201
|
Kingsley RA, Keestra AM, de Zoete MR, Bäumler AJ. The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding. Mol Microbiol 2004; 52:345-55. [PMID: 15066025 DOI: 10.1111/j.1365-2958.2004.03995.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction of Salmonella enterica serotype Typhimurium into food products results from its ability to persist in the intestine of healthy livestock by mechanisms that are poorly understood. The non-fimbrial adhesin ShdA is a fibronectin binding protein required for persistent intestinal carriage of S. Typhimurium. We further investigated the molecular mechanism of ShdA-mediated intestinal persistence by determining the binding-site of this receptor in fibronectin. Analysis of ShdA binding to fibronectin proteolytic fragments and to recombinant fibronectin fusion proteins identified the (13)FnIII repeat module of the Hep-2 domain as the primary binding site for this adhesin. The (13)FnIII repeat module of fibronectin contains a cationic cradle formed by six basic residues (R6, R7, R9, R23, K25 and R54) that is a high affinity heparin-binding site conserved among fibronectin sequences from frogs to man. Binding of ShdA to the (13)FnIII repeat module of fibronectin and to a second extracellular matrix protein, Collagen I, could be inhibited by heparin. Furthermore, binding of ShdA to the Hep-2 domain was sensitive to the ionic buffer strength, suggesting that binding involved ionic interactions. We therefore determined whether amino acid substitutions of basic residues in the cationic cradle of the Hep-2 domain that inhibit heparin binding also abrogate binding of ShdA. Combined substitution of R6S and R7S strongly reduced ShdA binding to (13)FnIII. These data suggest that ShdA binds the Hep-2 domain of fibronectin by a mechanism that may mimic binding of the host polysaccharide heparin.
Collapse
Affiliation(s)
- Robert A Kingsley
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A and M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX77843-1114, USA.
| | | | | | | |
Collapse
|
202
|
Vardhini D, Suneetha S, Ahmed N, Joshi DSM, Karuna S, Magee X, Vijayalakshmi DSR, Sridhar V, Karunakar KV, Archelos JJ, Suneetha LM. Comparative proteomics of the Mycobacterium leprae binding protein myelin P0: its implication in leprosy and other neurodegenerative diseases. INFECTION GENETICS AND EVOLUTION 2004; 4:21-8. [PMID: 15019586 DOI: 10.1016/j.meegid.2003.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 11/03/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Mycobacterium leprae, the causative agent of leprosy invades Schwann cells of the peripheral nerves leading to nerve damage and disfigurement, which is the hallmark of the disease. Wet experiments have shown that M. leprae binds to a major peripheral nerve protein, the myelin P zero (P0). This protein is specific to peripheral nerve and may be important in the initial step of M. leprae binding and invasion of Schwann cells which is the feature of leprosy. Though the receptors on Schawann cells, cytokines, chemokines and antibodies to M. leprae have been identified the molecular mechanism of nerve damage and neurodegeneration is not clearly defined. Recently pathogen and host protein/nucleotide sequence similarities (molecular mimicry) have been implicated in neurodegenerative diseases. The approach of the present study is to utilise bioinformatic tools to understand leprosy nerve damage by carrying out sequence and structural similarity searches of myelin P0 with leproma and other genomic database. Since myelin P0 is unique to peripheral nerve, its sequence and structural similarities in other neuropathogens have also been noted. Comparison of myelin P0 with the M. leprae proteins revealed two characterised proteins, Ferrodoxin NADP reductase and a conserved membrane protein, which showed similarity to the query sequence. Comparison with the entire genomic database (www.ncbi.nlm.nih.gov) by basic local alignment search tool for proteins (BLASTP) and fold classification of structure-structure alignment of proteins (FSSP) searches revealed that myelin P0 had sequence/structural similarities to the poliovirus receptor, coxsackie-adenovirus receptor, anthrax protective antigen, diphtheria toxin, herpes simplex virus, HIV gag-1 peptide, and gp120 among others. These proteins are known to be associated directly or indirectly with neruodegeneration. Sequence and structural similarities to the immunoglobin regions of myelin P0 could have implications in host-pathogen interactions, as it has homophilic adhesive properties. Although these observed similarities are not highly significant in their percentage identity, they could be functionally important in molecular mimicry, receptor binding and cell signaling events involved in neurodegeneration.
Collapse
Affiliation(s)
- Deena Vardhini
- LEPRA India, Blue Peter Research Centre, Cherlapally, Hyderabad 501301, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Many features of cell behavior are regulated by Rho family GTPases, but the most profound effects of these proteins are on the actin cytoskeleton and it was these that first drew attention to this family of signaling proteins. Focusing on Rho and Rac, we will discuss how their effectors regulate the actin cytoskeleton. We will describe how the activity of Rho proteins is regulated downstream from growth factor receptors and cell adhesion molecules by guanine nucleotide exchange factors and GTPase activating proteins. Additionally, we will discuss how there is signaling crosstalk between family members and how various bacterial pathogens have developed strategies to manipulate Rho protein activity so as to enhance their own survival.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
204
|
Hernandez LD, Pypaert M, Flavell RA, Galán JE. A Salmonella protein causes macrophage cell death by inducing autophagy. ACTA ACUST UNITED AC 2004; 163:1123-31. [PMID: 14662750 PMCID: PMC2173598 DOI: 10.1083/jcb.200309161] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salmonella enterica, the causative agent of food poisoning and typhoid fever, induces programmed cell death in macrophages, a process found to be dependent on a type III protein secretion system, and SipB, a protein with membrane fusion activity that is delivered into host cells by this system. When expressed in cultured cells, SipB caused the formation of and localized to unusual multimembrane structures. These structures resembled autophagosomes and contained both mitochondrial and endoplasmic reticulum markers. A mutant form of SipB devoid of membrane fusion activity localized to mitochondria, but did not induce the formation of membrane structures. Upon Salmonella infection of macrophages, SipB was found in mitochondria, which appeared swollen and devoid of christae. Salmonella-infected macrophages exhibited marked accumulation of autophagic vesicles. We propose that Salmonella, through the action of SipB, kills macrophages by disrupting mitochondria, thereby inducing autophagy and cell death.
Collapse
Affiliation(s)
- Lorraine D Hernandez
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
205
|
Boulanger MJ, Chow DC, Brevnova E, Martick M, Sandford G, Nicholas J, Garcia KC. Molecular mechanisms for viral mimicry of a human cytokine: activation of gp130 by HHV-8 interleukin-6. J Mol Biol 2004; 335:641-54. [PMID: 14672670 DOI: 10.1016/j.jmb.2003.10.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, or HHV-8) encodes a pathogenic viral homologue of human interleukin-6 (IL-6). In contrast to human IL-6 (hIL-6), viral IL-6 (vIL-6) binds directly to, and activates, the shared human cytokine signaling receptor gp130 without the requirement for pre-complexation to a specific alpha-receptor. Here, we dissect the biochemical and functional basis of vIL-6 mimicry of hIL-6. We find that, in addition to the "alpha-receptor-independent" tetrameric vIL-6/gp130 complex, the viral cytokine can engage the human alpha-receptor (IL-6Ralpha) to form a hexameric vIL-6/IL-6Ralpha/gp130 complex with enhanced signaling potency. In contrast to the assembly sequence of the hIL-6 hexamer, the preformed vIL-6/gp130 tetramer can be decorated with IL-6Ralpha, post facto, in a "vIL-6-dependent" fashion. A detailed comparison of the viral and human cytokine/gp130 interfaces indicates that vIL-6 has evolved a unique molecular strategy to interact with gp130, as revealed by an almost entirely divergent structural makeup of its receptor binding sites. Viral IL-6 appears to utilize an elegant combination of both convergent, and unexpectedly divergent, molecular strategies to oligomerize gp130 and activate similar downstream signaling cascades as its human counterpart.
Collapse
Affiliation(s)
- Martin J Boulanger
- Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Shears SB. How versatile are inositol phosphate kinases? Biochem J 2004; 377:265-80. [PMID: 14567754 PMCID: PMC1223885 DOI: 10.1042/bj20031428] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 10/14/2003] [Accepted: 10/20/2003] [Indexed: 01/31/2023]
Abstract
This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS/NIH/DHSS Research Triangle Park, NC 27709, USA.
| |
Collapse
|
207
|
Ehrbar K, Friebel A, Miller SI, Hardt WD. Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J Bacteriol 2004; 185:6950-67. [PMID: 14617659 PMCID: PMC262699 DOI: 10.1128/jb.185.23.6950-6967.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.
Collapse
Affiliation(s)
- Kristin Ehrbar
- Institute of Microbiology, D-BIOL, ETH Zürich, 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
208
|
Garrity-Ryan L, Shafikhani S, Balachandran P, Nguyen L, Oza J, Jakobsen T, Sargent J, Fang X, Cordwell S, Matthay MA, Engel JN. The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 2004; 72:546-58. [PMID: 14688136 PMCID: PMC343945 DOI: 10.1128/iai.72.1.546-558.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 04/03/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
ExoT is a type III secreted effector protein found in almost all strains of Pseudomonas aeruginosa and is required for full virulence in an animal model of acute pneumonia. It is comprised of an N-terminal domain with GTPase activating protein (GAP) activity towards Rho family GTPases and a C-terminal ADP ribosyltransferase (ADPRT) domain with minimal activity towards a synthetic substrate in vitro. Consistent with its activity as a Rho family GTPase, ExoT has been shown to inhibit P. aeruginosa internalization into epithelial cells and macrophages, disrupt the actin cytoskeleton through a Rho-dependent pathway, and inhibit wound repair in a scrape model of injured epithelium. We have previously shown that mutation of the invariant arginine of the GAP domain to lysine (R149K) results in complete loss of GAP activity in vitro but only partially inhibits ExoT anti-internalization and cell rounding activity. We have constructed in-frame deletions and point mutations within the ADPRT domain in order to test whether this domain might account for the residual activity observed in ExoT GAP mutants. Deletion of a majority of the ADPRT domain (residues 234 to 438) or point mutations of the ADPRT catalytic site (residues 383 to 385) led to distinct changes in host cell morphology and substantially reduced the ability of ExoT to inhibit in vitro epithelial wound healing over a 24-h period. In contrast, only subtle effects on the efficiency of ExoT-induced bacterial internalization were observed in the ADPRT mutant forms. Expression of each domain individually in Saccharomyces cerevisiae was toxic, whereas expression of each of the catalytically inactive mutant domains was not. Collectively, these data demonstrate that the ADPRT domain of ExoT is active in vivo and contributes to the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- L Garrity-Ryan
- Departments of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Pathogen-Endocrine System Interactions. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
210
|
Touzé T, Hayward RD, Eswaran J, Leong JM, Koronakis V. Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol 2003; 51:73-87. [PMID: 14651612 DOI: 10.1046/j.1365-2958.2003.03830.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Outer membrane intimin directs attachment of enteropathogenic Escherichia coli (EPEC) via its Tir receptor in mammalian target cell membranes. Phosphorylation of Tir triggers local actin polymerization and the formation of 'pedestal-like' pseudopods. We demonstrate that the intimin protein contains three domains, a flexible N-terminus (residues 40-188), a central membrane-integrated beta-barrel (189-549), and a tightly folded Tir-binding domain (550-939). Intimin was shown by electron microscopy to form ring-like structures with an approximately 7 nm external diameter and an electron dense core, and to form channels of 50picoSiemens conductance in planar lipid bilayers. Gel filtration, multiangle light scattering and cross-linking showed that this central beta-barrel membrane-anchoring domain directs intimin dimerization. Isothermal titration calorimetry revealed a high affinity, single-binding site interaction of 2 : 1 stoichiometry between dimeric intimin and Tir, and modelling suggests that this interaction determines a reticular array-like superstructure underlying receptor clustering. In support of this model, actin rearrangement induced in Tir-primed cultured cells by intimin-containing proteoliposomes was dependent on the concentration of both intimin and Tir, and co-localized with clustered phosphorylated Tir.
Collapse
MESH Headings
- 3T3 Cells
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Animals
- Binding Sites
- Calorimetry
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cloning, Molecular
- Electrophysiology/methods
- Escherichia coli/genetics
- Escherichia coli/pathogenicity
- Escherichia coli/ultrastructure
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Fluorescent Antibody Technique
- Liposomes/metabolism
- Mice
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Plasmids
- Protein Structure, Secondary
- Proteolipids/metabolism
- Proteolipids/ultrastructure
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Virulence/genetics
Collapse
Affiliation(s)
- Thierry Touzé
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | | | | | |
Collapse
|
211
|
Pandit SB, Srinivasan N. Survey for g-proteins in the prokaryotic genomes: prediction of functional roles based on classification. Proteins 2003; 52:585-97. [PMID: 12910458 DOI: 10.1002/prot.10420] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The members of the family of G-proteins are characterized by their ability to bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP). Despite a common biochemical function of GTP hydrolysis shared among the members of the family of G-proteins, they are associated with diverse biological roles. The current work describes the identification and detailed analysis of the putative G-proteins encoded in the completely sequenced prokaryotic genomes. Inferences on the biological roles of these G-proteins have been obtained by their classification into known functional subfamilies. We have identified 497 G-proteins in 42 genomes. Seven small GTP-binding protein homologues have been identified in prokaryotes with at least two of the diagnostic sequence motifs of G-proteins conserved. The translation factors have the largest representation (234 sequences) and are found to be ubiquitous, which is consistent with their critical role in protein synthesis. The GTP_OBG subfamily comprises of 79 sequences in our dataset. A total of 177 sequences belong to the subfamily of GTPase of unknown function and 154 of these could be associated with domains of known functions such as cell cycle regulation and t-RNA modification. The large GTP-binding proteins and the alpha-subunit of heterotrimeric G-proteins are not detected in the genomes of the prokaryotes surveyed.
Collapse
Affiliation(s)
- Shashi B Pandit
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
212
|
Abstract
Phosphorylase kinase is a four-subunit enzyme involved in the regulation of glycogen breakdown. The traditional textbook view is that only the gamma subunit has enzymatic activity, whereas the other three subunits have a regulatory role. Evidence from homology searches and sequence alignments, however, shows that the alpha- and beta-subunits possess amino-terminal glucoamylase-like domains and suggests that they might possess a previously overlooked amylase activity. If true, this would have important implications for the understanding, diagnosis, and management of glycogen storage diseases. There is thus a clear need to test this hypothesis through enzymatic assays and structural studies.
Collapse
Affiliation(s)
- Mark J Pallen
- Division of Immunity and Infection, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
213
|
Siemion IZ, Gawlowska M, Krajewski K, Strug I, Wieczorek Z. Analogs of RGDVY and GRGD peptides inhibit Mycobacterium kansasii phagocytosis. Peptides 2003; 24:1109-15. [PMID: 14612180 DOI: 10.1016/j.peptides.2003.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuing our research on Mycobacteria kansasii phagocytosis inhibition, we have examined in that context three series of peptides derived from the RGDVY and GRGD sequences. It was found that the levels of the inhibitory activity depend on the amino acid composition as well as on the particular peptide sequence. Distinct inhibitory activity was found in the case of thymopentin (RKDVY), the active fragment of thymopoietin. In this case the Mycobacterium phagocytosis inhibition should be combined with general immunostimulatory activity of RKDVY peptide. Our examination of a series of GRGDV analogs with a successively prolonged oligo-Gly linker inserted into the peptide chain showed that the distance between the Arg and Asp residues required for such an activity should be about 9A.
Collapse
Affiliation(s)
- Ignacy Z Siemion
- Institute of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
214
|
Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A. Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003; 71:4563-79. [PMID: 12874336 PMCID: PMC165985 DOI: 10.1128/iai.71.8.4563-4579.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine.
Collapse
Affiliation(s)
- N Ariel
- Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Büttner D, Bonas U. Common infection strategies of plant and animal pathogenic bacteria. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:312-319. [PMID: 12873524 DOI: 10.1016/s1369-5266(03)00064-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gram-negative bacterial pathogens use common strategies to invade and colonize plant and animal hosts. In many species, pathogenicity depends on a highly conserved type-III protein secretion system that delivers effector proteins into the eukaryotic cell. Effector proteins modulate a variety of host cellular pathways, such as rearrangements of the cytoskeleton and defense responses. The specific set of effectors varies in different bacterial species, but recent studies have revealed structural and functional parallels between some effector proteins from plant and animal pathogenic bacteria. These findings suggest that bacterial pathogens target similar pathways in plant and animal host cells.
Collapse
Affiliation(s)
- Daniela Büttner
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 (Saale), Halle, Germany
| | | |
Collapse
|
216
|
Hume PJ, McGhie EJ, Hayward RD, Koronakis V. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol Microbiol 2003; 49:425-39. [PMID: 12828640 DOI: 10.1046/j.1365-2958.2003.03559.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An essential early event in Shigella and Salmonella pathogenesis is invasion of non-phagocytic intestinal epithelial cells. Pathogen entry is triggered by the delivery of multiple bacterial effector proteins into target mammalian cells. The Shigella invasion plasmid antigen B (IpaB), which inserts into the host plasma membrane, is required for effector delivery and invasion. To investigate the biochemical properties and membrane topology of IpaB, we purified the native full-length protein following expression in laboratory Escherichia coli. Purified IpaB assembled into trimers via an N-terminal domain predicted to form a trimeric coiled-coil, and is predominantly alpha-helical. Upon lipid interaction, two transmembrane domains (residues 313-333 and 399-419) penetrate the bilayer, allowing the intervening hydrophilic region (334-398) to cross the membrane. Purified IpaB integrated into model, erythrocyte and mammalian cell membranes without disrupting bilayer integrity, and induced liposome fusion in vitro. An IpaB-derived 162 residue alpha-helical polypeptide (IpaB(418-580)) is a potent inhibitor of IpaB-directed liposome fusion in vitro and blocked Shigella entry into cultured mammalian cells at 10(-8) M. It is also a heterologous inhibitor of Salmonella invasion protein B (SipB) activity and Salmonella entry. In contrast, IpaB(418-580) failed to prevent the contact-dependent haemolytic activity of Shigella. These findings question the proposed direct link between contact-dependent haemolysis and Shigella entry, and demonstrate that IpaB and SipB share biochemical properties and membrane topology, consistent with a conserved mode of action during cell entry.
Collapse
Affiliation(s)
- Peter J Hume
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | | | |
Collapse
|
217
|
Duncan MJ. Genomics of oral bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:175-87. [PMID: 12799321 DOI: 10.1177/154411130301400303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in bacterial genetics came with the discovery of the genetic code, followed by the development of recombinant DNA technologies. Now the field is undergoing a new revolution because of investigators' ability to sequence and assemble complete bacterial genomes. Over 200 genome projects have been completed or are in progress, and the oral microbiology research community has benefited through projects for oral bacteria and their non-oral-pathogen relatives. This review describes features of several oral bacterial genomes, and emphasizes the themes of species relationships, comparative genomics, and lateral gene transfer. Genomics is having a broad impact on basic research in microbial pathogenesis, and will lead to new approaches in clinical research and therapeutics. The oral microbiota is a unique community especially suited for new challenges to sequence the metagenomes of microbial consortia, and the genomes of uncultivable bacteria.
Collapse
Affiliation(s)
- Margaret J Duncan
- Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02115, USA.
| |
Collapse
|
218
|
Okamoto M, Leung KP, Ansai T, Sugimoto A, Maeda N. Inhibitory effects of green tea catechins on protein tyrosine phosphatase in Prevotella intermedia. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:192-5. [PMID: 12753472 DOI: 10.1034/j.1399-302x.2003.00056.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the Prevotella intermedia group possess protein tyrosine phosphatase (PTPase). The purpose of this study was to investigate the effects of catechin derivatives from Japanese green tea on the activity of PTPase in P. intermedia and related organisms. Multilocus enzyme electrophoresis of alkaline phosphatase derived from P. intermedia, Prevotella nigrescens, Prevotella pallens and Porphyromonas gingivalis revealed a species-specific migration pattern. Among the tea catechin derivatives tested, (-)-epigallocatechin gallate (EGCg), similar to orthovanadate, a specific inhibitor for PTPase, was effective in inhibiting the PTPase activity in P. intermedia at 0.5 microm, and related species at 5 microm. The results suggested that the inhibitory effect observed is due to the presence of galloyl moiety in the structure. In contrast, neither the green tea catechins nor orthovanadate inhibited the phosphatase activity in P. gingivalis, suggesting that this organism possessed a different family of alkaline phosphatase.
Collapse
Affiliation(s)
- M Okamoto
- Department of Oral Bacteriology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | | | | | | | | |
Collapse
|
219
|
Nathan C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 2003. [DOI: 10.1172/jci200318174] [Citation(s) in RCA: 339] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
220
|
Nathan C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 2003; 111:769-78. [PMID: 12639979 PMCID: PMC153776 DOI: 10.1172/jci18174] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology and Graduate Programs in Immunology and Molecular Biology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| |
Collapse
|
221
|
Yao H, Kristensen DM, Mihalek I, Sowa ME, Shaw C, Kimmel M, Kavraki L, Lichtarge O. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J Mol Biol 2003; 326:255-61. [PMID: 12547207 DOI: 10.1016/s0022-2836(02)01336-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional sites determine the activity and interactions of proteins and as such constitute the targets of most drugs. However, the exponential growth of sequence and structure data far exceeds the ability of experimental techniques to identify their locations and key amino acids. To fill this gap we developed a computational Evolutionary Trace method that ranks the evolutionary importance of amino acids in protein sequences. Studies show that the best-ranked residues form fewer and larger structural clusters than expected by chance and overlap with functional sites, but until now the significance of this overlap has remained qualitative. Here, we use 86 diverse protein structures, including 20 determined by the structural genomics initiative, to show that this overlap is a recurrent and statistically significant feature. An automated ET correctly identifies seven of ten functional sites by the least favorable statistical measure, and nine of ten by the most favorable one. These results quantitatively demonstrate that a large fraction of functional sites in the proteome may be accurately identified from sequence and structure. This should help focus structure-function studies, rational drug design, protein engineering, and functional annotation to the relevant regions of a protein.
Collapse
Affiliation(s)
- Hui Yao
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza T921, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Bacterial infections of the small intestine and colon represent a major health problem for developing and developed nations. Recent technological progress has helped research groups to obtain important information on bacterial structure, identify evolutionary relationship between bacterial species, and learn details of the mechanisms involved in the interplay between host and microbes that culminate in disease expression. It is hoped that accumulated knowledge from in vitro experiments and animal models will translate into clinical benefit by means of developing new therapeutic strategies and effective vaccines.
Collapse
Affiliation(s)
- Stavros Sougioultzis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
223
|
Roy CR, van der Goot FG. Eukaryotic cells and microbial pathogens: a familiar couple take centre stage. Nat Cell Biol 2003; 5:16-9. [PMID: 12511887 DOI: 10.1038/ncb0103-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interaction of a microbial pathogen with its host is a highly dynamic process shaped by evolution. Understanding cellular responses to microbial products is essential for a complete understanding of virulence. Similarly, studies aimed at determining how a particular virulence factor functions have helped unravel molecular mechanisms that govern eukaryotic cellular events. These two seemingly diverse areas were brought together on the beautiful Spanish Costa Brava in a recent meeting (October 13-17, 2002) sponsored by European Research Conferences (EURESCO) and the European Molecular Biology Organization (EMBO).
Collapse
Affiliation(s)
- Craig R Roy
- Yale University School of Medicine, Boyer Centre for Molecular Medicine, Section of Microbial Pathogenesis, 295 Congress Avenue, New Haven, CT 06536-0812, USA.
| | | |
Collapse
|
224
|
Boedeker EC. Gastrointestinal infections. Curr Opin Gastroenterol 2003; 19:1-3. [PMID: 15699886 DOI: 10.1097/00001574-200301000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
225
|
Waksman G. Hijacking the host cell proteasome. Dev Cell 2002; 3:763-4. [PMID: 12479802 DOI: 10.1016/s1534-5807(02)00375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uropathogenic Escherichia coli subvert host cell signaling mechanisms to induce cellular responses that facilitate bacterial invasion and colonization. A recent publication in the November 15 issue of Cell shows that the bacterium may accomplish such a feat by hijacking the proteasome machinery.
Collapse
Affiliation(s)
- Gabriel Waksman
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
226
|
Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 2002; 32:569-77. [PMID: 12457190 DOI: 10.1038/ng1202-569] [Citation(s) in RCA: 573] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 09/09/2002] [Indexed: 11/09/2022]
Abstract
Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host-pathogen interactions.
Collapse
Affiliation(s)
- Mark E J Woolhouse
- Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | |
Collapse
|
227
|
Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 2002; 111:553-64. [PMID: 12437928 DOI: 10.1016/s0092-8674(02)01132-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CNF1 toxin is a virulence factor produced by uropathogenic Escherichia coli. Upon cell binding and introduction into the cytosol, CNF1 deamidates glutamine 63 of RhoA (or 61 of Rac and Cdc42), rendering constitutively active these GTPases. Unexpectedly, we measured in bladder cells a transient CNF1-induced activation of Rho GTPases, maximal for Rac. Deactivation of Rac correlated with the increased susceptibility of its deamidated form to ubiquitin/proteasome-mediated degradation. Sensitivity to ubiquitylation could be generalized to other permanent-activated forms of Rac and to its sustained activation by Dbl. Degradation of the toxin-activated Rac allowed both host cell motility and efficient cell invasion by uropathogenic bacteria. CNF1 toxicity thus results from a restricted activation of Rho GTPases through hijacking the host cell proteasomal machinery.
Collapse
Affiliation(s)
- Anne Doye
- INSERM U452, IFR 50, Faculté de Médecine, 28 avenue de Valombrose, 06107, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Alexander JM, Nelson CA, van Berkel V, Lau EK, Studts JM, Brett TJ, Speck SH, Handel TM, Virgin HW, Fremont DH. Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 2002; 111:343-56. [PMID: 12419245 DOI: 10.1016/s0092-8674(02)01007-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The M3 protein encoded by murine gamma herpesvirus68 (gamma HV68) functions as an immune system saboteur by the engagement of chemoattractant cytokines, thereby altering host antiviral inflammatory responses. Here we report the crystal structures of M3 both alone and in complex with the CC chemokine MCP-1. M3 is a two-domain beta sandwich protein with a unique sequence and topology, forming a tightly packed anti-parallel dimer. The stoichiometry of the MCP-1:M3 complex is 2:2, with two monomeric chemokines embedded at distal ends of the preassociated M3 dimer. Conformational flexibility and electrostatic complementation are both used by M3 to achieve high-affinity and broad-spectrum chemokine engagement. M3 also employs structural mimicry to promiscuously sequester chemokines, engaging conservative structural elements associated with both chemokine homodimerization and binding to G protein-coupled receptors.
Collapse
Affiliation(s)
- Jennifer M Alexander
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
The endoplasmic reticulum (ER) has unique properties that are exploited by microbial pathogens. Exotoxins secreted by bacteria take advantage of the host transport pathways that deliver proteins from the Golgi to the ER. Transport to the ER is necessary for the unfolding and translocation of these toxins into the cytosol where their host targets reside. Intracellular pathogens subvert host vesicle transport to create ER-like vacuoles that support their intracellular replication. Investigations on how bacterial pathogens can use the ER during host infection are providing important details on transport pathways involving this specialized organelle.
Collapse
Affiliation(s)
- Craig R Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
230
|
Bierne H, Cossart P. InlB, a surface protein ofListeria monocytogenesthat behaves as an invasin and a growth factor. J Cell Sci 2002; 115:3357-67. [PMID: 12154067 DOI: 10.1242/jcs.115.17.3357] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Molecules from some pathogenic bacteria mimic natural host cell ligands and trigger engulfment of the bacterium after specifically interacting with cell-surface receptors. The leucine-rich repeat (LRR)-containing protein InlB of Listeria monocytogenes is one such molecule. It triggers bacterial entry by interacting with the hepatocyte growth factor receptor (HGF-R or Met)and two other cellular components: gC1q-R and proteoglycans. Recent studies point to significant similarities between the molecular mechanisms underlying InlB-mediated entry into cells and classic phagocytosis. In addition, InlB, in common with HGF, activates signaling cascades that are not involved in bacterial entry. Therefore, studies of InlB may help us to analyze the previously noticed similarities between growth factor receptor activation and phagocytosis.
Collapse
Affiliation(s)
- Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
231
|
Affiliation(s)
- Jorge E Galán
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
232
|
Abstract
Antibiotic resistance is a clinical and socioeconomical problem that is here to stay. Resistance can be natural or acquired. Some bacterial species, such as Pseudomonas aeruginosa, show a high intrinsic resistance to a number of antibiotics whereas others are normally highly antibiotic susceptible such as group A streptococci. Acquired resistance evolve via genetic alterations in the microbes own genome or by horizontal transfer of resistance genes located on various types of mobile DNA elements. Mutation frequencies to resistance can vary dramatically depending on the mechanism of resistance and whether or not the organism exhibits a mutator phenotype. Resistance usually has a biological cost for the microorganism, but compensatory mutations accumulate rapidly that abolish this fitness cost, explaining why many types of resistances may never disappear in a bacterial population. Resistance frequently occurs stepwise making it important to identify organisms with low level resistance that otherwise may constitute the genetic platform for development of higher resistance levels. Self-replicating plasmids, prophages, transposons, integrons and resistance islands all represent DNA elements that frequently carry resistance genes into sensitive organisms. These elements add DNA to the microbe and utilize site-specific recombinases/integrases for their integration into the genome. However, resistance may also be created by homologous recombination events creating mosaic genes where each piece of the gene may come from a different microbe. The selection with antibiotics have informed us much about the various genetic mechanisms that are responsible for microbial evolution.
Collapse
Affiliation(s)
- B Henriques Normark
- Swedish Institute of Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
233
|
Abstract
Eukaryotic cells are under constant attack from microbial intruders seeking a selective advantage for survival, propagation and dissemination. Microbial infections can often result in disease and might even be lethal to the host if they are not combatted effectively. Studies of host-pathogen interactions have revealed that virulence often requires the usurpation of existing cell signaling pathways or membrane traffic machinery of the host. Such studies provide a rich source of cell biological data that will probably prove essential for future efforts designed to either thwart these attacks or learn from them.
Collapse
Affiliation(s)
- Richard A Kahn
- Dept of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
234
|
McGhie EJ, Hume PJ, Hayward RD, Torres J, Koronakis V. Topology of the Salmonella invasion protein SipB in a model bilayer. Mol Microbiol 2002; 44:1309-21. [PMID: 12068811 DOI: 10.1046/j.1365-2958.2002.02958.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A critical early event in Salmonella infection is entry into intestinal epithelial cells. The Salmonella invasion protein SipB is required for the delivery of bacterial effector proteins into target eukaryotic cells, which subvert signal transduction pathways and cytoskeletal dynamics. SipB inserts into the host plasma membrane during infection, and the purified protein has membrane affinity and heterotypic membrane fusion activity in vitro. We used complementary biochemical and biophysical techniques to investigate the topology of purified SipB in a model membrane. We show that the 593 residue SipB is predominantly alpha-helical in aqueous solution, and that no significant change in secondary structural content accompanies lipid interaction. SipB contains two -helical transmembrane domains (residues 320-353 and 409-427), which insert deeply into the bilayer. Their integration allowed the hydrophilic region between the hydrophobic domains (354-408) to cross the bilayer. SipB membrane integration required both the hydrophobic domains and an additional helical C-terminal region (428-593). Further spectroscopic analysis of these domains in isolation showed that the hydrophobic regions insert obliquely into the bilayer, whereas the C-terminal domain associates with the bilayer surface, tilted parallel to the membrane. The combined data suggest a topological model for membrane-inserted SipB.
Collapse
Affiliation(s)
- Emma J McGhie
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
235
|
Abstract
The functionality and efficacy of Rho GTPase signaling is pivotal for a plethora of biological processes. Due to the integral nature of these molecules, the dysregulation of their activities can result in diverse aberrant phenotypes. Dysregulation can, as will be described below, be based on an altered signaling strength on the level of a specific regulator or that of the respective GTPase itself. Alternatively, effector pathways emanating from a specific Rho GTPase may be under- or overactivated. In this review, we address the role of the Rho-type GTPases as a subfamily of the Ras-superfamily of small GTP-binding proteins in the development of various disease phenotypes. The steadily growing list of genetic alterations that specifically impinge on proper Rho GTPase function corresponds to pathological categories such as cancer progression, mental disabilities and a group of quite diverse and unrelated disorders. We will provide an overview of disease-rendering mutations in genes that have been positively correlated with Rho GTPase signaling and will discuss the cellular and molecular mechanisms that may be affected by them.
Collapse
Affiliation(s)
- Benjamin Boettner
- Cold Spring Harbor Laboratories, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
236
|
Ahmadian MR, Wittinghofer A, Schmidt G. The actin filament architecture: tightly regulated by the cells, manipulated by pathogens. International Titisee Conference on the actin cytoskeleton: from signalling to bacterial pathogenesis. EMBO Rep 2002; 3:214-8. [PMID: 11882539 PMCID: PMC1084021 DOI: 10.1093/embo-reports/kvf057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Mohammad Reza Ahmadian
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.
| | | | | |
Collapse
|
237
|
Lara-Tejero M, Galán JE. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 2002; 10:147-52. [PMID: 11864825 DOI: 10.1016/s0966-842x(02)02316-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The coevolution of bacterial pathogens and their hosts has contributed to the development of very complex and sophisticated functional pathogen--host interfaces. Thus, well-adapted pathogens have evolved a variety of strategies to manipulate host cell functions precisely. For example, a group of unrelated Gram-negative pathogenic bacteria have evolved a toxin, known as cytolethal distending toxin (CDT), that has the ability to control cell cycle progression in eukaryotic cells. Recent studies have identified CdtB as the active subunit of the CDT holotoxin. Through its nuclease activity, CdtB causes limited DNA damage, thereby triggering the DNA-damage response that ultimately results in the observed arrest of the cell cycle. In addition, it has been established that CDT is a tripartite AB toxin in which CdtB is the active 'A' subunit and CdtA and CdtC constitute the heterodimeric 'B' subunit required for the delivery of CdtB into the target cell. The mechanism of action of CDT suggests that the infliction of limited damage could be a strategy used by pathogenic bacteria to modulate host cell functions.
Collapse
Affiliation(s)
- María Lara-Tejero
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
238
|
Abstract
A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. One class, called type IV, are defined as having homology to the conjugal transfer systems of naturally occurring plasmids. It has been proposed that pathogens with type IV secretion systems have acquired and adapted the conjugal transfer systems of plasmids and now use them to export toxins. Several well-characterized intracellular pathogens, including Legionella pneumophila, Coxiella burnetii, Brucella abortus, and Rickettsia prowazekii, contain type IV systems which are known or suspected to be of critical importance in their ability to cause disease. Specifically, these systems are believed to be the key factors determining intracellular fate, and thus the ability to replicate and cause disease.
Collapse
Affiliation(s)
- Jessica A Sexton
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
239
|
Abstract
Rapid progress in structural biology and whole-genome sequencing technology means that, for many protein families, structural and evolutionary information are readily available. Recent developments demonstrate how this information can be integrated to identify canonical determinants of protein structure and function. Among these determinants, those residues that are on protein surfaces are especially likely to form binding sites and are the logical choice for further mutational analysis and drug targeting.
Collapse
Affiliation(s)
- Olivier Lichtarge
- Department of Molecular and Human Genetics, 1 Baylor Plaza, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
240
|
Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J, Goebel W, Vázquez-Boland JA. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci U S A 2002; 99:431-6. [PMID: 11756655 PMCID: PMC117577 DOI: 10.1073/pnas.012363899] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient replication in vivo is essential for a microparasite to colonize its host and the understanding of the molecular mechanisms by which microbial pathogens grow within host tissues can lead to the discovery of novel therapies to treat infection. Here we present evidence that the foodborne bacterial pathogen Listeria monocytogenes, a facultative intracellular parasite, exploits hexose phosphates (HP) from the host cell as a source of carbon and energy to fuel fast intracellular growth. HP uptake is mediated by Hpt, a bacterial homolog of the mammalian translocase that transports glucose-6-phosphate from the cytosol into the endoplasmic reticulum in the final step of gluconeogenesis and glycogenolysis. Expression of the Hpt permease is tightly controlled by the central virulence regulator PrfA, which upon entry into host cells induces a set of virulence factors required for listerial intracellular parasitism. Loss of Hpt resulted in impaired listerial intracytosolic proliferation and attenuated virulence in mice. Hpt is the first virulence factor to be identified as specifically involved in the replication phase of a facultative intracellular pathogen. It is also a clear example of how adaptation to intracellular parasitism by microbial pathogens involves mimicry of physiological mechanisms of their eukaryotic host cells.
Collapse
Affiliation(s)
- Isabel Chico-Calero
- Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
241
|
Hayward RD, Koronakis V. Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol 2002; 12:15-20. [PMID: 11854005 DOI: 10.1016/s0962-8924(01)02183-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive Salmonella trigger their own uptake into non-phagocytic eukaryotic cells by delivering virulence proteins that stimulate signaling pathways and remodel the actin cytoskeleton. It has recently emerged that Salmonella encodes two actin-binding proteins, SipC and SipA, which together efficiently nucleate actin polymerization and stabilize the resulting supramolecular filament architecture. Therefore, Salmonella might directly initiate actin polymerization independently of the cellular Arp2/3 complex early in the cell entry process. This is an unprecedented example of a direct intervention strategy to facilitate entry of a pathogen into a target cell. Here, we discuss the Salmonella actin-binding proteins and how they might function in combination with entry effectors that stimulate Rho GTPases. We propose that membrane-targeted bacterial effector proteins might trigger actin polymerization through diverse mechanisms during cell entry by bacterial pathogens.
Collapse
Affiliation(s)
- Richard D Hayward
- University of Cambridge, Dept of Pathology, Tennis Court Road, CB2 1QP, Cambridge, UK.
| | | |
Collapse
|