G, respectively). The exact functional role of A55 in protein synthesis is not clear. We changed A55 to U and analyzed the effect of the mutation on the elongation cycle of protein synthesis using functional assays. Expression of 16S rRNA with the A55U mutation in cells confers a dominant lethal phenotype. Additionally, ribosomes with the A55U mutation in 16S rRNA show substantially reduced in vitro protein synthesis activity. Equilibrium binding studies showed that the A55U mutation considerably inhibited the binding of the EF-Tu·GTP·tRNA ternary complex to the ribosome. Furthermore, the A55U mutation slightly inhibited the peptidyl transferase reaction, the binding of EF-G·GTP to the ribosome, and mRNA-tRNA translocation. These results indicate that A55 is important for fine-tuning the activity of the ribosome during the elongation cycle of protein synthesis.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Prashant K. Khade
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| |
Collapse
|
233
|
Förster F, Unverdorben P, Śledź P, Baumeister W. Unveiling the Long-Held Secrets of the 26S Proteasome. Structure 2013; 21:1551-62. [DOI: 10.1016/j.str.2013.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/23/2023]
|
234
|
Wang Y, Xiao M, Li Y. Heterogeneity of single molecule FRET signals reveals multiple active ribosome subpopulations. Proteins 2013; 82:1-9. [PMID: 23609951 DOI: 10.1002/prot.24308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/06/2022]
Abstract
Single molecule methods have revealed that heterogeneity is common in biological systems. However, interpretations of the complex signals are challenging. By tracking the fluorescence resonance energy transfer (FRET) signals between the A-site tRNA and L27 protein in single ribosomes, we attempt to develop a qualitative method to subtract the inherent patterns of the heterogeneous single molecule FRET data. Seven ribosome subpopulations are identified using this method and spontaneous exchanges among these subpopulations are observed. All of the pretranslocation subpopulations are competent in real-time translocation, but via distinguished pathways. These observations suggest that the ribosome may function through multiple reaction pathways.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd, Houston, Texas, 77214
| | | | | |
Collapse
|
235
|
Structure of EF-G-ribosome complex in a pretranslocation state. Nat Struct Mol Biol 2013; 20:1077-84. [PMID: 23912278 DOI: 10.1038/nsmb.2645] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/09/2013] [Indexed: 11/08/2022]
Abstract
In protein synthesis, elongation factor G (EF-G) facilitates movement of tRNA-mRNA by one codon, which is coupled to the ratchet-like rotation of the ribosome complex and is triggered by EF-G-mediated GTP hydrolysis. Here we report the structure of a pretranslocational ribosome bound to Thermus thermophilus EF-G trapped with a GTP analog. The positioning of the catalytic His87 into the active site coupled to hydrophobic-gate opening involves the 23S rRNA sarcin-ricin loop and domain III of EF-G and provides a structural basis for the GTPase activation of EF-G. Interactions of the hybrid peptidyl-site-exit-site tRNA with ribosomal elements, including the entire L1 stalk and proteins S13 and S19, shed light on how formation and stabilization of the hybrid tRNA is coupled to head swiveling and body rotation of the 30S as well as to closure of the L1 stalk.
Collapse
|
236
|
Abstract
Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5'-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.
Collapse
Affiliation(s)
- Arto Pulk
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
237
|
Affiliation(s)
- Marina V Rodnina
- Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| |
Collapse
|
238
|
Zhou J, Lancaster L, Donohue JP, Noller HF. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 2013; 340:1236086. [PMID: 23812722 DOI: 10.1126/science.1236086] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translocation of messenger and transfer RNA (mRNA and tRNA) through the ribosome is a crucial step in protein synthesis, whose mechanism is not yet understood. The crystal structures of three Thermus ribosome-tRNA-mRNA-EF-G complexes trapped with β,γ-imidoguanosine 5'-triphosphate (GDPNP) or fusidic acid reveal conformational changes occurring during intermediate states of translocation, including large-scale rotation of the 30S subunit head and body. In all complexes, the tRNA acceptor ends occupy the 50S subunit E site, while their anticodon stem loops move with the head of the 30S subunit to positions between the P and E sites, forming chimeric intermediate states. Two universally conserved bases of 16S ribosomal RNA that intercalate between bases of the mRNA may act as "pawls" of a translocational ratchet. These findings provide new insights into the molecular mechanism of ribosomal translocation.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
239
|
González-García JS, Delgado J. Stochastic microswimming model for the average translational velocity of the ribosome. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012723. [PMID: 23944506 DOI: 10.1103/physreve.88.012723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/16/2013] [Indexed: 06/02/2023]
Abstract
The motion of the ribosome is modeled here, assuming that its two subunits are subject to stochastic rearrangements, thus producing different conformations constituting its deformation cycle, or swimming stroke. Using a general statistical mechanical formulation, the mean propulsion velocity of the ribosome is obtained as a function of the transition rates among the different conformations and of the relevant deformation variables. A calculation with reasonable parameter estimations shows that the ribosome can match the average protein synthesis speed with deformations of a size comparable to its radius.
Collapse
Affiliation(s)
- José S González-García
- Departamento de Física y Matemáticas, Instituto Tecnológico de Estudios Superiores de Monterrey, Campus Ciudad de México, Calle del Puente 222, Col. Ejidos de Huipulco, Tlalpan, México, D.F. 14380, México.
| | | |
Collapse
|
240
|
Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 2013; 340:1235490. [PMID: 23812720 PMCID: PMC3836249 DOI: 10.1126/science.1235490] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key step of translation by the ribosome is translocation, which involves the movement of messenger RNA (mRNA) and transfer RNA (tRNA) with respect to the ribosome. This allows a new round of protein chain elongation by placing the next mRNA codon in the A site of the 30S subunit. Translocation proceeds through an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to form hybrid states. The guanosine triphosphatase (GTPase) elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. Here, we present a crystal structure at 3 angstrom resolution of the Thermus thermophilus ribosome with a tRNA in the hybrid P/E state bound to EF-G with a GTP analog. The structure provides insights into structural changes that facilitate translocation and suggests a common GTPase mechanism for EF-G and elongation factor Tu.
Collapse
Affiliation(s)
| | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
241
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
242
|
Jiang J, Sakakibara Y, Chow CS. Helix 69: A Multitasking RNA Motif as a Novel Drug Target. Isr J Chem 2013. [DOI: 10.1002/ijch.201300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
243
|
Li N, Chen Y, Guo Q, Zhang Y, Yuan Y, Ma C, Deng H, Lei J, Gao N. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res 2013; 41:7073-83. [PMID: 23700310 PMCID: PMC3737534 DOI: 10.1093/nar/gkt423] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.
Collapse
Affiliation(s)
- Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem J 2013; 452:173-81. [DOI: 10.1042/bj20121792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
LepA [EF4 (elongation factor 4)] is a highly conserved protein found in nearly all known genomes. EF4 triggers back-translocation of the elongating ribosome, causing the translation machinery to move one codon backwards along the mRNA. Knockout of the corresponding gene in various bacteria results in different phenotypes; however, the physiological function of the factor in vivo is unclear. Although functional research on Guf1 (GTPase of unknown function 1), the eukaryotic homologue of EF4, showed that it plays a critical role under suboptimal translation conditions in vivo, its detailed mechanism has yet to be identified. In the present review we briefly cover recent advances in our understanding of EF4, including in vitro structural and biochemical studies, and research on its physiological role in vivo. Lastly, we present a hypothesis for back-translocation and discuss the directions future EF4 research should focus on.
Collapse
|
245
|
Cohen JA, Chaudhuri A, Golestanian R. Translocation through environments with time dependent mobility. J Chem Phys 2013. [PMID: 23206035 DOI: 10.1063/1.4767527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider single particle and polymer translocation where the frictional properties experienced from the environment are changing in time. This work is motivated by the interesting frequency responsive behaviour observed when a polymer is passing through a pore with an oscillating width. In order to explain this better we construct general diffusive and non-diffusive frequency response of the gain in translocation time for a single particle in changing environments and look at some specific variations. For two state confinement, where the particle either has constant drift velocity or is stationary, we find exact expressions for both the diffusive and non-diffusive gain. We then apply this approach to polymer translocation under constant forcing through a pore with a sinusoidally varying width. We find good agreement for small polymers at low frequency oscillation with deviations occurring at longer lengths and higher frequencies. Unlike periodic forcing of a single particle at constant mobility, constant forcing with time dependent mobility is amenable to exact solution through manipulation of the Fokker-Planck equation.
Collapse
Affiliation(s)
- Jack A Cohen
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom.
| | | | | |
Collapse
|
246
|
Chen J, Petrov A, Tsai A, O'Leary SE, Puglisi JD. Coordinated conformational and compositional dynamics drive ribosome translocation. Nat Struct Mol Biol 2013; 20:718-27. [PMID: 23624862 PMCID: PMC3883222 DOI: 10.1038/nsmb.2567] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/07/2013] [Indexed: 12/15/2022]
Abstract
During translation elongation, the compositional factors, elongation factor G (EF-G; encoded by fusA) and transfer RNA (tRNA), alternately bind to the ribosome to direct protein synthesis, in turn regulating the conformation of the ribosome. Here, we use single-molecule fluorescence with zero-mode waveguides to correlate directly ribosome conformations and compositions during multiple rounds of elongation at high factor concentrations in Escherichia coli. Our results show that EF-G-GTP continuously samples both rotational sates of the ribosome, binding with higher affinity to the rotated state. Upon successful accommodation into the rotated ribosome, the EF-G-ribosome complex evolves through several rate-limiting conformational changes and the hydrolysis of GTP, which results in a transition back to the non-rotated state, in turn driving translocation and facilitating both EF-G-GDP and E-site tRNA release. These experiments highlight the power of tracking single-molecule conformation and composition simultaneously in real-time.
Collapse
Affiliation(s)
- Jin Chen
- Department of Applied Physics, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
247
|
Krüger DM, Rathi PC, Pfleger C, Gohlke H. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function. Nucleic Acids Res 2013; 41:W340-8. [PMID: 23609541 PMCID: PMC3692064 DOI: 10.1093/nar/gkt292] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.
Collapse
Affiliation(s)
- Dennis M Krüger
- Computational Pharmaceutical Chemistry Group, Department of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
248
|
Wang L, Wasserman MR, Feldman MB, Altman RB, Blanchard SC. Mechanistic insights into antibiotic action on the ribosome through single-molecule fluorescence imaging. Ann N Y Acad Sci 2013; 1241:E1-16. [PMID: 23419024 DOI: 10.1111/j.1749-6632.2012.06839.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence imaging has provided unprecedented access to the dynamics of ribosome function, revealing transient intermediate states that are critical to ribosome activity. Imaging platforms have now been developed that are capable of probing many hundreds of molecules simultaneously at temporal and spatial resolutions approaching the sub-millisecond time and the sub-nanometer scales. These advances enable both steady- and pre-steady state measurements of individual steps in the translation process as well as processive reactions. The data generated using these methods have yielded new, quantitative structural and kinetic insights into ribosomal activity. They have also shed light on the mechanisms of antibiotic targeting the translation apparatus, revealing features of the structure-function relationship that would be difficult to obtain by other means. This review provides an overview of the types of information that can be obtained using such imaging platforms and a blueprint for using the technique to assess how small-molecule antibiotics alter macromolecular functions.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
249
|
Lehmann J, Jossinet F, Gautheret D. A universal RNA structural motif docking the elbow of tRNA in the ribosome, RNAse P and T-box leaders. Nucleic Acids Res 2013; 41:5494-502. [PMID: 23580544 PMCID: PMC3664808 DOI: 10.1093/nar/gkt219] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The structure and function of conserved motifs constituting the apex of Stem I in T-box mRNA leaders are investigated. We point out that this apex shares striking similarities with the L1 stalk (helices 76–78) of the ribosome. A sequence and structure analysis of both elements shows that, similarly to the head of the L1 stalk, the function of the apex of Stem I lies in the docking of tRNA through a stacking interaction with the conserved G19:C56 base pair platform. The inferred structure in the apex of Stem I consists of a module of two T-loops bound together head to tail, a module that is also present in the head of the L1 stalk, but went unnoticed. Supporting the analysis, we show that a highly conserved structure in RNAse P formerly described as the J11/12–J12/11 module, which is precisely known to bind the elbow of tRNA, constitutes a third instance of this T-loop module. A structural analysis explains why six nucleotides constituting the core of this module are highly invariant among all three types of RNA. Our finding that major RNA partners of tRNA bind the elbow with a same RNA structure suggests an explanation for the origin of the tRNA L-shape.
Collapse
Affiliation(s)
- Jean Lehmann
- Université Paris-Sud, Institut de Génétique et Microbiologie, CNRS UMR 8621, Orsay F-91405, France.
| | | | | |
Collapse
|
250
|
Whitford PC, Blanchard SC, Cate JHD, Sanbonmatsu KY. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome. PLoS Comput Biol 2013; 9:e1003003. [PMID: 23555233 PMCID: PMC3605090 DOI: 10.1371/journal.pcbi.1003003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/04/2013] [Indexed: 12/27/2022] Open
Abstract
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.
Collapse
Affiliation(s)
- Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America.
| | | | | | | |
Collapse
|