201
|
Abstract
For a protein to function appropriately, it must first achieve its proper conformation and location within the crowded environment inside the cell. Multiple chaperone systems are required to fold proteins correctly. In addition, degradation pathways participate by destroying improperly folded proteins. The intricacy of this multisystem process provides many opportunities for error. Furthermore, mutations cause misfolded, nonfunctional forms of proteins to accumulate. As a result, many pathological conditions are fundamentally rooted in the protein-folding problem that all cells must solve to maintain their function and integrity. Here, to illustrate the breadth of this phenomenon, we describe five examples of protein-misfolding events that can lead to disease: improper degradation, mislocalization, dominant-negative mutations, structural alterations that establish novel toxic functions, and amyloid accumulation. In each case, we will highlight current therapeutic options for battling such diseases.
Collapse
Affiliation(s)
- Julie S Valastyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
202
|
Nucleocytoplasmic transport under stress conditions and its role in HSP70 chaperone systems. Biochim Biophys Acta Gen Subj 2014; 1840:2953-60. [DOI: 10.1016/j.bbagen.2014.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022]
|
203
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
204
|
Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 2014; 4:704-24. [PMID: 25036888 PMCID: PMC4192669 DOI: 10.3390/biom4030704] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/31/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
Molecular chaperones were originally discovered as heat shock-induced proteins that facilitate proper folding of proteins with non-native conformations. While the function of chaperones in protein folding has been well documented over the last four decades, more recent studies have shown that chaperones are also necessary for the clearance of terminally misfolded proteins by the Ub-proteasome system. In this capacity, chaperones protect misfolded degradation substrates from spontaneous aggregation, facilitate their recognition by the Ub ligation machinery and finally shuttle the ubiquitylated substrates to the proteasome. The physiological importance of these functions is manifested by inefficient proteasomal degradation and the accumulation of protein aggregates during ageing or in certain neurodegenerative diseases, when chaperone levels decline. In this review, we focus on the diverse roles of stress-induced chaperones in targeting misfolded proteins to the proteasome and the consequences of their compromised activity. We further discuss the implications of these findings to the identification of new therapeutic targets for the treatment of amyloid diseases.
Collapse
|
205
|
Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R. Protein quality control in the nucleus. Biomolecules 2014; 4:646-61. [PMID: 25010148 PMCID: PMC4192666 DOI: 10.3390/biom4030646] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.
Collapse
Affiliation(s)
- Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
206
|
Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014; 52:26-38. [DOI: 10.1016/j.biocel.2014.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
|
207
|
Christianson JC, Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 2014; 21:325-35. [PMID: 24699081 DOI: 10.1038/nsmb.2793] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.
Collapse
Affiliation(s)
- John C Christianson
- 1] Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. [2]
| | - Yihong Ye
- 1] Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|
208
|
Nakasone N, Nakamura YS, Higaki K, Oumi N, Ohno K, Ninomiya H. Endoplasmic reticulum-associated degradation of Niemann-Pick C1: evidence for the role of heat shock proteins and identification of lysine residues that accept ubiquitin. J Biol Chem 2014; 289:19714-25. [PMID: 24891511 DOI: 10.1074/jbc.m114.549915] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most cases with Niemann-Pick disease type C carry mutations in NPC1. Some of the mutations, including the most frequent I1061T, give rise to unstable proteins selected for endoplasmic reticulum-associated degradation. The purpose of the current study was to shed mechanistic insights into the degradation process. A proteasome inhibitor MG132 prolonged the life span of the wild-type NPC1 expressed in COS cells. The expressed protein associated with multiple chaperones including heat shock protein 90 (Hsp90), Hsp70, heat shock cognate protein 70 (Hsc70), and calnexin. Accordingly, expression of an E3 ligase CHIP (carboxyl terminus of Hsp70-interacting protein) enhanced MG132-induced accumulation of ubiquitylated NPC1. Co-expression and RNAi knockdown experiments in HEK cells indicated that Hsp70/Hsp90 stabilized NPC1, whereas Hsc70 destabilized it. In human fibroblasts carrying the I1061T mutation, adenovirus-mediated expression of Hsp70 or treatment with an HSP-inducer geranylgeranylacetone (GGA) increased the level of the mutant protein. In GGA-treated cells, the rescued protein was localized in the late endosome and ameliorated cholesterol accumulation. MALDI-TOF mass spectrometry revealed three lysine residues at amino acids 318, 792, and 1180 as potential ubiquitin-conjugation sites. Substitutions of the three residues with alanine yielded a mutant protein with a steady-state level more than three times higher than that of the wild-type. Introduction of the same substitutions to the I1061T mutant resulted in an increase in its protein level and functional restoration. These findings indicated the role of HSPs in quality control of NPC1 and revealed the role of three lysine residues as ubiquitin-conjugation sites.
Collapse
Affiliation(s)
| | - Yuko S Nakamura
- Applied Biotechnology, Tottori Institute of Industrial Technology, Yonago 684-0041
| | - Katsumi Higaki
- the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, and
| | - Nao Oumi
- the Tottori University Hospital Cancer Center, Yonago 683-8504, Japan
| | - Kousaku Ohno
- Child Neurology, Tottori University Faculty of Medicine, Yonago 683-8503
| | | |
Collapse
|
209
|
Abstract
Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.
Collapse
|
210
|
Wolfe KJ, Ren HY, Trepte P, Cyr DM. Polyglutamine-rich suppressors of huntingtin toxicity act upstream of Hsp70 and Sti1 in spatial quality control of amyloid-like proteins. PLoS One 2014; 9:e95914. [PMID: 24828240 PMCID: PMC4020751 DOI: 10.1371/journal.pone.0095914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 11/30/2022] Open
Abstract
Protein conformational maladies such as Huntington Disease are characterized by accumulation of intracellular and extracellular protein inclusions containing amyloid-like proteins. There is an inverse correlation between proteotoxicity and aggregation, so facilitated protein aggregation appears cytoprotective. To define mechanisms for protective protein aggregation, a screen for suppressors of nuclear huntingtin (Htt103Q) toxicity was conducted. Nuclear Htt103Q is highly toxic and less aggregation prone than its cytosolic form, so we identified suppressors of cytotoxicity caused by Htt103Q tagged with a nuclear localization signal (NLS). High copy suppressors of Htt103Q-NLS toxicity include the polyQ-domain containing proteins Nab3, Pop2, and Cbk1, and each suppresses Htt toxicity via a different mechanism. Htt103Q-NLS appears to inactivate the essential functions of Nab3 in RNA processing in the nucleus. Function of Pop2 and Cbk1 is not impaired by nuclear Htt103Q, as their respective polyQ-rich domains are sufficient to suppress Htt103Q toxicity. Pop2 is a subunit of an RNA processing complex and is localized throughout the cytoplasm. Expression of just the Pop2 polyQ domain and an adjacent proline-rich stretch is sufficient to suppress Htt103Q toxicity. The proline-rich domain in Pop2 resembles an aggresome targeting signal, so Pop2 may act in trans to positively impact spatial quality control of Htt103Q. Cbk1 accumulates in discrete perinuclear foci and overexpression of the Cbk1 polyQ domain concentrates diffuse Htt103Q into these foci, which correlates with suppression of Htt toxicity. Protective action of Pop2 and Cbk1 in spatial quality control is dependent upon the Hsp70 co-chaperone Sti1, which packages amyloid-like proteins into benign foci. Protein:protein interactions between Htt103Q and its intracellular neighbors lead to toxic and protective outcomes. A subset of polyQ-rich proteins buffer amyloid toxicity by funneling toxic aggregation intermediates to the Hsp70/Sti1 system for spatial organization into benign species.
Collapse
Affiliation(s)
- Katie J. Wolfe
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hong Yu Ren
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Philipp Trepte
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Douglas M. Cyr
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
211
|
The E3 ligase CHIP: insights into its structure and regulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:918183. [PMID: 24868554 PMCID: PMC4017836 DOI: 10.1155/2014/918183] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP.
Collapse
|
212
|
Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc Natl Acad Sci U S A 2014; 111:E1481-90. [PMID: 24706768 DOI: 10.1073/pnas.1321811111] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein conformational diseases exhibit complex pathologies linked to numerous molecular defects. Aggregation of a disease-associated protein causes the misfolding and aggregation of other proteins, but how this interferes with diverse cellular pathways is unclear. Here, we show that aggregation of neurodegenerative disease-related proteins (polyglutamine, huntingtin, ataxin-1, and superoxide dismutase-1) inhibits clathrin-mediated endocytosis (CME) in mammalian cells by aggregate-driven sequestration of the major molecular chaperone heat shock cognate protein 70 (HSC70), which is required to drive multiple steps of CME. CME suppression was also phenocopied by HSC70 RNAi depletion and could be restored by conditionally increasing HSC70 abundance. Aggregation caused dysregulated AMPA receptor internalization and also inhibited CME in primary neurons expressing mutant huntingtin, showing direct relevance of our findings to the pathology in neurodegenerative diseases. We propose that aggregate-associated chaperone competition leads to both gain-of-function and loss-of-function phenotypes as chaperones become functionally depleted from multiple clients, leading to the decline of multiple cellular processes. The inherent properties of chaperones place them at risk, contributing to the complex pathologies of protein conformational diseases.
Collapse
|
213
|
Houck SA, Ren HY, Madden VJ, Bonner JN, Conlin MP, Janovick JA, Conn PM, Cyr DM. Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol Cell 2014; 54:166-179. [PMID: 24685158 DOI: 10.1016/j.molcel.2014.02.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/17/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ER-associated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC autophagy.
Collapse
Affiliation(s)
- Scott A Houck
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong Yu Ren
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria J Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob N Bonner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael P Conlin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jo Ann Janovick
- Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center, Lubbock, TX 79430-6252, USA
| | - P Michael Conn
- Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center, Lubbock, TX 79430-6252, USA
| | - Douglas M Cyr
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
214
|
Complement yourself: Transcomplementation rescues partially folded mutant proteins. Biophys Rev 2014; 6:169-180. [PMID: 24949105 DOI: 10.1007/s12551-014-0137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal disease associated with malfunction in fluid and electrolyte transport across several mucosal membranes. The most common mutation in CF is an in-frame three-base pair deletion that removes a phenylalanine at position 508 in the first nucleotide-binding domain of the cystic fibrosis conductance regulator (CFTR) chloride channel. This mutation has been studied extensively and leads to biosynthetic arrest of the protein in the endoplasmic reticulum and severely reduced channel activity. This review discusses a novel method of rescuing ΔF508 with transcomplementation, which occurs when smaller fragments of CFTR containing the wild-type nucleotide binding domain are co-expressed with the ΔF508 deletion mutant. Transcomplementation rescues the processing and channel activity of ΔF508 and reduces its rate of degradation in airway epithelial cells. To apply transcomplementation as a therapy would require that the cDNA encoding the truncated CFTR be delivered to cells. We also discuss a gene therapeutic approach based on delivery of a truncated form of CFTR to airway cells using adeno-associated viral vectors.
Collapse
|
215
|
Wei Q, Sha Y, Bhattacharya A, Abdel Fattah E, Bonilla D, Jyothula SSSK, Pandit L, Khurana Hershey GK, Eissa NT. Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respir Crit Care Med 2014; 189:16-29. [PMID: 24251647 DOI: 10.1164/rccm.201305-0874oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4- and IL-13-mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. OBJECTIVES To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. METHODS The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1(-/-) mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. MEASUREMENTS AND MAIN RESULTS STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. CONCLUSIONS Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation.
Collapse
Affiliation(s)
- Qin Wei
- 1 Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Kriegenburg F, Jakopec V, Poulsen EG, Nielsen SV, Roguev A, Krogan N, Gordon C, Fleig U, Hartmann-Petersen R. A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genet 2014; 10:e1004140. [PMID: 24497846 PMCID: PMC3907333 DOI: 10.1371/journal.pgen.1004140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity. The accumulation of misfolded proteins represents a considerable threat to the health of individual cells and has been linked to severe diseases, including cancer and neurodegenerative disorders. To cope with this threat, especially under stress conditions, cells have evolved efficient quality control mechanisms. In general, these rely on molecular chaperones to either seize and refold misfolded proteins, or target them for degradation via the ubiquitin-proteasome system. At present, our understanding of what determines whether a chaperone commits to a folding or a degradation mode is limited. However, studies suggest that association with certain regulatory co-chaperones contributes to this process. Here, we show that certain BAG-1-type co-chaperones function in quality control by targeting misfolded kinetochore components for proteolysis. The presented genetic and biochemical data show that specific ubiquitin conjugating enzymes and ubiquitin-protein ligases maintain nuclear protein homeostasis and are required for upholding genome integrity.
Collapse
Affiliation(s)
| | - Visnja Jakopec
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, Düsseldorf, Germany
| | - Esben G. Poulsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Colin Gordon
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Ursula Fleig
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, Düsseldorf, Germany
| | | |
Collapse
|
217
|
Diverse roles of C-terminal Hsp70-interacting protein (CHIP) in tumorigenesis. J Cancer Res Clin Oncol 2013; 140:189-97. [DOI: 10.1007/s00432-013-1571-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/12/2013] [Indexed: 12/23/2022]
|
218
|
Wang Y, Ren F, Wang Y, Feng Y, Wang D, Jia B, Qiu Y, Wang S, Yu J, Sung JJ, Xu J, Zeps N, Chang Z. CHIP/Stub1 functions as a tumor suppressor and represses NF-κB-mediated signaling in colorectal cancer. Carcinogenesis 2013; 35:983-91. [PMID: 24302614 DOI: 10.1093/carcin/bgt393] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP, also named Stub1), a U-box containing E3 ubiquitin ligase, is involved in degradation of certain oncogenic proteins. Recent studies indicated that CHIP suppresses tumor progression in human cancers by targeting Src-3, hypoxia inducible factor 1α, NF-κB, ErbB2 and c-Myc. Here, we report that CHIP was downregulated, predominantly, in the late stages of human colorectal cancer (CRC), and that the CHIP promoter was hypermethylated in CRC specimens. Overexpression of CHIP in HCT-116 cells resulted in impaired tumor growth in nude mice and decreased abilities of tumor cell migration and invasion. Conversely, depletion of CHIP in HCT-116 cells promoted tumor growth and increased tumor cell migration and invasion. CHIP was further found to negatively regulate NF-κB signaling in HCT-116 cells by promoting ubiquitination and degradation of p65, a subunit of the NF-κB complex. The suppressive effect of CHIP led to decreased expression of NF-κB-targeted oncogenes including Cyclin D1, c-Myc, MMP-2, VEGF and IL-8. We proposed that CHIP inhibits the malignancy of CRC cells, possibly through targeting NF-κB signaling. This study provides functional evidence for CHIP as a potential tumor suppressor in CRC, and CHIP expression may be a marker for stages of CRC.
Collapse
Affiliation(s)
- Yangmeng Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C. The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 2013; 71:43-53. [PMID: 24262338 DOI: 10.1016/j.yjmcc.2013.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/13/2023]
Abstract
Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac function, while the dysregulation of protein turnover is present in a diverse array of common cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling, and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to the turnover and function of the sarcomere complex, responsible for the heart's required continuous contraction. In this review, we provide an overview of the UPS, highlighting a comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover, cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Ariana Bevilacqua
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, NB, Canada
| | - Petra Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, NB, Canada
| | - Manasi Tannu
- College of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cam Patterson
- Departments of Cell and Developmental Biology, Medicine (Cardiology), and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
220
|
Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, Havasi V, Keiles S, Kappes J, Kumar R, Lefkowitz E, Sorscher EJ, Matalon S, Collawn JF, Bebok Z. The silent codon change I507-ATC->ATT contributes to the severity of the ΔF508 CFTR channel dysfunction. FASEB J 2013; 27:4630-45. [PMID: 23907436 PMCID: PMC4046180 DOI: 10.1096/fj.13-227330] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
The most common disease-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is the out-of-frame deletion of 3 nucleotides (CTT). This mutation leads to the loss of phenylalanine-508 (ΔF508) and a silent codon change (SCC) for isoleucine-507 (I507-ATC→ATT). ΔF508 CFTR is misfolded and degraded by endoplasmic reticulum-associated degradation (ERAD). We have demonstrated that the I507-ATC→ATT SCC alters ΔF508 CFTR mRNA structure and translation dynamics. By comparing the biochemical and functional properties of the I507-ATT and I507-ATC ΔF508 CFTR, we establish that the I507-ATC→ATT SCC contributes to the cotranslational misfolding, ERAD, and to the functional defects associated with ΔF508 CFTR. We demonstrate that the I507-ATC ΔF508 CFTR is less susceptible to the ER quality-control machinery during translation than the I507-ATT, although 27°C correction is necessary for sufficient cell-surface expression. Whole-cell patch-clamp recordings indicate sustained, thermally stable cAMP-activated Cl(-) transport through I507-ATC and unstable function of the I507-ATT ΔF508 CFTR. Single-channel recordings reveal improved gating properties of the I507-ATC compared to I507-ATT ΔF508 CFTR (NPo=0.45±0.037 vs. NPo=0.09±0.002; P<0.001). Our results signify the role of the I507-ATC→ATT SCC in the ΔF508 CFTR defects and support the importance of synonymous codon choices in determining the function of gene products.
Collapse
Affiliation(s)
- Ahmed Lazrak
- 2Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., MCLM 350A, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Apaja PM, Foo B, Okiyoneda T, Valinsky WC, Barriere H, Atanasiu R, Ficker E, Lukacs GL, Shrier A. Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane. Mol Biol Cell 2013; 24:3787-804. [PMID: 24152733 PMCID: PMC3861077 DOI: 10.1091/mbc.e13-07-0417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go-related gene (hERG) K(+) channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest. LQT2 syndrome is attributed to channel biosynthetic processing defects due to mutation, drug-induced misfolding, or direct channel blockade. Here we provide evidence that a peripheral quality control mechanism can contribute to development of the LQT2 syndrome. We show that PM hERG structural and metabolic stability is compromised by the reduction of extracellular or intracellular K(+) concentration. Cardiac glycoside-induced intracellular K(+) depletion conformationally impairs the complex-glycosylated channel, which provokes chaperone- and C-terminal Hsp70-interacting protein-dependent polyubiquitination, accelerated internalization, and endosomal sorting complex required for transport-dependent lysosomal degradation. A similar mechanism contributes to the down-regulation of PM hERG harboring LQT2 missense mutations, with incomplete secretion defect. These results suggest that PM quality control plays a determining role in the loss-of-expression phenotype of hERG in certain hereditary and acquired LTQ2 syndromes.
Collapse
Affiliation(s)
- Pirjo M Apaja
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3E 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Shi CH, Schisler JC, Rubel CE, Tan S, Song B, McDonough H, Xu L, Portbury AL, Mao CY, True C, Wang RH, Wang QZ, Sun SL, Seminara SB, Patterson C, Xu YM. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 2013; 23:1013-24. [PMID: 24113144 DOI: 10.1093/hmg/ddt497] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gordon Holmes syndrome (GHS) is a rare Mendelian neurodegenerative disorder characterized by ataxia and hypogonadism. Recently, it was suggested that disordered ubiquitination underlies GHS though the discovery of exome mutations in the E3 ligase RNF216 and deubiquitinase OTUD4. We performed exome sequencing in a family with two of three siblings afflicted with ataxia and hypogonadism and identified a homozygous mutation in STUB1 (NM_005861) c.737C→T, p.Thr246Met, a gene that encodes the protein CHIP (C-terminus of HSC70-interacting protein). CHIP plays a central role in regulating protein quality control, in part through its ability to function as an E3 ligase. Loss of CHIP function has long been associated with protein misfolding and aggregation in several genetic mouse models of neurodegenerative disorders; however, a role for CHIP in human neurological disease has yet to be identified. Introduction of the Thr246Met mutation into CHIP results in a loss of ubiquitin ligase activity measured directly using recombinant proteins as well as in cell culture models. Loss of CHIP function in mice resulted in behavioral and reproductive impairments that mimic human ataxia and hypogonadism. We conclude that GHS can be caused by a loss-of-function mutation in CHIP. Our findings further highlight the role of disordered ubiquitination and protein quality control in the pathogenesis of neurodegenerative disease and demonstrate the utility of combining whole-exome sequencing with molecular analyses and animal models to define causal disease polymorphisms.
Collapse
Affiliation(s)
- Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Wolfe KJ, Ren HY, Trepte P, Cyr DM. The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 2013; 24:3588-602. [PMID: 24109600 PMCID: PMC3842988 DOI: 10.1091/mbc.e13-06-0315] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Escape of aberrant proteins from protein quality control leads to accumulation of toxic protein species. Sti1 interacts with Hsp70 to mediate spatial PQC of amyloid-like proteins by regulating their distribution in different intracellular protein-handling depots. Sti1 suppresses proteotoxicity by targeting amyloid-like proteins to perinuclear foci. Conformational diseases are associated with the conversion of normal proteins into aggregation-prone toxic conformers with structures similar to that of β-amyloid. Spatial distribution of amyloid-like proteins into intracellular quality control centers can be beneficial, but cellular mechanisms for protective aggregation remain unclear. We used a high-copy suppressor screen in yeast to identify roles for the Hsp70 system in spatial organization of toxic polyglutamine-expanded Huntingtin (Huntingtin with 103Q glutamine stretch [Htt103Q]) into benign assemblies. Under toxic conditions, Htt103Q accumulates in unassembled states and speckled cytosolic foci. Subtle modulation of Sti1 activity reciprocally affects Htt toxicity and the packaging of Htt103Q into foci. Loss of Sti1 exacerbates Htt toxicity and hinders foci formation, whereas elevation of Sti1 suppresses Htt toxicity while organizing small Htt103Q foci into larger assemblies. Sti1 also suppresses cytotoxicity of the glutamine-rich yeast prion [RNQ+] while reorganizing speckled Rnq1–monomeric red fluorescent protein into distinct foci. Sti1-inducible foci are perinuclear and contain proteins that are bound by the amyloid indicator dye thioflavin-T. Sti1 is an Hsp70 cochaperone that regulates the spatial organization of amyloid-like proteins in the cytosol and thereby buffers proteotoxicity caused by amyloid-like proteins.
Collapse
Affiliation(s)
- Katie J Wolfe
- Department of Cellular Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599 Neuroproteomics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
224
|
Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 2013; 9:1937-54. [PMID: 24121476 DOI: 10.4161/auto.26448] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HSPA8/HSC70 protein is a fascinating chaperone protein. It represents a constitutively expressed, cognate protein of the HSP70 family, which is central in many cellular processes. In particular, its regulatory role in autophagy is decisive. We focused this review on HSC70 structure-function considerations and based on this, we put a particular emphasis on HSC70 targeting by small molecules and peptides in order to develop intervention strategies that deviate some of HSC70 properties for therapeutic purposes. Generating active biomolecules regulating autophagy via its effect on HSC70 can effectively be designed only if we understand the fine relationships between HSC70 structure and functions.
Collapse
Affiliation(s)
- François Stricher
- CNRS; Institut de Biologie Moléculaire et Cellulaire; Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis; Strasbourg, France
| | | | | | | |
Collapse
|
225
|
The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol Cell Biol 2013; 33:4461-72. [PMID: 24043303 DOI: 10.1128/mcb.00480-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging.
Collapse
|
226
|
El Khouri E, Le Pavec G, Toledano MB, Delaunay-Moisan A. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2013; 288:31177-91. [PMID: 24019521 DOI: 10.1074/jbc.m113.470500] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.
Collapse
Affiliation(s)
- Elma El Khouri
- From the Laboratoire Stress Oxydant et Cancers, Service de Biologie Intégrative et Génétique Moléculaire (SBiGeM), Institut de Biologie et de Technologies de Saclay (IBiTec-S), Commissariat à l'Energie Atomique-Saclay, 91191 Gif-sur-Yvette, Cedex, France
| | | | | | | |
Collapse
|
227
|
Olzmann JA, Kopito RR, Christianson JC. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013185. [PMID: 23232094 DOI: 10.1101/cshperspect.a013185] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endoplasmic reticulum (ER) is the site of synthesis for nearly one-third of the eukaryotic proteome and is accordingly endowed with specialized machinery to ensure that proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by ER-associated degradation (ERAD), a complex process through which folding-defective proteins are selected and ultimately degraded by the ubiquitin-proteasome system. ERAD proceeds through four tightly coupled steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasomal degradation. The ERAD machinery shows a modular organization with central ER membrane-embedded ubiquitin ligases linking components responsible for recognition in the ER lumen to the ubiquitin-proteasome system in the cytoplasm. The core ERAD machinery is highly conserved among eukaryotes and much of our basic understanding of ERAD organization has been derived from genetic and biochemical studies of yeast. In this article we discuss how the core ERAD machinery is organized in mammalian cells.
Collapse
Affiliation(s)
- James A Olzmann
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
228
|
Matsumura Y, Sakai J, Skach WR. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem 2013; 288:31069-79. [PMID: 23990462 DOI: 10.1074/jbc.m113.479345] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | | | | |
Collapse
|
229
|
Comyn SA, Chan GT, Mayor T. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J Proteomics 2013; 100:92-101. [PMID: 23954725 DOI: 10.1016/j.jprot.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Maintaining proteostasis is crucial to cells given the toxic potential of misfolded proteins and aggregates. To this end, cells rely on a number of quality control pathways that survey proteins both during, as well as after synthesis to prevent protein aggregation, promote protein folding, and to target terminally misfolded proteins for degradation. In eukaryotes, the ubiquitin proteasome system plays a critical role in protein quality control by selectively targeting proteins for degradation. Recent studies have added to our understanding of cytosolic protein quality control, particularly in the area of cotranslational protein ubiquitination, and suggest that overlap exists across co- and post-translational protein quality control networks. Here, we review recent advances made in the area of cytoplasmic protein quality control with an emphasis on the pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. BIOLOGICAL SIGNIFICANCE Protein homeostasis, or proteostasis, encompasses the systems required by the cell for the generation and maintenance of the correct levels, conformational state, distribution, and degradation of its proteome. One of the challenges faced by the cell in maintaining proteostasis is the presence of misfolded proteins. Cells therefore have a number of protein quality control pathways to aid in folding or mediate the degradation of misfolded proteins. The ubiquitin proteasome system in particular plays a critical role in protein quality control by selectively targeting proteins for degradation. Nascent polypeptides can be ubiquitinated cotranslationally, however to what extent and how this is used by the cell as a quality control mechanism has, until recently, remained relatively unclear. The picture now emerging is one of two quality control networks: one that recognizes nascent polypeptides on stalled ribosomes and another that targets actively translating polypeptides that misfold, failing to attain their native conformation. These studies underscore the important balance between cotranslational protein folding and degradation in the maintenance of protein homeostasis. In this review we summarize recent advances made in the area of cytoplasmic protein quality control with an emphasis on pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
Collapse
Affiliation(s)
- Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Center for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
230
|
Ren HY, Grove DE, De La Rosa O, Houck SA, Sopha P, Van Goor F, Hoffman BJ, Cyr DM. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 2013; 24:3016-24. [PMID: 23924900 PMCID: PMC3784376 DOI: 10.1091/mbc.e13-05-0240] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolding of cystic fibrosis transmembrane conductance regulator protein (CFTR) causes the fatal lung disease cystic fibrosis. VX-809 was developed to suppress disease-related folding defects in CFTR. VX-809 suppresses folding defects in CFTR by modulating the conformation of membrane-spanning domain 1. VX-808 is thereby able to partially restore function to F508del-CFTR and other disease-related mutants. Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.
Collapse
Affiliation(s)
- Hong Yu Ren
- Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 Vertex Pharmaceuticals, San Diego, CA 92121
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Smith MC, Scaglione KM, Assimon VA, Patury S, Thompson AD, Dickey CA, Southworth DR, Paulson HL, Gestwicki JE, Zuiderweg ERP. The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 2013; 52:5354-64. [PMID: 23865999 DOI: 10.1021/bi4009209] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The E3 ubiquitin ligase CHIP (C-terminus of Hsc70 Interacting Protein, a 70 kDa homodimer) binds to the molecular chaperone Hsc70 (a 70 kDa monomer), and this complex is important in both the ubiquitination of Hsc70 and the turnover of Hsc70-bound clients. Here we used NMR spectroscopy, biolayer interferometry, and fluorescence polarization to characterize the Hsc70-CHIP interaction. We found that CHIP binds tightly to two molecules of Hsc70 forming a 210 kDa complex, with a Kd of approximately 60 nM, and that the IEEVD motif at the C-terminus of Hsc70 (residues 642-646) is both necessary and sufficient for binding. Moreover, the same motif is required for CHIP-mediated ubiquitination of Hsc70 in vitro, highlighting its functional importance. Relaxation-based NMR experiments on the Hsc70-CHIP complex determined that the two partners move independently in solution, similar to "beads on a string". These results suggest that a dynamic C-terminal region of Hsc70 provides for flexibility between CHIP and the chaperone, allowing the ligase to "search" a large space and engage in productive interactions with a wide range of clients. In support of this suggestion, we find that deleting residues 623-641 of the C-terminal region, while retaining the IEEVD motif, caused a significant decrease in the efficiency of Hsc70 ubiquitination by CHIP.
Collapse
Affiliation(s)
- Matthew C Smith
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Zhang ZR, Bonifacino JS, Hegde RS. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 2013; 154:609-22. [PMID: 23890821 PMCID: PMC3732389 DOI: 10.1016/j.cell.2013.06.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/10/2013] [Accepted: 06/20/2013] [Indexed: 12/25/2022]
Abstract
Newly synthesized membrane proteins are queried by ubiquitin ligase complexes and triaged between degradative and nondegradative fates. The mechanisms that convert modest differences in substrate-ligase interactions into decisive outcomes of ubiquitination are not well understood. Here, we reconstitute membrane protein recognition and ubiquitination in liposomes using purified components from a viral-mediated degradation pathway. We find that substrate-ligase interactions in the membrane directly influence processivity of ubiquitin attachment to modulate polyubiquitination. Unexpectedly, differential processivity alone could not explain the differential fates in cultured cells of degraded and nondegraded clients. Both computational and experimental analyses identified continuous deubiquitination as a prerequisite for maximal substrate discrimination. Deubiquitinases reduce polyubiquitin dwell times preferentially on clients that dissociate more rapidly from the ligase. This explains how small differences in substrate-ligase interaction can be amplified into larger differences in net degradation. These results provide a conceptual framework for substrate discrimination during membrane protein quality control. Membrane protein ubiquitination has been reconstituted with purified factors in vitro Differential ligase interactions alone cannot explain how clients are discriminated Maximal client discrimination requires competing deubiquitination activity Deubiquitinases control the dwell time of a degradation mark on potential clients
Collapse
Affiliation(s)
- Zai-Rong Zhang
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Drive, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
233
|
Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest 2013; 123:3588-99. [PMID: 23863712 DOI: 10.1172/jci69080] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022] Open
Abstract
Protein quality control and metabolic homeostasis are integral to maintaining cardiac function during stress; however, little is known about if or how these systems interact. Here we demonstrate that C terminus of HSC70-interacting protein (CHIP), a regulator of protein quality control, influences the metabolic response to pressure overload by direct regulation of the catalytic α subunit of AMPK. Induction of cardiac pressure overload in Chip-/- mice resulted in robust hypertrophy and decreased cardiac function and energy generation stemming from a failure to activate AMPK. Mechanistically, CHIP promoted LKB1-mediated phosphorylation of AMPK, increased the specific activity of AMPK, and was necessary and sufficient for stress-dependent activation of AMPK. CHIP-dependent effects on AMPK activity were accompanied by conformational changes specific to the α subunit, both in vitro and in vivo, identifying AMPK as the first physiological substrate for CHIP chaperone activity and establishing a link between cardiac proteolytic and metabolic pathways.
Collapse
Affiliation(s)
- Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7126, USA
| | | | | | | | | | | |
Collapse
|
234
|
Abstract
ER-associated degradation clears the secretory pathway of misfolded proteins and mediates the regulated degradation of some ER resident proteins. Only a minor increase in the interaction between a protein and a ubiquitin ligase is sufficient to signal substrate degradation. Zhang et al. have identified deubiquitination as a signal amplifier.
Collapse
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
235
|
Chanoux RA, Shubin CB, Robay A, Suaud L, Rubenstein RC. Hsc70 negatively regulates epithelial sodium channel trafficking at multiple sites in epithelial cells. Am J Physiol Cell Physiol 2013; 305:C776-87. [PMID: 23885065 DOI: 10.1152/ajpcell.00059.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial sodium channel (ENaC) plays an important role in homeostasis of blood pressure and of the airway surface liquid, and excess function of ENaC results in refractory hypertension (in Liddle's syndrome) and impaired mucociliary clearance (in cystic fibrosis). The regulation of ENaC by molecular chaperones, such as the 70-kDa heat shock protein Hsc70, is not completely understood. Our previously published data suggest that Hsc70 negatively affects ENaC activity and surface expression in Xenopus oocytes; here we investigate the mechanism by which Hsc70 acts on ENaC in epithelial cells. In Madin-Darby canine kidney cells stably expressing epitope-tagged αβγ-ENaC and with tetracycline-inducible overexpression of Hsc70, treatment with 5 μg/ml doxycycline increased total Hsc70 expression 20%. This increase in Hsc70 expression led to a decrease in ENaC activity and surface expression that corresponded to an increased rate of functional ENaC retrieval from the cell surface. In addition, Hsc70 overexpression decreased the association of newly synthesized ENaC subunits. These data support the hypothesis that Hsc70 inhibits ENaC functional expression at the apical surface of epithelia by regulating ENaC biogenesis and ENaC trafficking at the cell surface.
Collapse
Affiliation(s)
- Rebecca A Chanoux
- Division of Pulmonary Medicine and Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | | | | | | | | |
Collapse
|
236
|
Ahner A, Gong X, Frizzell RA. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways. FEBS J 2013; 280:4430-8. [PMID: 23809253 DOI: 10.1111/febs.12415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/26/2022]
Abstract
Defining the significant checkpoints in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis should identify targets for therapeutic intervention with CFTR folding mutants such as F508del. Although the role of ubiquitylation and the ubiquitin proteasome system is well established in the degradation of this common CFTR mutant, the part played by SUMOylation is a novel aspect of CFTR biogenesis/quality control. We identified this post-translational modification of CFTR as resulting from its interaction with small heat shock proteins (Hsps), which were found to selectively facilitate the degradation of F508del through a physical interaction with the SUMO (small ubiquitin-like modifier) E2 enzyme, Ubc9. Hsp27 promoted the SUMOylation of mutant CFTR by the SUMO-2 paralogue, which can form poly-chains. Poly-SUMO chains are then recognized by the SUMO-targeted ubiquitin ligase, RNF4, which elicited F508del degradation in a Hsp27-dependent manner. This work identifies a sequential connection between the SUMO and ubiquitin modifications of the CFTR mutant: Hsp27-mediated SUMO-2 modification, followed by ubiquitylation via RNF4 and degradation of the mutant via the proteasome. Other examples of the intricate cross-talk between the SUMO and ubiquitin pathways are discussed with reference to other substrates; many of these are competitive and lead to different outcomes. It is reasonable to anticipate that further research on SUMO-ubiquitin pathway interactions will identify additional layers of complexity in the process of CFTR biogenesis and quality control.
Collapse
Affiliation(s)
- Annette Ahner
- Department of Cell Biology, University of Pittsburgh School of Medicine, PA 15224, USA
| | | | | |
Collapse
|
237
|
GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 2013; 33:3172-82. [PMID: 23851495 DOI: 10.1038/onc.2013.279] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/19/2013] [Accepted: 05/19/2013] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3 beta (GSK3β) is highly inactivated in epithelial cancers and is known to inhibit tumor migration and invasion. The zinc-finger-containing transcriptional repressor, Slug, represses E-cadherin transcription and enhances epithelial-mesenchymal transition (EMT). In this study, we find that the GSK3β-pSer9 level is associated with the expression of Slug in non-small cell lung cancer. GSK3β-mediated phosphorylation of Slug facilitates Slug protein turnover. Proteomic analysis reveals that the carboxyl terminus of Hsc70-interacting protein (CHIP) interacts with wild-type Slug (wtSlug). Knockdown of CHIP stabilizes the wtSlug protein and reduces Slug ubiquitylation and degradation. In contrast, nonphosphorylatable Slug-4SA is not degraded by CHIP. The accumulation of nondegradable Slug may further lead to the repression of E-cadherin expression and promote cancer cell migration, invasion and metastasis. Our findings provide evidence of a de novo GSK3β-CHIP-Slug pathway that may be involved in the progression of metastasis in lung cancer.
Collapse
|
238
|
Farinha CM, Matos P, Amaral MD. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. FEBS J 2013; 280:4396-406. [PMID: 23773658 DOI: 10.1111/febs.12392] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/25/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022]
Abstract
Biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) starts with its cotranslational insertion into the membrane of the endoplasmic reticulum (ER) and core glycosylation. These initial events are followed by a complex succession of steps with the main goal of checking the overall quality of CFTR conformation in order to promote its exit from the ER through the secretory pathway. Failure to pass the various checkpoints of the ER quality control targets the most frequent disease-causing mutant protein (F508del-CFTR) for premature degradation. For wild-type CFTR that exits the ER, trafficking through the Golgi is the major site for glycan processing, although nonconventional trafficking pathways have also been described for CFTR. Once CFTR is at the cell surface, its stability is also controlled by multiple protein interactors, including Rab proteins, Rho small GTPases, and PDZ proteins. These regulate not only anterograde trafficking to the cell surface, but also endocytosis and recycling, thus achieving fine and tight modulation of CFTR plasma membrane levels. Exciting recent data have related autophagy and epithelial differentiation to the regulation of CFTR trafficking. Herein, we review the various checkpoints of the complex quality control along the secretory trafficking pathway and the associated pathways that are starting to be explored for the benefit of cystic fibrosis patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, BioFIG - Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Portugal
| | | | | |
Collapse
|
239
|
Cheng J, Guggino W. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6. PLoS One 2013; 8:e68001. [PMID: 23818989 PMCID: PMC3688601 DOI: 10.1371/journal.pone.0068001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/29/2013] [Indexed: 12/23/2022] Open
Abstract
Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - William Guggino
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
240
|
Danzer KM, McLean PJ. Drug targets from genetics: α-synuclein. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 10:712-23. [PMID: 21838671 DOI: 10.2174/187152711797247867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/22/2011] [Accepted: 07/24/2011] [Indexed: 02/08/2023]
Abstract
One of the critical issues in Parkinson disease (PD) research is the identity of the specific toxic, pathogenic moiety. In PD, mutations in α-synuclein (αsyn) or multiplication of the SNCA gene encoding αsyn, result in a phenotype of cellular inclusions, cell death, and brain dysfunction. While the historical point of view has been that the macroscopic aggregates containing αsyn are the toxic species, in the last several years evidence has emerged that suggests instead that smaller soluble species--likely oligomers containing misfolded αsyn--are actually the toxic moiety and that the fibrillar inclusions may even be a cellular detoxification pathway and less harmful. If soluble misfolded species of αsyn are the toxic moieties, then cellular mechanisms that degrade misfolded αsyn would be neuroprotective and a rational target for drug development. In this review we will discuss the fundamental mechanisms underlying αsyn toxicity including oligomer formation, oxidative stress, and degradation pathways and consider rational therapeutic strategies that may have the potential to prevent or halt αsyn induced pathogenesis in PD.
Collapse
Affiliation(s)
- Karin M Danzer
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, USA
| | | |
Collapse
|
241
|
Krishnamoorthy GP, Guida T, Alfano L, Avilla E, Santoro M, Carlomagno F, Melillo RM. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation. J Biol Chem 2013; 288:17481-94. [PMID: 23629654 PMCID: PMC3682548 DOI: 10.1074/jbc.m112.439422] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [(35)S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.
Collapse
Affiliation(s)
| | - Teresa Guida
- From the Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and
| | - Luigi Alfano
- From the Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and
| | - Elvira Avilla
- From the Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and
| | - Massimo Santoro
- From the Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and ,Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche “G. Salvatore,” 80131 Naples, Italy
| | - Francesca Carlomagno
- From the Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and ,Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche “G. Salvatore,” 80131 Naples, Italy, To whom correspondence may be addressed: Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale, Via S. Pansini 5, 80131 Naples, Italy. Tel.: 39-0817463603; Fax: 39-0817463603; E-mail:
| | - Rosa Marina Melillo
- From the Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and ,Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche “G. Salvatore,” 80131 Naples, Italy, To whom correspondence may be addressed: Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale, Via S. Pansini 5, 80131 Naples, Italy. Tel.: 39-0817463603; Fax: 39-0817463603; E-mail:
| |
Collapse
|
242
|
CHIP has a protective role against oxidative stress-induced cell death through specific regulation of endonuclease G. Cell Death Dis 2013; 4:e666. [PMID: 23764847 PMCID: PMC3698548 DOI: 10.1038/cddis.2013.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxidative stress is implicated in carcinogenesis, aging, and neurodegenerative diseases. The E3 ligase C terminus of Hsc-70 interacting protein (CHIP) has a protective role against various stresses by targeting damaged proteins for proteasomal degradation, and thus maintains protein quality control. However, the detailed mechanism by which CHIP protects cells from oxidative stress has not been demonstrated. Here, we show that depletion of CHIP led to elevated Endonuclease G (EndoG) levels and enhanced cell death upon oxidative stress. In contrast, CHIP overexpression reduced EndoG levels, and resulted in reduced or no oxidative stress-induced cell death in cancer cells and primary rat cortical neurons. Under normal conditions Hsp70 mediated the interaction between EndoG and CHIP, downregulating EndoG levels in a Hsp70/proteasome-dependent manner. However, under oxidative stress Hsp70 no longer interacted with EndoG, and the stabilized EndoG translocated to the nucleus and degraded chromosomal DNA. Our data suggest that regulation of the level of EndoG by CHIP in normal conditions may determine the sensitivity to cell death upon oxidative stress. Indeed, injection of H2O2 into the rat brain markedly increased cell death in aged mice compared with young mice, which correlated with elevated levels of EndoG and concurrent downregulation of CHIP in aged mice. Taken together, our findings demonstrate a novel protective mechanism of CHIP against oxidative stress through regulation of EndoG, and provide an opportunity to modulate oxidative stress-induced cell death in cancer and aging.
Collapse
|
243
|
Ferreira JV, Fôfo H, Bejarano E, Bento CF, Ramalho JS, Girão H, Pereira P. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 2013; 9:1349-66. [PMID: 23880665 DOI: 10.4161/auto.25190] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor HIF1 is mostly regulated by the oxygen-dependent proteasomal degradation of the labile subunit HIF1A. Recent data showed degradation of HIF1A in the lysosome through chaperone-mediated autophagy (CMA). However the molecular mechanism involved has not been elucidated. This study shows that the KFERQ-like motif, that has been identified in all CMA substrates, is required to mediate the interaction between HIF1A and the chaperone HSPA8. Moreover, mutations in the KFERQ-like motif of HIF1A preclude the interaction with the CMA receptor LAMP2A, thus inhibiting its lysosomal degradation. Importantly, we show for the first time that the ubiquitin ligase STUB1 is required for degradation of HIF1A in the lysosome by CMA. Indeed, mutations in STUB1 that inhibit either the ubiquitin ligase activity or its ability to bind to HSPA8, both prevent degradation of HIF1A by CMA. Moreover, we show that HIF1A binds to and is translocated into intact lysosomes isolated from rat livers. This new pathway for degradation of HIF1A does not depend on the presence of oxygen and is activated in response to nutrient deprivation such that the levels of HIF1A bound to CMA positive lysosomes significantly increase in starved animal livers and the binding of HIF1A to LAMP2A increases in response to serum deprivation. Moreover, excessive degradation of HIF1A by CMA compromises cells' ability to respond to and survive under hypoxia, suggesting that this pathway might be of pathophysiological importance in conditions that combine hypoxia with starvation.
Collapse
Affiliation(s)
- João Vasco Ferreira
- Center of Ophthalmology and Vision Sciences; Institute for Biomedical Imaging and Life Science (IBILI); Faculty of Medicine; University of Coimbra; Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
244
|
Ramachandran S, Krishnamurthy S, Jacobi AM, Wohlford-Lenane C, Behlke MA, Davidson BL, McCray PB. Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro. Am J Physiol Lung Cell Mol Physiol 2013; 305:L23-32. [PMID: 23624792 DOI: 10.1152/ajplung.00426.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1-3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl⁻ conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses.
Collapse
|
245
|
Jha KN, Coleman AR, Wong L, Salicioni AM, Howcroft E, Johnson GR. Heat shock protein 90 functions to stabilize and activate the testis-specific serine/threonine kinases, a family of kinases essential for male fertility. J Biol Chem 2013; 288:16308-16320. [PMID: 23599433 DOI: 10.1074/jbc.m112.400978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spermiogenesis is characterized by a profound morphological differentiation of the haploid spermatid into spermatozoa. The testis-specific serine/threonine kinases (TSSKs) comprise a family of post-meiotic kinases expressed in spermatids, are critical to spermiogenesis, and are required for male fertility in mammals. To explore the role of heat shock protein 90 (HSP90) in regulation of TSSKs, the stability and catalytic activity of epitope-tagged murine TSSKs were assessed in 293T and COS-7 cells. TSSK1, -2, -4, and -6 (small serine/threonine kinase) were all found to associate with HSP90, and pharmacological inhibition of HSP90 function using the highly specific drugs 17-AAG, SNX-5422, or NVP-AUY922 reduced TSSK protein levels in cells. The attenuation of HSP90 function abolished the catalytic activities of TSSK4 and -6 but did not significantly alter the specific activities of TSSK1 and -2. Inhibition of HSP90 resulted in increased TSSK ubiquitination and proteasomal degradation, indicating that HSP90 acts to control ubiquitin-mediated catabolism of the TSSKs. To study HSP90 and TSSKs in germ cells, a mouse primary spermatid culture model was developed and characterized. Using specific antibodies against murine TSSK2 and -6, it was demonstrated that HSP90 inhibition resulted in a marked decrease of the endogenous kinases in spermatids. Together, our findings demonstrate that HSP90 plays a broad and critical role in stabilization and activation of the TSSK family of protein kinases.
Collapse
Affiliation(s)
- Kula N Jha
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892.
| | - Alyssa R Coleman
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Lily Wong
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Ana M Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Elizabeth Howcroft
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Gibbes R Johnson
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892.
| |
Collapse
|
246
|
Zhao Y, Macgurn JA, Liu M, Emr S. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. eLife 2013; 2:e00459. [PMID: 23599894 PMCID: PMC3628405 DOI: 10.7554/elife.00459] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/13/2013] [Indexed: 12/01/2022] Open
Abstract
Secretory cargo that cannot fold properly in the ER are selectively targeted for removal by a well-studied ER-associated degradation pathway, or ERAD. In contrast, very little is known about post-ER quality control mechanisms for damaged or misfolded integral membrane proteins. Here we describe a quality control function of the Rsp5-ART ubiquitin ligase adaptor network that functions to protect plasma membrane (PM) integrity. Failure to mediate this protective response during heat stress leads to toxic accumulation of misfolded integral membrane proteins at the cell surface, which causes loss of PM integrity and cell death. Thus, the Rsp5-ART network comprises a PM quality control system that works together with sequential quality control pathways in the ER and Golgi to (i) target the degradation of proteins that have exceeded their functional lifetime due to damage and/or misfolding and (ii) limit the toxic accumulation of specific proteins at the cell surface during proteotoxic stress. DOI:http://dx.doi.org/10.7554/eLife.00459.001 Cells have evolved elaborate mechanisms for the detection of misfolded or damaged proteins, and for targeting their degradation. Since the accumulation of misfolded proteins is toxic to the cell, these protein quality control systems are critical for the maintenance of normal cellular function over the lifetime of an organism. The breakdown of this quality control correlates with the progression of neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's disease. Normal function of the protein quality control machinery can also cause disease: this is the case with channelopathies such as cystic fibrosis, in which mutant ion channels are targeted for degradation and therefore cannot function correctly at the cell surface. Understanding how protein quality control systems recognize misfolded proteins and target their degradation, and designing ways to stabilize or destabilize specific targets, particularly at the cell surface, could thus lead to the development of new therapeutic strategies. While protein quality control mechanisms in the cytosol and endoplasmic reticulum (ER) have been studied extensively, much less is known about quality control of integral membrane proteins after they exit the ER. Maintaining the quality of cell surface proteins impacts many critical biological functions including nutrient uptake, signaling and the functioning of specialized surface structures such as cell junctions. Here, Zhao et al. describe a new quality control mechanism that prevents misfolded proteins from accumulating in the plasma membrane. Building upon earlier work describing a network of adaptor proteins (called ARTs) for the Rsp5 ubiquitin ligase, Zhao et al. show that subjecting cells to proteotoxic stress, particularly thermal stress, triggers ART-Rsp5-mediated clearance of misfolded plasma membrane proteins. When ART-Rsp5-mediated clearance is abrogated, misfolded proteins accumulate at the cell surface, resulting in a rapid loss of cellular integrity. In the brain, such proteotoxicity can lead to cell death and neurodegeneration, thereby highlighting the importance of this plasma membrane quality control system. DOI:http://dx.doi.org/10.7554/eLife.00459.002
Collapse
Affiliation(s)
- Yingying Zhao
- Weill Institute of Cell and Molecular Biology , Cornell University , Ithaca , United States
| | | | | | | |
Collapse
|
247
|
Katayama K, Noguchi K, Sugimoto Y. FBXO15 regulates P-glycoprotein/ABCB1 expression through the ubiquitin--proteasome pathway in cancer cells. Cancer Sci 2013; 104:694-702. [PMID: 23465077 DOI: 10.1111/cas.12145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 12/25/2022] Open
Abstract
Expression of P-glycoprotein (P-gp)/ABCB1 on cancer cell surfaces is a critical determinant of anticancer drug resistance. Regulators of P-gp expression and function are key molecules controlling drug resistance. Here we report the mechanism underlying the ubiquitin-proteasome pathway-mediated degradation of P-gp. The proteasome inhibitor MG132 increased the P-gp level, enhanced its ubiquitination, and delayed the disappearance of the ubiquitinated P-gp. To search for regulators of P-gp ubiquitination, MALDI-time of flight mass spectrometry analyses were carried out, and 22 candidates were identified as P-gp binding partners. Among them, FBXO15/Fbx15 is known as an F-box protein in the ubiquitin E3 ligase complex, Skp1-Cullin1-FBXO15 (SCF(Fbx15) ); therefore, we further studied the involvement of FBXO15 on P-gp degradation. Coprecipitation assays revealed that FBXO15 bound to P-gp. We screened ubiquitin-conjugating enzyme E2s that bind to FBXO15 and P-gp; Ube2r1/Cdc34/Ubc3 was found to be a binding partner. Exogenous FBXO15 expression enhanced P-gp ubiquitination, but FBXO15 knockdown suppressed it. FBXO15 knockdown increased P-gp expression without affecting its mRNA level. Ube2r1 knockdown decreased P-gp ubiquitination, and simultaneous knockdown of Ube2r1 with FBXO15 further suppressed the ubiquitination. Ube2r1 knockdown increased P-gp expression, suggesting that Ube2r1 is a partner of FBXO15 in P-gp ubiquitination. FBXO15 knockdown enhanced vincristine resistance and lowered intracellular levels of rhodamine 123. These data suggest that FBXO15 and Ube2r1 regulate P-gp expression through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | |
Collapse
|
248
|
E6-AP association promotes SOD1 aggresomes degradation and suppresses toxicity. Neurobiol Aging 2013; 34:1310.e11-23. [DOI: 10.1016/j.neurobiolaging.2012.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/22/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
|
249
|
Donnelly BF, Needham PG, Snyder AC, Roy A, Khadem S, Brodsky JL, Subramanya AR. Hsp70 and Hsp90 multichaperone complexes sequentially regulate thiazide-sensitive cotransporter endoplasmic reticulum-associated degradation and biogenesis. J Biol Chem 2013; 288:13124-35. [PMID: 23482560 DOI: 10.1074/jbc.m113.455394] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Rodrigo-Brenni MC, Hegde RS. Design principles of protein biosynthesis-coupled quality control. Dev Cell 2013; 23:896-907. [PMID: 23153486 DOI: 10.1016/j.devcel.2012.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protein biosynthetic machinery, composed of ribosomes, chaperones, and localization factors, is increasingly found to interact directly with factors dedicated to protein degradation. The coupling of these two opposing processes facilitates quality control of nascent polypeptides at each stage of their maturation. Sequential checkpoints maximize the overall fidelity of protein maturation, minimize the exposure of defective products to the bulk cellular environment, and protect organisms from protein misfolding diseases.
Collapse
|