201
|
Kharadi RR, Sundin GW. Physiological and Microscopic Characterization of Cyclic-di-GMP-Mediated Autoaggregation in Erwinia amylovora. Front Microbiol 2019; 10:468. [PMID: 30930874 PMCID: PMC6423407 DOI: 10.3389/fmicb.2019.00468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
The second messenger cyclic-di-GMP (c-di-GMP) is a critical regulator of biofilm formation in the plant pathogen Erwinia amylovora. Phosphodiesterase (PDE) enzymes are responsible for the degradation of intracellular c-di-GMP. Previously, we found that the deletion of one or more of the three PDE enzyme encoding genes (pdeA, pdeB, and pdeC) in E. amylovora Ea1189 led to an increase in biofilm formation. However, in mutants Ea1189ΔpdeAC and Ea1189ΔpdeABC, biofilm formation was reduced compared to the other single and double deletion mutants. Here, we attribute this to an autoaggregation phenotype observed in these two mutants. Examination of Ea1189ΔpdeABC cellular aggregates using scanning electron microscopy indicated that a subset of cells were impaired in cell separation post cell division. Concomitant with this phenotype, Ea1189ΔpdeABC also exhibited increased transcription of the cell-division inhibitor gene sulA and reduced transcription of ftsZ. Ea1189ΔpdeABC showed a significant reduction in biofilm formation, and biofilms formed by Ea1189ΔpdeABC exhibited a distinctive morphology of sparsely scattered aggregates rather than an evenly distributed biofilm as observed in WT Ea1189. Our results suggest that highly elevated levels of c-di-GMP lead to increased cell-cell interactions that contribute to autoaggregation and impair cell-surface interaction, negatively affecting biofilm formation.
Collapse
Affiliation(s)
| | - George W. Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
202
|
Norris V. Successive Paradigm Shifts in the Bacterial Cell Cycle and Related Subjects. Life (Basel) 2019; 9:E27. [PMID: 30866455 PMCID: PMC6462897 DOI: 10.3390/life9010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
A paradigm shift in one field can trigger paradigm shifts in other fields. This is illustrated by the paradigm shifts that have occurred in bacterial physiology following the discoveries that bacteria are not unstructured, that the bacterial cell cycle is not controlled by the dynamics of peptidoglycan, and that the growth rates of bacteria in the same steady-state population are not at all the same. These paradigm shifts are having an effect on longstanding hypotheses about the regulation of the bacterial cell cycle, which appear increasingly to be inadequate. I argue that, just as one earthquake can trigger others, an imminent paradigm shift in the regulation of the bacterial cell cycle will have repercussions or "paradigm quakes" on hypotheses about the origins of life and about the regulation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
203
|
Howell M, Aliashkevich A, Sundararajan K, Daniel JJ, Lariviere PJ, Goley ED, Cava F, Brown PJB. Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division. Mol Microbiol 2019; 111:1074-1092. [PMID: 30693575 DOI: 10.1111/mmi.14212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re-direct peptidoglycan biosynthesis to mid-cell during cell division in polar-growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid-cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid-cell, exhibit GTPase activity and form co-polymers, only one, FtsZAT , is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid-cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid-cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.
Collapse
Affiliation(s)
- Matthew Howell
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Alena Aliashkevich
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeremy J Daniel
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Patrick J Lariviere
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| |
Collapse
|
204
|
Baranowski C, Rego EH, Rubin EJ. The Dream of a Mycobacterium. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0008-2018. [PMID: 31025625 PMCID: PMC11590427 DOI: 10.1128/microbiolspec.gpp3-0008-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
How do mycobacteria divide? Cell division has been studied extensively in the model rod-shaped bacteria Escherichia coli and Bacillus subtilis, but much less is understood about cell division in mycobacteria, a genus that includes the major human pathogens M. tuberculosis and M. leprae. In general, bacterial cell division requires the concerted effort of many proteins in both space and time to elongate the cell, replicate and segregate the chromosome, and construct and destruct the septum - processes which result in the creation of two new daughter cells. Here, we describe these distinct stages of cell division in B. subtilis and follow with the current knowledge in mycobacteria. As will become apparent, there are many differences between mycobacteria and B. subtilis in terms of both the broad outline of cell division and the molecular details. So, while the fundamental challenge of spatially and temporally organizing cell division is shared between these rod-shaped bacteria, they have solved these challenges in often vastly different ways.
Collapse
Affiliation(s)
- Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
205
|
Araújo‐Bazán L, Huecas S, Valle J, Andreu D, Andreu JM. Synthetic developmental regulator MciZ targets FtsZ across
Bacillus
species and inhibits bacterial division. Mol Microbiol 2019; 111:965-980. [DOI: 10.1111/mmi.14198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/20/2023]
Affiliation(s)
| | - Sonia Huecas
- Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Javier Valle
- Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | - David Andreu
- Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | | |
Collapse
|
206
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
207
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
208
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
209
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
210
|
In Vivo Imaging of the Segregation of the 2 Chromosomes and the Cell Division Proteins of Rhodobacter sphaeroides Reveals an Unexpected Role for MipZ. mBio 2019; 10:mBio.02515-18. [PMID: 30602584 PMCID: PMC6315104 DOI: 10.1128/mbio.02515-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell division has to be coordinated with chromosome segregation to ensure the stable inheritance of genetic information. We investigated this coordination in the multichromosome bacterium Rhodobacter sphaeroides. By examining the origin and terminus regions of the two chromosomes, the ParA-like ATPase MipZ and FtsZ, we showed that chromosome 1 appears to be the “master” chromosome connecting DNA segregation and cell division, with MipZ being critical for coordination. MipZ shows an unexpected localization pattern, with MipZ monomers interacting with ParB of the chromosome 1 at the cell poles whereas MipZ dimers colocalize with FtsZ at midcell during constriction, both forming dynamic rings. These data suggest that MipZ has roles in R. sphaeroides in both controlling septation and coordinating chromosome segregation with cell division. Coordinating chromosome duplication and segregation with cell division is clearly critical for bacterial species with one chromosome. The precise choreography required is even more complex in species with more than one chromosome. The alpha subgroup of bacteria contains not only one of the best-studied bacterial species, Caulobacter crescentus, but also several species with more than one chromosome. Rhodobacter sphaeroides is an alphaproteobacterium with two chromosomes, but, unlike C. crescentus, it divides symmetrically rather than buds and lacks the complex CtrA-dependent control mechanism. By examining the Ori and Ter regions of both chromosomes and associated ParA and ParB proteins relative to cell division proteins FtsZ and MipZ, we have identified a different pattern of chromosome segregation and cell division. The pattern of chromosome duplication and segregation resembles that of Vibrio cholerae, not that of Agrobacterium tumefaciens, with duplication of the origin and terminus regions of chromosome 2 controlled by chromosome 1. Key proteins are localized to different sites compared to C. crescentus. OriC1 and ParB1 are localized to the old pole, while MipZ and FtsZ localize to the new pole. Movement of ParB1 to the new pole following chromosome duplication releases FtsZ, which forms a ring at midcell, but, unlike reports for other species, MipZ monomers do not form a gradient but oscillate between poles, with the nucleotide-bound monomer and the dimer localizing to midcell. MipZ dimers form a single ring (with a smaller diameter) close to the FtsZ ring at midcell and constrict with the FtsZ ring. Overproduction of the dimer form results in filamentation, suggesting that MipZ dimers are regulating FtsZ activity and thus septation. This is an unexpected role for MipZ and provides a new model for the integration of chromosome segregation and cell division.
Collapse
|
211
|
Windgassen TA, Leroux M, Sandler SJ, Keck JL. Function of a strand-separation pin element in the PriA DNA replication restart helicase. J Biol Chem 2018; 294:2801-2814. [PMID: 30593500 DOI: 10.1074/jbc.ra118.006870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/26/2018] [Indexed: 11/06/2022] Open
Abstract
DNA helicases are motor proteins that couple the chemical energy of nucleoside triphosphate hydrolysis to the mechanical functions required for DNA unwinding. Studies of several helicases have identified strand-separating "pin" structures that are positioned to intercept incoming dsDNA and promote strand separation during helicase translocation. However, pin structures vary among helicases and it remains unclear whether they confer a conserved unwinding mechanism. Here, we tested the biochemical and cellular roles of a putative pin element within the Escherichia coli PriA DNA helicase. PriA orchestrates replication restart in bacteria by unwinding the lagging-strand arm of abandoned DNA replication forks and reloading the replicative helicase with the help of protein partners that combine with PriA to form what is referred to as a primosome complex. Using in vitro protein-DNA cross-linking, we localized the putative pin (a β-hairpin within a zinc-binding domain in PriA) near the ssDNA-dsDNA junction of the lagging strand in a PriA-DNA replication fork complex. Removal of residues at the tip of the β-hairpin eliminated PriA DNA unwinding, interaction with the primosome protein PriB, and cellular function. We isolated a spontaneous intragenic suppressor mutant of the priA β-hairpin deletion mutant in which 22 codons around the deletion site were duplicated. This suppressor variant and an Ala-substituted β-hairpin PriA variant displayed wildtype levels of DNA unwinding and PriB binding in vitro These results suggest essential but sequence nonspecific roles for the PriA pin element and coupling of PriA DNA unwinding to its interaction with PriB.
Collapse
Affiliation(s)
- Tricia A Windgassen
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Maxime Leroux
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Steven J Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
212
|
Abstract
This article describes the design and fabrication of microchambers that are used for the study of bacterial cells. The design allows for the confinement and precise manipulation of bacterial cell shape. The application of fluorescent dyes and fluorescent proteins enables the precise analysis of the localization of biomolecules within confined bacterial cell. This article also outlines three methods to engineer cell shape from a filamentous cell type and from spheroplasts without a cell wall using soft lithography-based technologies. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lars David Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| |
Collapse
|
213
|
Krokowski S, Lobato-Márquez D, Chastanet A, Pereira PM, Angelis D, Galea D, Larrouy-Maumus G, Henriques R, Spiliotis ET, Carballido-López R, Mostowy S. Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host Microbe 2018; 24:866-874.e4. [PMID: 30543779 PMCID: PMC6299245 DOI: 10.1016/j.chom.2018.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
The cytoskeleton occupies a central role in cellular immunity by promoting bacterial sensing and antibacterial functions. Septins are cytoskeletal proteins implicated in various cellular processes, including cell division. Septins also assemble into cage-like structures that entrap cytosolic Shigella, yet how septins recognize bacteria is poorly understood. Here, we discover that septins are recruited to regions of micron-scale membrane curvature upon invasion and division by a variety of bacterial species. Cardiolipin, a curvature-specific phospholipid, promotes septin recruitment to highly curved membranes of Shigella, and bacterial mutants lacking cardiolipin exhibit less septin cage entrapment. Chemically inhibiting cell separation to prolong membrane curvature or reducing Shigella cell growth respectively increases and decreases septin cage formation. Once formed, septin cages inhibit Shigella cell division upon recruitment of autophagic and lysosomal machinery. Thus, recognition of dividing bacterial cells by the septin cytoskeleton is a powerful mechanism to restrict the proliferation of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Sina Krokowski
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Damián Lobato-Márquez
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Arnaud Chastanet
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Pedro Matos Pereira
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dieter Galea
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Ricardo Henriques
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Rut Carballido-López
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
214
|
Dewachter L, Verstraeten N, Fauvart M, Michiels J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol Rev 2018; 42:116-136. [PMID: 29365084 DOI: 10.1093/femsre/fuy005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, imec, B-3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| |
Collapse
|
215
|
Almutairi ZM. Comparative genomics of HORMA domain-containing proteins in prokaryotes and eukaryotes. Cell Cycle 2018; 17:2531-2546. [PMID: 30488757 PMCID: PMC6300099 DOI: 10.1080/15384101.2018.1553402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/14/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
In eukaryotes, critical regulation of cell cycle is required to ensure the integrity of cell division. HORMA-containing proteins include various proteins that contain HORMA domain and play important role in the regulation of cell cycle in eukaryotes. Many types of HORMA-containing proteins are found in eukaryotes, but their role in prokaryotes has not been proven. Therefore, we conduct an extensive search in GenBank for HORMA-containing proteins in prokaryotes to compare HORMA domain structure and architecture across eukaryotes and prokaryotes. Strikingly, genome sequencing for many prokaryotic organisms reveals that HORMA domain is present in many bacterial genomes and only two archaeal genomes. We perform sequence alignment and phylogenetic analysis to trace the evolutionary link between HORMA domain in prokaryotes and eukaryotes. HORMA domain in prokaryotes appears to vary in sequence and architecture. Interestingly, seven bacterial HORMA-containing proteins and the two archaeal HORMA-containing proteins showed close relationships with eukaryotic HORMA-containing proteins. Additionally, we uncovered remarkable close relationships between HORMA-containing protein from Chlamydia trachomatis and eukaryotic MAD2 proteins. Our results provide insights into evolutionary relationships between prokaryotic and eukaryotic systems, which facilitate our understanding of the evolution of cell cycle regulation mechanisms.
Collapse
Affiliation(s)
- Zainab M. Almutairi
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
216
|
The Min Oscillator Defines Sites of Asymmetric Cell Division in Cyanobacteria during Stress Recovery. Cell Syst 2018; 7:471-481.e6. [PMID: 30414921 DOI: 10.1016/j.cels.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
When resources are abundant, many rod-shaped bacteria reproduce through precise, symmetric divisions. However, realistic environments entail fluctuations between restrictive and permissive growth conditions. Here, we use time-lapse microscopy to study the division of the cyanobacterium Synechococcus elongatus as illumination intensity varies. We find that dim conditions produce elongated cells whose divisions follow a simple rule: cells shorter than ∼8 μm divide symmetrically, but above this length divisions become asymmetric, typically producing a short ∼3-μm daughter. We show that this division strategy is implemented by the Min system, which generates multi-node patterns and traveling waves in longer cells that favor the production of a short daughter. Mathematical modeling reveals that the feedback loops that create oscillatory Min patterns are needed to implement these generalized cell division rules. Thus, the Min system, which enforces symmetric divisions in short cells, acts to strongly suppress mid-cell divisions when S. elongatus cells are long.
Collapse
|
217
|
Carro L. Protein-protein interactions in bacteria: a promising and challenging avenue towards the discovery of new antibiotics. Beilstein J Org Chem 2018; 14:2881-2896. [PMID: 30546472 PMCID: PMC6278769 DOI: 10.3762/bjoc.14.267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein-protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.
Collapse
Affiliation(s)
- Laura Carro
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
218
|
Männik J, Walker BE, Männik J. Cell cycle-dependent regulation of FtsZ in Escherichia coli in slow growth conditions. Mol Microbiol 2018; 110:1030-1044. [PMID: 30230648 DOI: 10.1111/mmi.14135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
FtsZ is the key regulator of bacterial cell division. It initiates division by forming a dynamic ring-like structure, the Z-ring, at the mid-cell. What triggers the formation of the Z-ring during the cell cycle is poorly understood. In Escherichia coli, the common view is that FtsZ concentration is constant throughout its doubling time and therefore regulation of assembly is controlled by some yet-to-be-identified protein-protein interactions. Using a newly developed functional, fluorescent FtsZ reporter, we performed a quantitative analysis of the FtsZ concentration throughout the cell cycle under slow growth conditions. In contrast to the common expectation, we show that FtsZ concentrations vary in a cell cycle-dependent manner, and that upregulation of FtsZ synthesis correlates with the formation of the Z-ring. The first half of the cell cycle shows an approximately fourfold upregulation of FtsZ synthesis, followed by its rapid degradation by ClpXP protease in the last 10% of the cell cycle. The initiation of rapid degradation coincides with the dissociation of FtsZ from the septum. Altogether, our data suggest that the Z-ring formation in slow growth conditions in E. coli is partially controlled by a regulatory sequence wherein upregulation of an essential cell cycle factor is followed by its degradation.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Bryant E Walker
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
219
|
Xie J, Wu YY, Zhang TY, Zhang MY, Peng F, Lin B, Zhang YX. New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia 2018; 131:35-43. [PMID: 30291967 DOI: 10.1016/j.fitote.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
A total of 180 fungal isolates, belonging to 20 genera and 47 species, were obtained from the roots, stems and leaves of Panax notoginseng. One isolate, the endophytic fungus Penicillium janthinellum SYPF 7899, displayed the strongest antibacterial activity and was studied for its production of secondary metabolites. In total, three new compounds, including rotational isomers 1a, 1b and 2 were isolated from the solid cultures of P. janthinellum, as well as eight known compounds (3-10). These structures were determined on the basis of 1D, 2D NMR and electronic circular dichroism (ECD) spectroscopic analyses as well as theoretical calculations. Compound 1 exhibited significant inhibitory activities against Bacillus subtilis and Staphylococcus aureus with MIC values of 15 and 18 μg/ml, respectively. The other compounds showed moderate or weak activities. In addition, morphological observation showed the rod-shaped cells of B. subtilis growing into long filaments, which reached 1.5- to 2-fold of the length of the original cells after treatment with compound 1. The coccoid cells of S. aureus exhibited a similar response and swelled to a 2-fold volume after treatment with compound 1. In silico molecular docking was explored to study the binding interactions between the compounds and the active sites of filamentous temperature-sensitive protein Z (FtsZ) from B. subtilis and S. aureus. Compound 1a, 1b and 2 showed high binding energies, strong H-bond interactions and hydrophobic interactions with FtsZ. Based on the antimicrobial activities, cellular phenotype observation and docking studies, compound 1 is considered to be a promising antimicrobial inhibitor of FtsZ.
Collapse
Affiliation(s)
- Jun Xie
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Peng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
220
|
Abstract
FtsZ is the ancestral homolog of tubulin and assembles into the Z ring that organizes the division machinery to drive cell division in most bacteria. In contrast to tubulin that assembles into 13 stranded microtubules that undergo dynamic instability, FtsZ assembles into single-stranded filaments that treadmill to distribute the peptidoglycan synthetic machinery at the septum. Here, using longitudinal interface mutants of FtsZ, we demonstrate that the kinetic polarity of FtsZ filaments is opposite to that of microtubules. A conformational switch accompanying the assembly of FtsZ generates the kinetic polarity of FtsZ filaments, which explains the toxicity of interface mutants that function as a capper and reveals the mechanism of cooperative assembly. This approach can also be employed to determine the kinetic polarity of other filament-forming proteins.
Collapse
|
221
|
Shao Q, Trinh JT, Zeng L. High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda. J Biol Chem 2018; 294:3343-3349. [PMID: 30242122 DOI: 10.1074/jbc.tm118.003209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.
Collapse
Affiliation(s)
- Qiuyan Shao
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Jimmy T Trinh
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Lanying Zeng
- From the Department of Biochemistry and Biophysics and .,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
222
|
Abstract
Bacteria have the ability to produce minicells, or small spherical versions of themselves that lack chromosomal DNA and are unable to replicate. A minicell can constitute as much as 20% of the cell’s volume. Although molecular biology and biotechnology have used minicells as laboratory tools for several decades, it is still puzzling that bacteria should produce such costly but potentially nonfunctional structures. Here, we show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. The elimination allows the bacteria to tolerate higher levels of stress, such as increasing levels of streptomycin. If this mechanism extends from streptomycin to other antibiotics, minicell production could be an overlooked pathway that bacteria are using to resist antimicrobials. Many bacteria produce small, spherical minicells that lack chromosomal DNA and therefore are unable to proliferate. Although minicells have been used extensively by researchers as a molecular tool, nothing is known about why bacteria produce them. Here, we show that minicells help Escherichia coli cells to rid themselves of damaged proteins induced by antibiotic stress. By comparing the survival and growth rates of wild-type strains with the E. coliΔminC mutant, which produces excess minicells, we found that the mutant was more resistant to streptomycin. To determine the effects of producing minicells at the single-cell level, we also tracked the growth of ΔminC lineages by microscopy. We were able to show that the mutant increased the production of minicells in response to a higher level of the antibiotic. When we compared two sister cells, in which one produced minicells and the other did not, the daughters of the former had a shorter doubling time at this higher antibiotic level. Additionally, we found that minicells were more likely produced at the mother’s old pole, which is known to accumulate more aggregates. More importantly, by using a fluorescent IbpA chaperone to tag damage aggregates, we found that polar aggregates were contained by and ejected with the minicells produced by the mother bacterium. These results demonstrate for the first time the benefit to bacteria for producing minicells. IMPORTANCE Bacteria have the ability to produce minicells, or small spherical versions of themselves that lack chromosomal DNA and are unable to replicate. A minicell can constitute as much as 20% of the cell’s volume. Although molecular biology and biotechnology have used minicells as laboratory tools for several decades, it is still puzzling that bacteria should produce such costly but potentially nonfunctional structures. Here, we show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. The elimination allows the bacteria to tolerate higher levels of stress, such as increasing levels of streptomycin. If this mechanism extends from streptomycin to other antibiotics, minicell production could be an overlooked pathway that bacteria are using to resist antimicrobials.
Collapse
|
223
|
Mückl A, Schwarz-Schilling M, Fischer K, Simmel FC. Filamentation and restoration of normal growth in Escherichia coli using a combined CRISPRi sgRNA/antisense RNA approach. PLoS One 2018; 13:e0198058. [PMID: 30204770 PMCID: PMC6133276 DOI: 10.1371/journal.pone.0198058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022] Open
Abstract
CRISPR interference (CRISPRi) using dCas9-sgRNA is a powerful tool for the exploration and manipulation of gene functions. Here we quantify the reversible switching of a central process of the bacterial cell cycle by CRISPRi and an antisense RNA mechanism. Reversible induction of filamentous growth in E. coli has been recently demonstrated by controlling the expression levels of the bacterial cell division proteins FtsZ/FtsA via CRISPRi. If FtsZ falls below a critical level, cells cannot divide. However, the cells remain metabolically active and continue with DNA replication. We surmised that this makes them amenable to an inducible antisense RNA strategy to counteract FtsZ inhibition. We show that both static and inducible thresholds can adjust the characteristics of the switching process. Combining bulk data with single cell measurements, we characterize the efficiency of the switching process. Successful restoration of division is found to occur faster in the presence of antisense sgRNAs than upon simple termination of CRISPRi induction.
Collapse
Affiliation(s)
- Andrea Mückl
- Physics Department, Technische Universität München, Garching, Bavaria, Germany
| | | | - Katrin Fischer
- Physics Department, Technische Universität München, Garching, Bavaria, Germany
| | - Friedrich C. Simmel
- Physics Department, Technische Universität München, Garching, Bavaria, Germany
- Nanosystems Initiative Munich, Munich, Bavaria Germany
| |
Collapse
|
224
|
Abstract
In most bacteria and archaea, filaments of FtsZ protein organize cell division. FtsZ forms a ring structure at the division site and starts the recruitment of 10 to 20 downstream proteins that together form a multiprotein complex termed the divisome. The divisome is thought to facilitate many of the steps required to make two cells out of one. FtsQ and FtsB are part of the divisome, with FtsQ being a central hub, interacting with most of the other divisome components. Here we show for the first time in detail how FtsQ interacts with its downstream partner FtsB and show that mutations that disturb the interface between the two proteins effectively inhibit cell division. Most bacteria and archaea use the tubulin homologue FtsZ as its central organizer of cell division. In Gram-negative Escherichia coli bacteria, FtsZ recruits cytosolic, transmembrane, periplasmic, and outer membrane proteins, assembling the divisome that facilitates bacterial cell division. One such divisome component, FtsQ, a bitopic membrane protein with a globular domain in the periplasm, has been shown to interact with many other divisome proteins. Despite its otherwise unknown function, it has been shown to be a major divisome interaction hub. Here, we investigated the interactions of FtsQ with FtsB and FtsL, two small bitopic membrane proteins that act immediately downstream of FtsQ. We show in biochemical assays that the periplasmic domains of E. coli FtsB and FtsL interact with FtsQ, but not with each other. Our crystal structure of FtsB bound to the β domain of FtsQ shows that only residues 64 to 87 of FtsB interact with FtsQ. A synthetic peptide comprising those 24 FtsB residues recapitulates the FtsQ-FtsB interactions. Protein deletions and structure-guided mutant analyses validate the structure. Furthermore, the same structure-guided mutants show cell division defects in vivo that are consistent with our structure of the FtsQ-FtsB complex that shows their interactions as they occur during cell division. Our work provides intricate details of the interactions within the divisome and also provides a tantalizing view of a highly conserved protein interaction in the periplasm of bacteria that is an excellent target for cell division inhibitor searches.
Collapse
|
225
|
Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proc Natl Acad Sci U S A 2018; 115:E9075-E9084. [PMID: 30201718 DOI: 10.1073/pnas.1809842115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication restart, the essential process that reinitiates prematurely terminated genome replication reactions, relies on exquisitely specific recognition of abandoned DNA replication-fork structures. The PriA DNA helicase mediates this process in bacteria through mechanisms that remain poorly defined. We report the crystal structure of a PriA/replication-fork complex, which resolves leading-strand duplex DNA bound to the protein. Interaction with PriA unpairs one end of the DNA and sequesters the 3'-most nucleotide from the nascent leading strand into a conserved protein pocket. Cross-linking studies reveal a surface on the winged-helix domain of PriA that binds to parental duplex DNA. Deleting the winged-helix domain alters PriA's structure-specific DNA unwinding properties and impairs its activity in vivo. Our observations lead to a model in which coordinated parental-, leading-, and lagging-strand DNA binding provide PriA with the structural specificity needed to act on abandoned DNA replication forks.
Collapse
|
226
|
MacCready JS, Vecchiarelli AG. In long bacterial cells, the Min system can act off-center. Mol Microbiol 2018; 109:268-272. [DOI: 10.1111/mmi.13995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua S. MacCready
- Molecular, Cellular, and Developmental Biology; University of Michigan College of Literature Science and the Arts; Biological Sciences Building Ann Arbor MI USA
| | - Anthony G. Vecchiarelli
- Molecular, Cellular, and Developmental Biology; University of Michigan College of Literature Science and the Arts; Biological Sciences Building Ann Arbor MI USA
| |
Collapse
|
227
|
Outer membrane lipoprotein RlpA is a novel periplasmic interaction partner of the cell division protein FtsK in Escherichia coli. Sci Rep 2018; 8:12933. [PMID: 30154462 PMCID: PMC6113214 DOI: 10.1038/s41598-018-30979-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
In Escherichia coli, formation of new cells is mediated by the elongasome and divisome that govern cell elongation and septation, respectively. Proper transition between these events is essential to ensure viable progeny are produced; however, the components of each complex responsible for transmission of the cell signal to shift from elongation to septation are unclear. Recently, a region within the N-terminal domain of the essential divisome protein FtsK (FtsKN) was identified that points to a key role for FtsK as a checkpoint of cell envelope remodeling during division. Here, we used site-specific in vivo UV cross-linking to probe the periplasmic loops of FtsKN for protein interaction partners critical for FtsKN function. Mass spectrometry analysis of five unique FtsKN periplasmic cross-links revealed a network of potential FtsKN interactors, one of which included the septal peptidoglycan binding protein rare lipoprotein A (RlpA). This protein was further verified as a novel interaction partner of FtsKN by an in vitro pull-down assay. Deletion of rlpA from an FtsK temperature-sensitive E. coli strain partially restored cell growth and largely suppressed cellular filamentation compared to the wild-type strain. This suggests that interaction with RlpA may be critical in suppressing septation until proper assembly of the divisome.
Collapse
|
228
|
Kim KW. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations. Antonie van Leeuwenhoek 2018; 112:145-157. [PMID: 30128891 DOI: 10.1007/s10482-018-1142-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/11/2018] [Indexed: 01/12/2023]
Abstract
Cytoskeletons have long been perceived to be present only in eukaryotes. However, this notion changed drastically in the 1990s, with observations of cytoskeleton-like structures in several prokaryotes. Homologs of the main components of eukaryotic cytoskeletons, such as microtubules, microfilaments, and intermediate filaments, have been identified in bacteria and archaea. Tubulin homologs include filamenting temperature-sensitive mutant Z (FtsZ), bacterial tubulin A/B (BtubA/B), and tubulin/FtsZ-like protein (TubZ), whereas actin homologs comprise murein region B (MreB) and crenactin. Unlike other proteins, crescentin (CreS) is a homolog of intermediate filaments. Recent findings elucidated their localization, structural organization, and helical properties in prokaryotes, thus revising traditional models. FtsZ is involved in cell division, forming a bundle of overlapping filaments that cover the entire division plane. Cryogenic transmission electron microscopy identified tubular structures of BtubA/B that were not previously identified using conventional ultrathin plastic sections. TubZ generates two joint filaments to form a quadruplex structure. After a long debate, MreB, a cell shape determinant, was shown to form filament stretches that move circumferentially around rod-shaped bacteria. Initially characterized as single-stranded, crenactin was eventually identified as right-handed double-stranded helical filaments. CreS, another cell shape determinant, forms filament bundles located inside the inner membrane of the concave side of cells. These observations suggest that the use of in situ or ex situ microscopy in combination with structural analysis techniques will enable the elucidation and further understanding of the current models of prokaryotic cytoskeletons.
Collapse
Affiliation(s)
- Ki Woo Kim
- School of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Korea. .,Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Korea.
| |
Collapse
|
229
|
Zheng YY, Du RL, Cai SY, Liu ZH, Fang ZY, Liu T, So LY, Lu YJ, Sun N, Wong KY. Study of Benzofuroquinolinium Derivatives as a New Class of Potent Antibacterial Agent and the Mode of Inhibition Targeting FtsZ. Front Microbiol 2018; 9:1937. [PMID: 30174667 PMCID: PMC6107709 DOI: 10.3389/fmicb.2018.01937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
New generation of antibacterial agents are urgently needed in order to fight the emergence of multidrug-resistant bacteria. FtsZ is currently identified as a promising target for new types of antimicrobial compounds development because of its conservative characteristics and its essential role played in bacterial cell division. In the present study, the antibacterial activity of a series of benzofuroquinolinium derivatives was investigated. The results show that the compounds possess potent antibacterial activity against drug resistant pathogens including MRSA, VREF and NDM-1 Escherichia coli. Biological studies reveal that the compound is an effective inhibitor that is able to suppress FtsZ polymerization and GTPase activity and thus stopping the cell division and causing cell death. More importantly, this series of compounds shows low cytotoxicity on mammalian cells and therefore they could be new chemotypes for the development of new antibacterial agents targeting the cell-division protein FtsZ.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sen-Yuan Cai
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhi-Hua Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lok-Yan So
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yu-Jing Lu
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- Goldenpomelo Biotechnology Co., Ltd., Meizhou, China
| | - Ning Sun
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
230
|
Honda T, Morimoto D, Sako Y, Yoshida T. LexA Binds to Transcription Regulatory Site of Cell Division Gene ftsZ in Toxic Cyanobacterium Microcystis aeruginosa. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:549-556. [PMID: 29774437 DOI: 10.1007/s10126-018-9826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN3GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.
Collapse
Affiliation(s)
- Takashi Honda
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Daichi Morimoto
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
231
|
Pospich S, Raunser S. Single particle cryo-EM-an optimal tool to study cytoskeletal proteins. Curr Opin Struct Biol 2018; 52:16-24. [PMID: 30056307 DOI: 10.1016/j.sbi.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022]
Abstract
Cytoskeletal proteins play essential roles in many cellular processes. Knowledge of their structures is important to understand their function and regulation. Since cytoskeletal polymers are difficult to crystallize, cryo-EM has been the predominant method of choice to study their structures. Recent advances in the methodology have enabled reconstructions at near-atomic resolution. In this review, we focus on novel insights gained from high-resolution cryo-EM structures of cytoskeletal polymers. These include eukaryotic proteins such as F-actin and microtubules as well as their prokaryotic homologues. The unprecedented high-resolutions allow identifying small molecules, including nucleotides and drugs, as well as subtle changes at interfaces that are key to complex processes, such as nucleotide hydrolysis in microtubules and actin filaments. While major methodological advances have already promoted the structural analysis of cytoskeletal polymers, there are still specific methodological challenges to overcome and many scientific questions remain to be answered.
Collapse
Affiliation(s)
- Sabrina Pospich
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Stefan Raunser
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
| |
Collapse
|
232
|
Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metab Eng 2018; 48:233-242. [DOI: 10.1016/j.ymben.2018.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/20/2022]
|
233
|
Lamoree B, Hubbard RE. Using Fragment-Based Approaches to Discover New Antibiotics. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:495-510. [PMID: 29923463 PMCID: PMC6024353 DOI: 10.1177/2472555218773034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Fragment-based lead discovery has emerged over the past two decades as a successful approach to generate novel lead candidates in drug discovery programs. The two main advantages over conventional high-throughput screening (HTS) are more efficient sampling of chemical space and tighter control over the physicochemical properties of the lead candidates. Antibiotics are a class of drugs with particularly strict property requirements for efficacy and safety. The development of novel antibiotics has slowed down so much that resistance has now evolved against every available antibiotic drug. Here we give an overview of fragment-based approaches in screening and lead discovery projects for new antibiotics. We discuss several successful hit-to-lead development examples. Finally, we highlight the current challenges and opportunities for fragment-based lead discovery toward new antibiotics.
Collapse
Affiliation(s)
- Bas Lamoree
- YSBL, Department of Chemistry, University of York, Heslington, York, UK
| | - Roderick E. Hubbard
- YSBL, Department of Chemistry, University of York, Heslington, York, UK
- Vernalis Research, Granta Park, Abington, Cambridge, UK
| |
Collapse
|
234
|
Mori-Quiroz LM, Hedrick SL, De Los Santos AR, Clift MD. A Unified Strategy for the Syntheses of the Isoquinolinium Alkaloids Berberine, Coptisine, and Jatrorrhizine. Org Lett 2018; 20:4281-4284. [PMID: 29952573 DOI: 10.1021/acs.orglett.8b01702] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Total syntheses of the antibacterial alkaloids berberine, coptisine, and jatrorrhizine have been achieved in four steps through a unified route. The key step of this strategy is an efficient intramolecular Friedel-Crafts alkoxyalkylation which, following oxidation, establishes the isoquinolinium core of these natural products. Herein, the design and development of this synthetic strategy, which has enabled the shortest and most efficient syntheses of these alkaloids reported to date, is described.
Collapse
Affiliation(s)
- Luis M Mori-Quiroz
- Department of Chemistry , The University of Kansas , 2010 Malott Hall, 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Sidnee L Hedrick
- Department of Chemistry , The University of Kansas , 2010 Malott Hall, 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Andrew R De Los Santos
- Department of Chemistry , The University of Kansas , 2010 Malott Hall, 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| | - Michael D Clift
- Department of Chemistry , The University of Kansas , 2010 Malott Hall, 1251 Wescoe Hall Drive , Lawrence , Kansas 66045 , United States
| |
Collapse
|
235
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
236
|
Li Y, Shao S, Xu X, Su X, Sun Y, Wei S. MapZ Forms a Stable Ring Structure That Acts As a Nanotrack for FtsZ Treadmilling in Streptococcus mutans. ACS NANO 2018; 12:6137-6146. [PMID: 29812902 DOI: 10.1021/acsnano.8b02469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial binary cell division requires accurate placement of division machinery. FtsZ, a vital component of the division machinery, can assemble into filaments and self-organize into a ring structure (Z ring) at the appropriate site for cell division. MapZ, a recently identified FtsZ regulator in Streptococcaceae, has been found to localize at the midcell where it helps to properly position the FtsZ ring. However, its mechanism is still unclear. Here, by using total internal reflection fluorescence microscopy, super-resolution imaging, and single molecule tracking, we investigated the mechanism by which MapZ controls the position of the FtsZ ring. Our results show that FtsZ exhibits a dynamic treadmilling motion in S. mutans. Importantly, depletion of MapZ leads to the unconstrained movement of treadmilling FtsZ filaments and a shorter lifetime of the constricting FtsZ ring, which is frequently misplaced. Furthermore, by revealing that MapZ forms an immobile ring-like nanostructure at the division site, our study suggests that MapZ forms a stable ring that acts as a nanotrack to guide and restrict treadmilling FtsZ filaments in S. mutans.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| | - Shipeng Shao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| |
Collapse
|
237
|
Schumacher D, Søgaard-Andersen L. Fluorescence Live-cell Imaging of the Complete Vegetative Cell Cycle of the Slow-growing Social Bacterium Myxococcus xanthus. J Vis Exp 2018. [PMID: 29985348 PMCID: PMC6101962 DOI: 10.3791/57860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluorescence live-cell imaging of bacterial cells is a key method in the analysis of the spatial and temporal dynamics of proteins and chromosomes underlying central cell cycle events. However, imaging of these molecules in slow-growing bacteria represents a challenge due to photobleaching of fluorophores and phototoxicity during image acquisition. Here, we describe a simple protocol to circumvent these limitations in the case of Myxococcus xanthus (which has a generation time of 4 - 6 h). To this end, M. xanthus cells are grown on a thick nutrient-containing agar pad in a temperature-controlled humid environment. Under these conditions, we determine the doubling time of individual cells by following the growth of single cells. Moreover, key cellular processes such as chromosome segregation and cell division can be imaged by fluorescence live-cell imaging of cells containing relevant fluorescently labeled marker proteins such as ParB-YFP, FtsZ-GFP, and mCherry-PomX over multiple cell cycles. Subsequently, the acquired images are processed to generate montages and/or movies.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | | |
Collapse
|
238
|
Guan F, Yu J, Yu J, Liu Y, Li Y, Feng XH, Huang KC, Chang Z, Ye S. Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division. eLife 2018; 7:35578. [PMID: 29889022 PMCID: PMC6050046 DOI: 10.7554/elife.35578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/10/2018] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.
Collapse
Affiliation(s)
- Fenghui Guan
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Jiayu Yu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Yu
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Yang Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ying Li
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Zengyi Chang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Ye
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| |
Collapse
|
239
|
Holden S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Curr Opin Microbiol 2018; 43:84-91. [DOI: 10.1016/j.mib.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
|
240
|
Neeli-Venkata R, Oliveira SMD, Martins L, Startceva S, Bahrudeen M, Fonseca JM, Minoia M, Ribeiro AS. The precision of the symmetry in Z-ring placement in Escherichia coli is hampered at critical temperatures. Phys Biol 2018; 15:056002. [PMID: 29717708 DOI: 10.1088/1478-3975/aac1cb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell division in Escherichia coli is morphologically symmetric due to, among other things, the ability of these cells to place the Z-ring at midcell. Studies have reported that, at sub-optimal temperatures, this symmetry decreases at the single-cell level, but the causes remain unclear. Using fluorescence microscopy, we observe FtsZ-GFP and DAPI-stained nucleoids to assess the robustness of the symmetry of Z-ring formation and positioning in individual cells under sub-optimal and critical temperatures. We find the Z-ring formation and positioning to be robust at sub-optimal temperatures, as the Z-ring's mean width, density and displacement from midcell maintain similar levels of correlation to one another as at optimal temperatures. However, at critical temperatures, the Z-ring displacement from midcell is greatly increased. We present evidence showing that this is due to enhanced distance between the replicated nucleoids and, thus, reduced Z-ring density, which explains the weaker precision in setting a morphologically symmetric division site. This also occurs in rich media and is cumulative, i.e. combining richer media and critically high temperatures enhances the asymmetries in division, which is evidence that the causes are biophysical. To further support this, we show that the effects are reversible, i.e. shifting cells from optimal to critical, and then to optimal again, reduces and then enhances the symmetry in Z-ring positioning, respectively, as the width and density of the Z-ring return to normal values. Overall, our findings show that the Z-ring positioning in E. coli is a robust biophysical process under sub-optimal temperatures, and that critical temperatures cause significant asymmetries in division.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, 33101, Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD. Sci Rep 2018; 8:7328. [PMID: 29743540 PMCID: PMC5943314 DOI: 10.1038/s41598-018-25782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/25/2018] [Indexed: 01/15/2023] Open
Abstract
Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.
Collapse
|
242
|
Xiao-Ran J, Jin Y, Xiangbin C, Guo-Qiang C. Halomonas and Pathway Engineering for Bioplastics Production. Methods Enzymol 2018; 608:309-328. [PMID: 30173767 DOI: 10.1016/bs.mie.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional microbial chassis, including Escherichia coli, Bacillus subtilis, Ralstonia eutropha, and Pseudomonas putida, are grown under neutral pH and mild osmotic pressure for production of chemicals and materials. They tend to be contaminated easily by many microorganisms. To address this issue, next-generation industrial biotechnology employing halophilic Halomonas spp. has been developed for production of bioplastics polyhydroxyalkanoates (PHAs) and other chemicals. Halomonas spp. that can be grown contamination free under open and unsterile condition at alkali pH and high NaCl have been engineered to produce several PHA polymers in elongated or enlarged cells. New pathways can also be constructed both in plasmids and on chromosomes for Halomonas spp. Synthetic biology approaches and parts have been developed for Halomonas spp., allowing better control of their growth and product formation as well as morphology adjustment. Halomonas spp. and their synthetic biology will play an increasingly important role for industrial production of large volume chemicals.
Collapse
Affiliation(s)
- Jiang Xiao-Ran
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yin Jin
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chen Xiangbin
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chen Guo-Qiang
- MOE Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; Manchester Institute of Biotechnology, Centre for Synthetic Biology, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
243
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
244
|
Flores SA, Howell M, Daniel JJ, Piccolo R, Brown PJB. Absence of the Min System Does Not Cause Major Cell Division Defects in Agrobacterium tumefaciens. Front Microbiol 2018; 9:681. [PMID: 29686659 PMCID: PMC5900048 DOI: 10.3389/fmicb.2018.00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
In A. tumefaciens, the essential FtsZ protein is located at the growth pole before shifting to the mid-cell right before division. Loss of FtsZ causes a halt in cell separation and lysis of cells. To understand how FtsZ polymerization is regulated to properly localize the FtsZ ring at the mid-cell, we have conducted a systematic characterization of the Min system in A. tumefaciens. Our findings indicate that the Min system is not required for cell survival. Yet, we find that the deletion of either minE or minCDE results in a broad cell size distribution, including an increase in the proportion of short and long cells. We observe that the site of constriction is misplaced in the minE or minCDE deletion strains allowing for short cells to arise from sites of constriction near the cell poles. Remarkably, the short cells are viable and contain DNA. In order to observe chromosome replication and segregation in these strains, YFP-ParB is used as a proxy to track the origin of replication as cells elongate and divide. In the absence of the Min proteins, duplication and segregation of the origin of replication is frequently delayed. Taken together, our data suggest that the Min system contributes to the proper regulation of FtsZ placement and subsequent cell division. Furthermore, the failure to precisely place FtsZ rings at mid-cell in the min mutants impacts other cell cycle features including chromosome segregation.
Collapse
Affiliation(s)
- Sue A Flores
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Matthew Howell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Jeremy J Daniel
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Rebecca Piccolo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
245
|
Pende N, Wang J, Weber PM, Verheul J, Kuru E, Rittmann SKMR, Leisch N, VanNieuwenhze MS, Brun YV, den Blaauwen T, Bulgheresi S. Host-Polarized Cell Growth in Animal Symbionts. Curr Biol 2018; 28:1039-1051.e5. [PMID: 29576473 PMCID: PMC6611161 DOI: 10.1016/j.cub.2018.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023]
Abstract
To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog.
Collapse
Affiliation(s)
- Nika Pende
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jinglan Wang
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Philipp M Weber
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jolanda Verheul
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School NRB, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Simon K-M R Rittmann
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Nikolaus Leisch
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Silvia Bulgheresi
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
246
|
Modular assembling process of an in-silico protocell. Biosystems 2018; 165:8-21. [DOI: 10.1016/j.biosystems.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
|
247
|
Krupka M, Margolin W. Unite to divide: Oligomerization of tubulin and actin homologs regulates initiation of bacterial cell division. F1000Res 2018; 7:235. [PMID: 29560258 PMCID: PMC5832921 DOI: 10.12688/f1000research.13504.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
To generate two cells from one, bacteria such as
Escherichia coli use a complex of membrane-embedded proteins called the divisome that synthesize the division septum. The initial stage of cytokinesis requires a tubulin homolog, FtsZ, which forms polymers that treadmill around the cell circumference. The attachment of these polymers to the cytoplasmic membrane requires an actin homolog, FtsA, which also forms dynamic polymers that directly bind to FtsZ. Recent evidence indicates that FtsA and FtsZ regulate each other’s oligomeric state in
E. coli to control the progression of cytokinesis, including the recruitment of septum synthesis proteins. In this review, we focus on recent advances in our understanding of protein-protein association between FtsZ and FtsA in the initial stages of divisome function, mainly in the well-characterized
E. coli system.
Collapse
Affiliation(s)
- Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, USA
| |
Collapse
|
248
|
Weihs F, Wacnik K, Turner RD, Culley S, Henriques R, Foster SJ. Heterogeneous localisation of membrane proteins in Staphylococcus aureus. Sci Rep 2018; 8:3657. [PMID: 29483609 PMCID: PMC5826919 DOI: 10.1038/s41598-018-21750-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/08/2018] [Indexed: 11/25/2022] Open
Abstract
The bacterial cytoplasmic membrane is the interface between the cell and its environment, with multiple membrane proteins serving its many functions. However, how these proteins are organised to permit optimal physiological processes is largely unknown. Based on our initial findings that 2 phospholipid biosynthetic enzymes (PlsY and CdsA) localise heterogeneously in the membrane of the bacterium Staphylococcus aureus, we have analysed the localisation of other key membrane proteins. A range of protein fusions were constructed and used in conjunction with quantitative image analysis. Enzymes involved in phospholipid biosynthesis as well as the lipid raft marker FloT exhibited a heterogeneous localisation pattern. However, the secretion associated SecY protein, was more homogeneously distributed in the membrane. A FRET-based system also identified novel colocalisation between phospholipid biosynthesis enzymes and the respiratory protein CydB revealing a likely larger network of partners. PlsY localisation was found to be dose dependent but not to be affected by membrane lipid composition. Disruption of the activity of the essential cell division organiser FtsZ, using the inhibitor PC190723 led to loss of PlsY localisation, revealing a link to cell division and a possible role for FtsZ in functions not strictly associated with septum formation.
Collapse
Affiliation(s)
- Felix Weihs
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katarzyna Wacnik
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Robert D Turner
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Siân Culley
- Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
| | - Ricardo Henriques
- Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
| | - Simon J Foster
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
249
|
Oliveira AF, Folador EL, Gomide ACP, Goes-Neto A, Azevedo VAC, Wattam AR. Cell Division in genus Corynebacterium: protein-protein interaction and molecular docking of SepF and FtsZ in the understanding of cytokinesis in pathogenic species. AN ACAD BRAS CIENC 2018; 90:2179-2188. [PMID: 29451601 DOI: 10.1590/0001-3765201820170385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022] Open
Abstract
The genus Corynebacterium includes species of great importance in medical, veterinary and biotechnological fields. The genus-specific families (PLfams) from PATRIC have been used to observe conserved proteins associated to all species. Our results showed a large number of conserved proteins that are associated with the cellular division process. Was not observe in our results other proteins like FtsA and ZapA that interact with FtsZ. Our findings point that SepF overlaps the function of this proteins explored by molecular docking, protein-protein interaction and sequence analysis. Transcriptomic analysis showed that these two (Sepf and FtsZ) proteins can be expressed in different conditions together. The work presents novelties on molecules participating in the cell division event, from the interaction of FtsZ and SepF, as new therapeutic targets.
Collapse
Affiliation(s)
- Alberto F Oliveira
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Edson L Folador
- Centro de Biotecnologia/CBiotec, Universidade Federal da Paraíba/UFPB, s/n, Castelo Branco III, 58051-085 João Pessoa, PB, Brazil
| | - Anne C P Gomide
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Aristóteles Goes-Neto
- Departamento de Microbiologia, Laboratório de Biologia Molecular e Computacional de Fungos, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Vasco A C Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Alice R Wattam
- Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Virginia Tech, 24060, Blacksburg, VA, U.S.A
| |
Collapse
|
250
|
Jackson KM, Schwartz C, Wachter J, Rosa PA, Stewart PE. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. Mol Microbiol 2018; 108:77-89. [PMID: 29363884 DOI: 10.1111/mmi.13917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
Leptospires and other members of the evolutionarily ancient phylum of Spirochaetes are bacteria often characterized by long, highly motile spiral- or wave-shaped cells. Morphology and motility are critical factors in spirochete physiology, contributing to the ability of these bacteria to successfully colonize diverse environments. However, the mechanisms conferring the helical structure of Leptospira spp. have yet to be fully elucidated. We have identified five Leptospira biflexa bactofilin proteins, a recently characterized protein family with cytoskeletal properties. These five bactofilins are conserved in all species of the Leptospiraceae, indicating that these proteins arose early in the evolution of this family. One member of this protein family, LbbD, confers the optimal pitch distance in the helical structure of L. biflexa. Mutants lacking lbbD display a unique compressed helical morphology, a reduced motility and a decreased ability to tolerate cell wall stressors. The change in the helical spacing, combined with the motility and cell wall integrity defects, showcases the intimate relationship and coevolution between shape and motility in these spirochetes.
Collapse
Affiliation(s)
- Katrina M Jackson
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Cindi Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Philip E Stewart
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|